JPH01203211A - Hard amorphous carbon film - Google Patents

Hard amorphous carbon film

Info

Publication number
JPH01203211A
JPH01203211A JP63028031A JP2803188A JPH01203211A JP H01203211 A JPH01203211 A JP H01203211A JP 63028031 A JP63028031 A JP 63028031A JP 2803188 A JP2803188 A JP 2803188A JP H01203211 A JPH01203211 A JP H01203211A
Authority
JP
Japan
Prior art keywords
substrate
amorphous carbon
carbon film
electrode
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63028031A
Other languages
Japanese (ja)
Inventor
Nobuaki Shohata
伸明 正畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63028031A priority Critical patent/JPH01203211A/en
Publication of JPH01203211A publication Critical patent/JPH01203211A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-hardness amorphous carbon film having excellent adhesive property and lubricity and capable of being appropriately used for a surface protecting layer when deposited on a magnetic disk, etc., by incorporating Si and F into an amorphous carbon film contg. hydrogen. CONSTITUTION:A substrate 3 is set on the substrate holder 2 provided in a vacuum reaction vessel 5, and a DC voltage is impressed between the holder 2 and an electrode 1 set on the side surface. The inside of the vessel 5 is evacuated 4 to about 0.1-50Torr. The raw gas 8-11 obtained by mixing a gaseous hydrocarbon diluted with H2, gaseous SiH4 as Si, and gaseous HP and F is introduced 7 into the vessel 5. Under such conditions, a positive voltage is impressed on the electrode 1, and a negative voltage is impressed on the substrate 3 side to generate a flow discharge. In this case, the strongest glow discharge is generated in the immediate proximity of the electrode 1. However, since the substrate 3 is arranged as described above, the plasma gas of a weak electric field is formed on the substrate 3 in the vicinity of the surface in almost uniform thickness, and the desired amorphous carbon film is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気ディスクや磁気ヘッド等の表面に付着せ
しめて、硬度が高く、密着性に優れた耐磨耗性と潤滑性
とを兼ね備えた表面保護層の用途に適する硬質非晶質炭
素膜に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention can be attached to the surface of a magnetic disk, magnetic head, etc., and has high hardness, excellent adhesion, abrasion resistance, and lubricity. The present invention relates to a hard amorphous carbon film suitable for use as a surface protective layer.

(従来の技術) 磁気ディスクや磁気ヘッドは磁気ディスク装置に組込み
コンピュータ一端末の情報記憶装置として広く用いられ
ている。磁気ディスクは、アルミニウム金属板ないしは
、プラスチック奪の基板上にフェライトや鉄、コバル+
−、ニッケルないしはこれらの化合物または、ネオジミ
ウム、サマリウム、カドリニウム、テルビウムなどの希
土類金属やそれらからなる合金の磁性体を磁気記録媒体
として、塗布法やスパッタ法などにより薄い液状に付着
させて用いられる。
(Prior Art) Magnetic disks and magnetic heads are incorporated into magnetic disk drives and are widely used as information storage devices for computer terminals. Magnetic disks are made of ferrite, iron, cobal+ on aluminum metal plates or plastic substrates.
-, nickel or a compound thereof, or a rare earth metal such as neodymium, samarium, cadrinium, terbium, or an alloy thereof, is used as a magnetic recording medium by depositing it in a thin liquid form by coating or sputtering.

磁気ヘッドは種々の方式があるが、例えばアルミニウム
粉末と、炭化チタンとの混合粒を板状に成形焼結した焼
結基板上に薄膜状でコイルやヨークを形成する薄膜磁気
ヘッドが高密度磁気記録ヘッドとして採用されつつある
。この磁気ヘッドは、記録媒体に書き込まれた磁化の向
きに応じた磁束の変化を信号として取出すもので、可能
なかぎり磁気ディスク面に近ずけて使用されるものであ
る。また磁気ディスクは回転と停止を頻繁に繰返す。こ
のため磁気ヘッドと磁気ディスク面は互いに接触・摩擦
を繰返し、磁気ディスクの記録媒体上に発生するきす等
から記録媒体を保護するための保訛膜を必要とする。
There are various types of magnetic heads, but for example, a thin film magnetic head is a high-density magnetic head in which a coil or yoke is formed in the form of a thin film on a sintered substrate made by molding and sintering mixed grains of aluminum powder and titanium carbide into a plate shape. It is being adopted as a recording head. This magnetic head extracts as a signal changes in magnetic flux according to the direction of magnetization written on the recording medium, and is used as close to the magnetic disk surface as possible. Furthermore, magnetic disks frequently rotate and stop. For this reason, the magnetic head and the magnetic disk surface repeatedly come into contact with and rub against each other, and a protective film is required to protect the recording medium from scratches and the like generated on the recording medium of the magnetic disk.

保護膜の備えるべき要点は耐磨耗性に優れていること、
基板ないしは下地との密着度が高いこと、表面の潤滑性
に優れていること等が掲げられる。膜の硬度は耐磨耗性
の評価に用いることができ、硬度が高いほど耐磨耗性に
優れている。密着性は磁気ヘッドの接触時あるいは摩擦
時に保護膜が剥離しないため重要で、磁気ディスク媒体
の作製方法によってその表面性状が異なるため、媒体の
表面性状に合った保護膜材料および作製方法を選択する
ことが必要である。
The key points that a protective film should have are that it has excellent abrasion resistance;
Examples include high adhesion to the substrate or base, and excellent surface lubricity. The hardness of the film can be used to evaluate the abrasion resistance, and the higher the hardness, the better the abrasion resistance. Adhesion is important because it prevents the protective film from peeling off when the magnetic head contacts or rubs.Since the surface properties of magnetic disk media vary depending on the manufacturing method, select the protective film material and manufacturing method that match the surface properties of the medium. It is necessary.

従来この保護膜としては、厚み800A程度の二酸化ケ
イ素(SiO□)やアルミナ(A1203)等の酸化物
やカーボン膜が用いられている。Sin□や^1□03
は通常シリコンやアルミニウムの有機金属化合物を溶媒
中に溶解したものをコーティング塗布乾燥後熱処理する
方法やアルゴンと酸素等の混合ガス中でスパッタリング
するかないしは蒸着法で作られる。
Conventionally, as this protective film, an oxide or carbon film such as silicon dioxide (SiO□) or alumina (A1203) with a thickness of about 800 Å has been used. Sin□ya^1□03
It is usually made by coating an organic metal compound of silicon or aluminum dissolved in a solvent, applying a coating, drying and then heat treatment, or by sputtering or vapor deposition in a mixed gas such as argon and oxygen.

カーボン膜は特開昭52−90201等に記載されてい
る様な炭素電極を用いた放電によって作られる炭素イオ
ンビームの蒸着法ないしは、1980年発行のジャーナ
ル・オブ・ノンクリスタリン・ソリッド誌(Journ
al of Non Crystalline 5ol
ids)第35&36巻第435ページに記載されてい
るような炭素の蒸発付着の方法で作られていた。
A carbon film can be produced by a carbon ion beam deposition method made by discharge using a carbon electrode as described in Japanese Patent Application Laid-Open No. 52-90201, etc., or by a carbon ion beam evaporation method made by discharge using a carbon electrode, as described in Japanese Patent Application Laid-Open No. 52-90201, etc.
al of Non Crystalline 5ol
ids) Vol. 35 & 36, page 435.

(発明が解決しようとする問題点) 先に述べた種々の保護膜材料はしかしながら十分な硬度
、密着性、潤滑性を有しておらず例えばビッカース硬度
の値は、5i02保護膜では2000k[/麿、2、ア
ルミナでは3000にに/■2またスパッタ法等による
カーボン膜で3000kg/s■2程度で密着性も良好
とはいえなかった。例えば磁気ヘッドを約10g程度の
荷重で膜表面に押し付は摩「によるキズの発生を調べる
試験方法では、500km程度の走行距離以内で磨耗キ
ズが発生してしまうという問題があった。
(Problems to be Solved by the Invention) However, the various protective film materials mentioned above do not have sufficient hardness, adhesion, and lubricity; for example, the Vickers hardness value of the 5i02 protective film is 2000 k[/ The adhesion of Maro, 2, and alumina was about 3000 kg/s2, and the adhesion of carbon films made by sputtering was about 3000 kg/s2, which could not be said to be good. For example, in a test method for examining the occurrence of scratches caused by abrasion, in which a magnetic head is pressed against a film surface with a load of about 10 g, there is a problem in that abrasion scratches occur within a running distance of about 500 km.

本発明は以上の欠点を改善した高硬度で特にC。The present invention improves the above-mentioned drawbacks by providing high hardness, especially C.

−Ni−P系の磁気記録媒体上に付着せしめ、耐磨耗性
および基体との密着性に優れかつ潤滑性の良好な磁気デ
ィスク表面保護膜の用途に適する保護膜材料を提供する
ことにある。
- To provide a protective film material suitable for application as a magnetic disk surface protective film, which can be deposited on a Ni-P based magnetic recording medium, has excellent wear resistance and adhesion to a substrate, and has good lubricity. .

(問題を解決するための手段) 本発明の主旨は硬度が高く耐磨耗性・密着性に優れた、
表面保護の用途に適する保護膜材料として、水素を含有
させた非晶質炭素膜中に更にシリコンおよびフッ素を含
有せしめたことを特徴とする硬質非晶質炭素膜材料を提
供するところにある。
(Means for solving the problem) The gist of the present invention is to provide high hardness, excellent abrasion resistance, and adhesion.
An object of the present invention is to provide a hard amorphous carbon film material, which is a protective film material suitable for surface protection, and is characterized by further containing silicon and fluorine in an amorphous carbon film containing hydrogen.

本発明になる硬質非晶炭素膜は水素(H2)中にメタン
(CH4)ガスをo、i体積%〜5体積%の範囲で混合
した期待を第1図に示す構造の直流グロー放電プラズマ
気相合成装置内に導入することで合成する。
The hard amorphous carbon film of the present invention is produced by mixing hydrogen (H2) with methane (CH4) gas in the range of 0,i volume % to 5 volume %. It is synthesized by introducing it into a phase synthesizer.

第1図において、真空反応槽5内に設置した基板支持台
2上に基板3を設置し、直流電源6によって、側面に設
置した電極1との間に直流電圧を印加できるようにする
。真空反応槽内は0.1)−ルから50ト一ル程度の真
空度に保つため排気装置4によって排気しておく、原料
ガスは、ボンベ8.9.10および11内に充填したも
のをガス供給ロアを通して真空反応槽内に導入する。
In FIG. 1, a substrate 3 is placed on a substrate support 2 placed in a vacuum reaction tank 5, and a DC voltage can be applied between it and an electrode 1 placed on the side surface by a DC power supply 6. The inside of the vacuum reactor is evacuated using an exhaust device 4 to maintain a vacuum level of about 0.1 to 50 torr.The raw material gas is the one filled in cylinders 8, 9, 10 and 11. The gas is introduced into the vacuum reactor through the gas supply lower.

側面に設置した電極1には正、および基板側には負の電
位となるようにして上記圧力範囲にてグロー放電を発生
させる。最も強いグロー放電は側面電極1に最も近い部
分で発生するが、上記の様な配置とすることで基板上に
弱電界のプラズマガスを表面付近にほぼ均一な厚みに作
ることができる。
Glow discharge is generated in the above pressure range by applying a positive potential to the electrode 1 installed on the side surface and a negative potential to the substrate side. The strongest glow discharge occurs at the portion closest to the side electrode 1, but by arranging it as described above, plasma gas with a weak electric field can be created on the substrate to have a substantially uniform thickness near the surface.

原料ガスは水素で希釈した炭化水素ガスを用いシリコン
およびフッ素(F)は、例えばシラン(Si)+4)お
よびフッ化水素(11F >の形でガス状で混合すれば
良い。これらの混合ガスは、上記の基板上に直流グロー
放電によって発生した弱電離プラズマガス中で励起分解
やイオン化を起し、直流電界中で加速を受けて基板表面
に付着し、添加元素を均一に含有した非晶質状悪の炭素
膜となる。
The raw material gas is a hydrocarbon gas diluted with hydrogen, and silicon and fluorine (F) may be mixed in gaseous form, for example, in the form of silane (Si) + 4) and hydrogen fluoride (11F).These mixed gases are On the above substrate, excitation decomposition and ionization occur in the weakly ionized plasma gas generated by DC glow discharge, and it is accelerated in the DC electric field and adheres to the substrate surface, forming an amorphous material containing additive elements uniformly. It becomes a carbon film in poor condition.

(作用) 通常メタン等の炭化水素と水素の混合ガスを直流グロー
放電させることによって得られる膜は非晶質で約10%
以上の水素を含有している。水素およびフッ素は炭素原
子のダングリングボンドの部分に入り、炭素の結合を埋
めることによって非晶質状態を安定化させている構造と
されている。
(Function) Normally, the film obtained by subjecting a mixed gas of hydrocarbon such as methane and hydrogen to direct current glow discharge is amorphous with about 10%
It contains hydrogen. Hydrogen and fluorine enter the dangling bonds of carbon atoms and fill the carbon bonds, thereby stabilizing the amorphous state.

本発明者らは、この様な非晶質膜の高硬度化、基板との
高密着性と高潤滑性を達成すべく、種々の金属元素の添
加効果について炭素原子のダングリングボンドの一部を
水素以外の金属元素で閉じることを意図し鋭意研究を進
め、特にCo−N1−P系の磁気記録媒体上で密着性の
向上と高硬度化に効果があり、かつ表面平坦性の良好に
できる手法として、金属元素の添加された膜の合成方法
を発明するに至った。
In order to achieve high hardness, high adhesion to the substrate, and high lubricity of such an amorphous film, the present inventors investigated the effects of adding various metal elements to some of the dangling bonds of carbon atoms. We have been conducting intensive research with the intention of closing with metal elements other than hydrogen, and we have developed a method that is particularly effective in improving adhesion and hardness on Co-N1-P-based magnetic recording media, as well as providing good surface flatness. As a possible method, we have invented a method for synthesizing films to which metal elements are added.

金属元素の添加による密着性の向上と高硬度化高潤滑性
のメカニズムについては不明の点もあるが、金属と炭素
との結合や基板媒体元素と保護膜界面での化学結合が形
成されることによっているものと考えられる。膜の潤滑
性に関しては表面吸着水分によるディスク表面とヘッド
間に働くファンデアワールス力がその潤滑性を支配する
ことが云われているが、炭素−フ・ソ素の化合物は疏水
性を示し、水分が吸着しにくいと考えられるので、膜表
面に存在するフッ素原子の効果によって高潤滑性が達成
されるものと考えられる。
The mechanism of improved adhesion, higher hardness, and higher lubricity due to the addition of metal elements is unclear, but it is likely that chemical bonds are formed between the metal and carbon and between the substrate medium element and the protective film interface. It is thought that this is due to It is said that the lubricity of the film is controlled by the van der Waals force acting between the disk surface and the head due to surface adsorption of moisture, but carbon-fluorine compounds exhibit hydrophobic properties, Since it is thought that water is difficult to adsorb, it is thought that high lubricity is achieved by the effect of fluorine atoms present on the film surface.

また、この様な方法を用いると、主放電部分から離れた
位置でのプラズマを利用するため基板付近の電界強度が
適当な値に制御でき、イオン衝撃等による基板の損傷や
付着した膜のエツチング等の問題がなく、磁気ディスク
保護膜としても実用可能な表面平坦性の極めて良好な膜
が生成でき、また均一性にも優れたものとできる。
In addition, by using such a method, the electric field strength near the substrate can be controlled to an appropriate value because plasma is used at a location away from the main discharge area, and damage to the substrate due to ion bombardment or etching of attached films can be avoided. There are no such problems, and a film with extremely good surface flatness that can be used practically as a magnetic disk protective film can be produced, and also has excellent uniformity.

(実施例) 本発明になる硬質非晶質炭素膜の合成には第1図に示す
ような装置を用いた。直流グロー放電は基体を設置して
いない側の電極を正極として数百ボルトの電圧を印加し
た。放電々流密度は1 mA/C112とした。反応ガ
スはメタンを用い水素ガスによって1体積%から5体積
%になるよう流量で制御した。シリコンは水素で1〜2
体積%に希釈したシランガスを用いた。フッ素は同じく
水素ガスで1〜5体積%に希釈したフッ化水素(HF)
を用いた。
(Example) An apparatus as shown in FIG. 1 was used to synthesize the hard amorphous carbon film of the present invention. For DC glow discharge, a voltage of several hundred volts was applied using the electrode on the side where the substrate was not installed as the positive electrode. The discharge current density was 1 mA/C112. Methane was used as the reaction gas, and the flow rate was controlled by hydrogen gas so that the amount ranged from 1% by volume to 5% by volume. Silicon is hydrogen 1-2
Silane gas diluted to % by volume was used. Fluorine is hydrogen fluoride (HF) diluted with hydrogen gas to 1-5% by volume.
was used.

圧力は1トールから10)−ルの範囲とし、基板体の温
度はほぼ室温とし、約5〜30分反応させた。
The pressure was in the range of 1 Torr to 10 Torr, the temperature of the substrate was about room temperature, and the reaction was carried out for about 5 to 30 minutes.

この結果得られた膜は厚み100〜100OAで均一な
干渉色を呈しており表面平坦性に優れた膜であることを
示していた。炭素・水素・シリコン・フッ素はイオンマ
イクロアナライザ、ラブフォード後方散乱法、プロトン
リコイル検出法によってそれらの含有量を評価した。
The resulting film had a thickness of 100 to 100 OA and exhibited a uniform interference color, indicating that it was a film with excellent surface flatness. The contents of carbon, hydrogen, silicon, and fluorine were evaluated using an ion microanalyzer, Loveford backscattering method, and proton recoil detection method.

水素の含有量が20原子%〜35原子%、シリコンが1
00原子ppm〜1原子%フッ素が1原子%〜lO原子
%のものについて膜硬度を評価した所ビッカース硬度で
8000〜11000kg/■謹2が得られた。この範
囲をはずれるとビッカース硬度は大幅に低下した。
Hydrogen content is 20 at% to 35 at%, silicon is 1
When the film hardness was evaluated for films containing 00 at. Outside this range, the Vickers hardness decreased significantly.

この値は従来の非晶質炭素膜の2〜3倍以上で極めて高
硬度で、しかも基体のCo−N1−P系の磁気記録媒体
上での密着性の高い膜であった。
This value was 2 to 3 times more than that of the conventional amorphous carbon film, indicating extremely high hardness and high adhesion to the Co-N1-P base magnetic recording medium.

膜の空振係数は直径5ミリメートルのA1□03−Ti
C合金製の球体を膜表面ですべらせる方法で評価し、0
.1以下の値となった。参考としてフッ素を3有させな
い膜について同様の試験を行ったところ、約0.5〜1
.0の値となり、磁気ディスクに要求される値0.2以
下より大きかった。
The air vibration coefficient of the membrane is A1□03-Ti with a diameter of 5 mm.
Evaluation was made by sliding a sphere made of C alloy on the membrane surface, and the result was 0.
.. The value was 1 or less. As a reference, a similar test was conducted on a film that did not contain 3 fluorine, and the result was approximately 0.5 to 1
.. The value was 0, which was greater than the value of 0.2 or less required for magnetic disks.

(発明の効果) この様に本発明になる硬質非晶質炭素膜は極めて硬度が
高(、Co−N1−P系磁気ディスク媒体表面保護の用
途に適する材料として実用上有益である。
(Effects of the Invention) As described above, the hard amorphous carbon film of the present invention has extremely high hardness (and is practically useful as a material suitable for protecting the surface of a Co-N1-P magnetic disk medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いた装置の概略図を示す。 第1図において、1は電極、2は電極となるべき基板支
持台、3は基板、4は排気装置、5は真空反応槽、6は
直流電源、7は混合ガスの供給口、8はメタンガスボン
ベ、9は水素ガスボンベ、10は水素希釈したシランガ
スボンベ、11は水素希釈したフッ化水素ボンベを示す
FIG. 1 shows a schematic diagram of the apparatus used in the present invention. In Fig. 1, 1 is an electrode, 2 is a substrate support that will become an electrode, 3 is a substrate, 4 is an exhaust device, 5 is a vacuum reaction tank, 6 is a DC power supply, 7 is a mixed gas supply port, and 8 is a methane gas supply port. 9 is a hydrogen gas cylinder, 10 is a silane gas cylinder diluted with hydrogen, and 11 is a hydrogen fluoride cylinder diluted with hydrogen.

Claims (2)

【特許請求の範囲】[Claims] (1) 水素を含有する非晶質炭素膜中に更にシリコン
およびフッ素を含有せしめたことを特徴とする硬質非晶
質炭素膜。
(1) A hard amorphous carbon film characterized by further containing silicon and fluorine in the amorphous carbon film containing hydrogen.
(2) 特許請求の範囲第1項記載の硬質非晶質炭素膜
において、含有せる水素量が10原子%以上35原子%
以下、シリコンが100原子ppm以上1原子%以下お
よびフッ素を1原子%以上10原子%以下とすることを
特徴とする硬質非晶質炭素膜。
(2) In the hard amorphous carbon film according to claim 1, the amount of hydrogen contained is 10 atomic % or more and 35 atomic %.
Hereinafter, a hard amorphous carbon film is characterized in that silicon is contained in an amount of 100 atomic ppm or more and 1 atomic % or less and fluorine is contained in an amount of 1 atomic % or more and 10 atomic % or less.
JP63028031A 1988-02-08 1988-02-08 Hard amorphous carbon film Pending JPH01203211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63028031A JPH01203211A (en) 1988-02-08 1988-02-08 Hard amorphous carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63028031A JPH01203211A (en) 1988-02-08 1988-02-08 Hard amorphous carbon film

Publications (1)

Publication Number Publication Date
JPH01203211A true JPH01203211A (en) 1989-08-16

Family

ID=12237373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63028031A Pending JPH01203211A (en) 1988-02-08 1988-02-08 Hard amorphous carbon film

Country Status (1)

Country Link
JP (1) JPH01203211A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180073A (en) * 1986-02-03 1987-08-07 Ricoh Co Ltd Amorphous carbon film and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180073A (en) * 1986-02-03 1987-08-07 Ricoh Co Ltd Amorphous carbon film and its production

Similar Documents

Publication Publication Date Title
JP2531438B2 (en) Magnetic head and manufacturing method thereof
JPH0672303B2 (en) Hard amorphous carbon film
JPH01203211A (en) Hard amorphous carbon film
JP2623785B2 (en) Magnetic disk
JPH0572472B2 (en)
JP2000268357A (en) Method and system for producing magnetic recording medium
JP2751396B2 (en) Magnetic disk
JPH0572471B2 (en)
JP2727817B2 (en) Magnetic disk
JPH049870B2 (en)
JPH04313812A (en) Magnetic disk
JPH049869B2 (en)
JPS61117727A (en) Magnetic storage body and its manufacture
JPH048509B2 (en)
JPH0613752B2 (en) Hard amorphous carbon film
JPH05325176A (en) Magnetic disk
JPH0383224A (en) Magnetic disk
JPH0778871B2 (en) Magnetic disk
JPH049868B2 (en)
JPH056532A (en) Magnetic disk
JPS63205813A (en) Magnetic recording medium
JPS62139872A (en) Hard amorphous carbon film
JPH05298689A (en) Formation of magnetic disk protective film
JPS63162870A (en) Hard amorphous carbon film
JPH056531A (en) Magnetic disk