JPH04313812A - Magnetic disk - Google Patents

Magnetic disk

Info

Publication number
JPH04313812A
JPH04313812A JP10646691A JP10646691A JPH04313812A JP H04313812 A JPH04313812 A JP H04313812A JP 10646691 A JP10646691 A JP 10646691A JP 10646691 A JP10646691 A JP 10646691A JP H04313812 A JPH04313812 A JP H04313812A
Authority
JP
Japan
Prior art keywords
film
protective film
magnetic disk
recording medium
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10646691A
Other languages
Japanese (ja)
Inventor
Kazuhiro Baba
和宏 馬場
Nobuaki Shohata
伸明 正畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10646691A priority Critical patent/JPH04313812A/en
Publication of JPH04313812A publication Critical patent/JPH04313812A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain the magnetic disk having good adhesion and wear resistance by incorporating Si, C and H into the disk and changing the atomic ratios of the H, C/Si+C continuously in the thickness direction of the magnetic recording medium. CONSTITUTION:Protective films 14 contg. the Si, C and H are formed over the entire surface on the recording medium layers 13 formed on the surfaces of a substrate 12. The atomic ratio value of the C/Si+C is specified to <=0.4 right on the layers 13 and 1.0 on the surfaces of the films 14. The substrate 12 is an org. film or Al, etc. The thickness of the layers 13 is confined to <=10mum. The protective films 14 are synthesized by a DC glow discharge plasma chemical deposition method of a gaseous mixture composed of CH4, SiH4 and H2.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は高硬度で耐摩耗性に優れ
た磁気ディスクに関し、さらに詳しくは、硬度が高く、
密着性に優れ、耐摩耗性と潤滑性とを兼ね備えた表面保
護膜構造を表面に有する磁気ディスクに関するものであ
る。
[Field of Industrial Application] The present invention relates to a magnetic disk with high hardness and excellent wear resistance, and more specifically, to a magnetic disk with high hardness and excellent wear resistance.
The present invention relates to a magnetic disk having a surface protective film structure on its surface that has excellent adhesion, wear resistance, and lubricity.

【0002】0002

【従来の技術】磁気ディスクや磁気ヘッドは、磁気ディ
スク装置としてコンピュ−タ端末情報記憶装置に広く用
いられている。磁気ディスクは、アルミニウム金属基板
ないしはプラスチック等の基板上に、フェライトや鉄、
ニッケル、コバルトないしはネオジウム、サマリウム、
ガドリニウム、テルビウム等の希土類金属や、それらか
らなる化合物を磁気記録媒体として、塗布法やスパッタ
法により薄い膜状に付着させて用いられている。磁気ヘ
ッドは種々の方式があるが、記録媒体に書き込まれた磁
化からの磁束を信号として取り出すもので、可能な限り
磁気ディスク面に近づけて使用されるものである。この
ように、磁気ヘッドと磁気ディスクは互いに衝突し易く
、このため磁気ディスクの記録媒体上に発生する傷等か
ら記録媒体を保護するための保護膜を必要とする。保護
膜の備えるべき要件は、耐摩耗性に優れていること、基
板との密着性に優れていること、表面の潤滑性に優れて
いること等が挙げられる。膜の硬度は耐摩耗性の評価に
用いることができ、硬度が高いほど耐摩耗性に優れてい
る。密着性は磁気ヘッドの接触時あるいは摩擦時に保護
膜が剥離しないために重要である。密着性は磁気ディス
ク媒体の性状に合った保護膜材料が必要である。
2. Description of the Related Art Magnetic disks and magnetic heads are widely used as magnetic disk devices in computer terminal information storage devices. Magnetic disks are made of ferrite, iron,
Nickel, cobalt or neodymium, samarium,
Rare earth metals such as gadolinium and terbium, and compounds made of these metals are used as magnetic recording media by being deposited in a thin film form by coating or sputtering. There are various types of magnetic heads, but they extract magnetic flux from magnetization written on a recording medium as a signal, and are used as close to the magnetic disk surface as possible. As described above, the magnetic head and the magnetic disk are likely to collide with each other, and therefore a protective film is required to protect the recording medium from scratches and the like that occur on the recording medium of the magnetic disk. Requirements for the protective film include excellent wear resistance, excellent adhesion to the substrate, and excellent surface lubricity. The hardness of the film can be used to evaluate wear resistance, and the higher the hardness, the better the wear resistance. Adhesion is important so that the protective film does not peel off when the magnetic head contacts or rubs. Adhesion requires a protective film material that matches the properties of the magnetic disk medium.

【0003】従来、この目的のために、厚み800オン
グストロ―ム程度の二酸化珪素(SiO2)、アルミナ
(Al2O3)、窒化珪素(Si3N4)等の酸化物や
窒化物、あるいはカ―ボン膜が用いられている。SiO
2、Al2O3およびSi3N4は、通常、シリコンや
アルミニウムの有機金属化合物を溶媒中に溶解したもの
を塗布乾燥後、熱処理する方法、窒素中ないしはアルゴ
ンと酸素の混合ガス中でスパッタリングする方法、ない
しは蒸着法で作製されている。また、カ−ボン膜は、特
開昭52−90281号公報に記載されたような炭素電
極の放電によって作られる炭素イオンビ―ムの蒸着法、
ないしは1980年発行のジャ−ナル・オブ・ノンクリ
スタリン・ソリッズ誌( Journalof Non
−crystalline Solids)第35およ
び36巻、第435ペ−ジに記載されているような炭素
の蒸発付着等の方法で作られている。磁気ディスク表面
に炭素を主成分とする被膜を設けた例としては、例えば
特願昭52−58140号にみられるように、磁気記録
媒体の内部分に炭素を主成分とする被膜を設けたり、磁
気ヘッドとの衝突摩擦の生じやすい領域に被膜を厚くし
、記録領域ではその被膜を薄く設けた構成のものもある
。この時、被膜の厚みは500〜1000オングストロ
―ムを記録領域に、1000〜10000オングストロ
―ムを磁気ヘッドが停止する領域に設けるものであった
。近年の高度に発達した情報処理技術は、ますます大容
量の情報処理技術を要求しており、これに伴って高密度
磁気記録媒体技術は重要な位置を占めている。このため
磁気ディスク表面の保護膜は、より一層の薄膜化が要求
されており、100オングストロ―ムから50オングス
トロ―ム程度のものも要求されつつある。
Conventionally, for this purpose, an oxide or nitride film such as silicon dioxide (SiO2), alumina (Al2O3), silicon nitride (Si3N4), or carbon film with a thickness of about 800 angstroms has been used. ing. SiO
2. Al2O3 and Si3N4 are usually produced by applying a solution of an organometallic compound of silicon or aluminum in a solvent, drying it, and then heat treating it, sputtering it in nitrogen or a mixed gas of argon and oxygen, or vapor deposition. It is made with. Furthermore, the carbon film can be formed by a carbon ion beam evaporation method made by discharging a carbon electrode as described in Japanese Patent Application Laid-Open No. 52-90281.
Or Journal of Non-Crystalline Solids published in 1980.
-Crystalline Solids) Vol. 35 and 36, page 435, carbon evaporation deposition or other methods are used. As an example of providing a film mainly composed of carbon on the surface of a magnetic disk, for example, as shown in Japanese Patent Application No. 52-58140, a film mainly composed of carbon is provided on the inner part of a magnetic recording medium. There is also a structure in which the coating is thick in areas where collision friction with the magnetic head is likely to occur, and the coating is thin in the recording area. At this time, the thickness of the coating was 500 to 1000 angstroms in the recording area and 1000 to 10000 angstroms in the area where the magnetic head stopped. The highly developed information processing technologies of recent years require increasingly large-capacity information processing technologies, and high-density magnetic recording media technologies are occupying an important position along with this. For this reason, the protective film on the surface of the magnetic disk is required to be even thinner, and a thickness of about 100 angstroms to 50 angstroms is also required.

【0004】0004

【発明が解決しようとする課題】しかしながら、従来の
種々の保護膜材料は、十分な硬度、密着性、耐摩耗性や
耐腐食性を有しておらず、例えばビッカ−ス硬度でみる
と、SiO2では2000kg/mm2、Al2O3で
は3000kg/mm2、また窒化珪素や従来のスパッ
タ法等によるカ―ボンでは3000kg/mm2程度で
あった。さらに保護膜厚みも500オングストロ―ム程
度が最小厚みで、これ以下の膜厚ではその硬度、耐摩耗
性や耐腐食性は格段に低下してしまう根本的欠陥を持っ
ていた。また、炭素を主成分とする被膜では記録媒体膜
との密着性の点で問題があった。またこのような特性の
保護膜であるために、特願昭52−58140号に見ら
れるように特殊な構成とする必要が生じ、加工技術上か
ら製造コストが高くなる問題点もあり、500オングス
トロ―ム以下でも良好な特性の保護膜は実現されていな
かった。本発明の目的は、以上述べたような種々の欠点
を改良した、高硬度で耐摩耗性および密着性に優れ、か
つ潤滑性の良好な表面保護膜構造を有する磁気ディスク
を提供することにある。
[Problems to be Solved by the Invention] However, various conventional protective film materials do not have sufficient hardness, adhesion, wear resistance, or corrosion resistance. It was 2000 kg/mm2 for SiO2, 3000 kg/mm2 for Al2O3, and about 3000 kg/mm2 for silicon nitride or carbon produced by conventional sputtering method. Furthermore, the minimum thickness of the protective film is about 500 angstroms, and if the thickness is less than this, the hardness, abrasion resistance, and corrosion resistance of the protective film will be significantly reduced. Further, a film containing carbon as a main component has a problem in terms of adhesion to the recording medium film. In addition, since the protective film has such characteristics, it is necessary to have a special structure as seen in Japanese Patent Application No. 52-58140, and there is also the problem of high manufacturing costs due to processing technology. A protective film with good properties even below 100 nm has not been realized. An object of the present invention is to provide a magnetic disk having a surface protective film structure with high hardness, excellent wear resistance and adhesion, and good lubricity, which improves the various drawbacks described above. .

【0005】[0005]

【課題を解決するための手段】本発明は、磁気記録媒体
層上に、シリコン(Si)、カ―ボン(C)および水素
(H)を構成元素として有し、水素(H)の含量が20
〜30原子%である保護膜を形成した磁気ディスクであ
って、保護膜のC/Si+Cの原子比が磁気記録媒体に
接する面で0.4以下、保護膜表面において1.0であ
り、厚み方向に連続的に変化してなることを特徴とする
磁気ディスクである。
[Means for Solving the Problems] The present invention has silicon (Si), carbon (C) and hydrogen (H) as constituent elements on a magnetic recording medium layer, and the hydrogen (H) content is low. 20
A magnetic disk on which a protective film with a concentration of ~30 at. This is a magnetic disk characterized by a continuous change in direction.

【0006】以下、図面に基づいて本発明を説明する。 図1は本発明による磁気ディスクの構造を示す図である
。図1(a)は磁気ディスク11の平面図を示し、図1
(b)は図1(a)のX−X´線での断面を示す図であ
る。図1(b)で、基板12の表面に設けられた磁気記
録媒体層13上に、ほぼ全面にわたってSi、Cおよび
Hを構成元素とする保護膜14を設けたものである。 ここで、C/Si+C(原子比)の値は磁気記録媒体層
13の直上においては0.4以下、保護膜層の表面にお
いては1.0となっており、かつ、記録媒体層の厚み方
向でその値は連続的に変化している。基板12としては
、有機フィルムやアルミニウム等の金属ないしは合金を
用いることが可能であり、磁気記録媒体層13を保持す
るものであれば特に材質は問題にならない。磁気記録媒
体層13の厚みは通常10μmないしはそれ以下の厚み
とし、記録された情報を保持するために必要な厚みとさ
れるものである。保護膜14の厚みは可能な限り薄い方
が望ましいことは言うまでもない。Si、CおよびHの
混合物からなる保護膜層14の形成手法は、メタン(C
H4)、シラン(SiH4)および水素(H2)の混合
ガスの直流グロ―放電プラズマ化学析出法が高硬度でか
つ耐摩耗性に優れた保護膜を合成する手法として有効で
ある。
The present invention will be explained below based on the drawings. FIG. 1 is a diagram showing the structure of a magnetic disk according to the present invention. FIG. 1(a) shows a plan view of the magnetic disk 11, and FIG.
(b) is a diagram showing a cross section taken along line XX' in FIG. 1(a). In FIG. 1B, a protective film 14 containing Si, C, and H as constituent elements is provided over almost the entire surface of the magnetic recording medium layer 13 provided on the surface of the substrate 12. In FIG. Here, the value of C/Si+C (atomic ratio) is 0.4 or less directly above the magnetic recording medium layer 13, 1.0 on the surface of the protective film layer, and in the thickness direction of the recording medium layer. Its value changes continuously. As the substrate 12, an organic film, a metal such as aluminum, or an alloy can be used, and the material does not matter as long as it holds the magnetic recording medium layer 13. The thickness of the magnetic recording medium layer 13 is usually 10 μm or less, which is necessary to retain recorded information. It goes without saying that it is desirable that the thickness of the protective film 14 be as thin as possible. The method for forming the protective film layer 14 made of a mixture of Si, C and H is to use methane (C
Direct current glow discharge plasma chemical deposition using a mixed gas of H4), silane (SiH4), and hydrogen (H2) is effective as a method for synthesizing a protective film with high hardness and excellent wear resistance.

【0007】[0007]

【作用】従来の炭素を主成分とした保護膜においては、
特願昭52−58140号に見られるように、記録媒体
に直接付着させて用いるが、この形成方法ではさきに述
べたように密着性が悪く、また付着させた炭素膜の均一
性も良好とはいえなかった。この原因は、詳細について
は不明なところがあるが、炭素膜と記録媒体間の結合力
が関係しているものと思われる。本発明においては、磁
気記録媒体と保護膜中に含まれるシリコンとの間に何ら
かの化学結合力が働き、薄膜の密着強度を上昇させてい
るものと思われる。記録媒体との間で十分な密着性を得
るためには、保護膜における記録媒体接触面のC/Si
+Cの値を0.4以下とする必要がある。さらに、本発
明による保護膜中には、水素が20〜30原子%含まれ
ており、この範囲の水素を含ませることで、膜中の不飽
和結合を補償し、膜自体の硬度を高める機構にも有効に
作用する。以上述べた本発明の種々の特徴により、従来
不可能であった薄膜、即ち500オングストロ―ム以下
の厚みでも、良好な磁気ディスクの表面保護膜を形成す
ることができる。
[Operation] In the conventional protective film mainly composed of carbon,
As seen in Japanese Patent Application No. 52-58140, it is used by directly attaching it to a recording medium, but as mentioned earlier, this formation method has poor adhesion and the uniformity of the deposited carbon film is also poor. I couldn't say yes. Although the details of this cause are unclear, it is thought to be related to the bonding force between the carbon film and the recording medium. In the present invention, it is thought that some kind of chemical bonding force acts between the magnetic recording medium and the silicon contained in the protective film, increasing the adhesion strength of the thin film. In order to obtain sufficient adhesion with the recording medium, C/Si on the recording medium contact surface of the protective film must be
The value of +C needs to be 0.4 or less. Furthermore, the protective film according to the present invention contains 20 to 30 atomic percent of hydrogen, and by including hydrogen in this range, there is a mechanism that compensates for unsaturated bonds in the film and increases the hardness of the film itself. It also works effectively. Owing to the various features of the present invention described above, it is possible to form a good surface protective film for a magnetic disk even with a thin film, that is, a thickness of 500 angstroms or less, which was previously impossible.

【0008】[0008]

【実施例】以下、本発明の実施例について述べる。 実施例1 磁気ディスクの基板として、直径5.25インチで、厚
み2mmのアルミニウム合金を用い、この上に記録媒体
としてコバルト・クロム・タンタルの化合物をスパッタ
法により厚み約20μm付着させたものを用いた。保護
膜の形成は図2に示した装置を用いた。図2において、
真空槽21に陰極となる、保護膜を形成すべき基板25
を設置し、基板25の両面に平行となるように平板型の
電極22を配置する。陽極電極22には直流電源23を
接続し、電極間にグロ−放電を発生させる。得られる膜
の質は真空度や電極に印加する電圧によって大きく変化
するので、最適値を選ぶ必要がある。真空度は排気ポン
プ26およびバルブ27で0.1Torrから20To
rrの真空度に調整する。一方、電圧の値は正規グロ−
放電で、かつ異常グロ−放電が発生する直前の条件が比
較的良好な結果を与えた。直流グロ−放電は基板25側
をア―スとし、それに対向する電極22に直流電源23
により正の電圧で数百ボルトまでの電流を印加すること
により発生させた。放電電流密度は、0.1〜1mA/
mm2とした。反応ガスとしてメタン、シランおよび水
素を用いた。保護膜の厚み方向での硬質非晶質炭素およ
びシリコンの濃度差は、マスフロ−コントロ−ラ31,
32を調整することにより制御した。具体的には、成膜
開始時には、シラン側のマスフロ−コントロ−ラ32お
よびメタン側のマスフロ−コントロ−ラ31をシランの
流量/メタンの流量が0.8/0.2となるように開け
ておく。次に、一定の速度でシラン側のマスフロ−コン
トロ−ラ32を閉じていき、これと同じ速度でメタン側
のマスフロ−コントロ−ラ31を開けていき、成膜終了
直前ではメタン側のマスフロ−コントロ−ラ31が全開
になるようにした。保護膜の膜厚は成膜時間によって制
御したので、マスフロ−コントロ−ラの開閉速度は成膜
時間によって設定した。本実施例では、(メタンの流量
+シランの流量)/(水素の流量)=0.01〜0.1
となるように反応ガスを導入した。成膜時の圧力は0.
1〜20Torrとし、基板温度はほぼ室温とした。
[Examples] Examples of the present invention will be described below. Example 1 An aluminum alloy with a diameter of 5.25 inches and a thickness of 2 mm was used as the substrate of a magnetic disk, and as a recording medium, a cobalt-chromium-tantalum compound was deposited to a thickness of about 20 μm by sputtering. there was. The protective film was formed using the apparatus shown in FIG. In Figure 2,
A substrate 25 on which a protective film is to be formed, which becomes a cathode in the vacuum chamber 21
The flat electrodes 22 are arranged parallel to both sides of the substrate 25. A DC power source 23 is connected to the anode electrode 22 to generate glow discharge between the electrodes. The quality of the obtained film varies greatly depending on the degree of vacuum and the voltage applied to the electrodes, so it is necessary to select the optimal value. The degree of vacuum is from 0.1 Torr to 20To with the exhaust pump 26 and valve 27.
Adjust the vacuum level to rr. On the other hand, the voltage value is
Conditions during discharge and immediately before abnormal glow discharge occurred gave relatively good results. For DC glow discharge, the substrate 25 side is grounded, and the electrode 22 facing it is connected to a DC power supply 23.
It was generated by applying a current of up to several hundred volts at a positive voltage. The discharge current density is 0.1 to 1 mA/
It was set as mm2. Methane, silane and hydrogen were used as reaction gases. The concentration difference of hard amorphous carbon and silicon in the thickness direction of the protective film is determined by the mass flow controller 31,
This was controlled by adjusting 32. Specifically, at the start of film formation, the mass flow controller 32 on the silane side and the mass flow controller 31 on the methane side are opened so that the silane flow rate/methane flow rate is 0.8/0.2. I'll keep it. Next, the mass flow controller 32 on the silane side is closed at a constant speed, and the mass flow controller 31 on the methane side is opened at the same speed. The controller 31 was set to be fully open. Since the thickness of the protective film was controlled by the film formation time, the opening/closing speed of the mass flow controller was set by the film formation time. In this example, (methane flow rate + silane flow rate)/(hydrogen flow rate) = 0.01 to 0.1
The reaction gas was introduced so that The pressure during film formation was 0.
The temperature was 1 to 20 Torr, and the substrate temperature was approximately room temperature.

【0009】この結果得られた膜は、100〜1000
オングストロ―ムの膜厚で、いずれも均一な干渉色を呈
していた。表面の凹凸はタリステップの測定限界の±1
0オングストロ―ム以下であった。この膜は非晶質であ
り、膜中の水素量含有量は20〜30原子%であった。 またこの膜の膜厚方向に対する炭素およびシリコン組成
を、二次イオン質量分析計を用いて測定した結果の一例
を図3に示す。同図のように、炭素およびシリコンの組
成は、膜厚方向に対して直線的に変化していることがわ
かる。さらにこの膜の硬度はビッカ−ス硬度に換算して
8000〜10000kg/cm2であり、保護膜の表
面はいわゆる硬質非晶質炭素膜となっている。膜の耐摩
耗性は以下に述べる磁気ヘッドと磁気ディスクの接触摩
擦試験法で評価した。即ち、磁気ヘッドとしてアルミニ
ウムと炭化チタンからなるビッカ−ス硬度4000kg
/cm2の焼結体を用い、磁気ディスク表面に荷重約6
0g/cm2で保護膜上に押しつけ、次に磁気ディスク
を磁気ヘッドが浮上するまで高速回転させ、浮上後回転
を停止し、再びヘッドをディスク面に接触させることを
繰り返す、いわゆるコンタクト・スタ―ト・ストップ(
CSS)試験を行った。その結果、本発明による保護膜
を用いた場合、10万回後も摩耗が発生しないことを確
認した。
[0009] The resulting film has a molecular weight of 100 to 1000
With a film thickness of angstroms, all exhibited uniform interference colors. Surface irregularities are ±1 of the Talystep measurement limit.
It was less than 0 angstrom. This film was amorphous, and the hydrogen content in the film was 20 to 30 at.%. Further, FIG. 3 shows an example of the results of measuring the carbon and silicon compositions of this film in the film thickness direction using a secondary ion mass spectrometer. As shown in the figure, it can be seen that the compositions of carbon and silicon change linearly in the film thickness direction. Further, the hardness of this film is 8,000 to 10,000 kg/cm 2 in terms of Vickers hardness, and the surface of the protective film is a so-called hard amorphous carbon film. The wear resistance of the film was evaluated by the contact friction test method of a magnetic head and magnetic disk described below. That is, the magnetic head is made of aluminum and titanium carbide and has a Vickers hardness of 4000 kg.
/cm2 using a sintered body, a load of approximately 6 is applied to the magnetic disk surface.
The so-called contact start involves pressing the magnetic disk onto the protective film at 0 g/cm2, then rotating the magnetic disk at high speed until the magnetic head floats, stopping the rotation after floating, and repeating the process of bringing the head into contact with the disk surface again. ·stop(
CSS) test was conducted. As a result, it was confirmed that when the protective film according to the present invention was used, no wear occurred even after 100,000 cycles.

【0010】比較例1 実施例1と同様の方法で、磁気記録媒体直上においてC
/Si+C=0.5となるように成膜条件を設定し、成
膜を行った。この場合、保護膜表面ではC/Si+C=
1とした。この磁気ディスクについて実施例1と同じく
CSS試験を行ったところ、1000回以下の回数にお
いて保護膜の剥離が認められた。
Comparative Example 1 In the same manner as in Example 1, C was heated directly above the magnetic recording medium.
The film formation conditions were set so that /Si+C=0.5, and film formation was performed. In this case, on the surface of the protective film, C/Si+C=
It was set to 1. When this magnetic disk was subjected to a CSS test in the same manner as in Example 1, peeling of the protective film was observed after 1000 cycles or less.

【0011】比較例2 実施例1と同様な方法で、膜厚方向に対し組成変化をも
たせず、すべての場所でC/Si+C=0.5となるよ
うに条件を設定し成膜を行った。この磁気ディスクにつ
いて実施例1と同じくCSS試験を行ったところ、10
00回以下の回数で保護膜中に傷の発生が認められた。
Comparative Example 2 A film was formed in the same manner as in Example 1, with conditions set so that C/Si+C=0.5 at all locations without any change in composition in the film thickness direction. . When a CSS test was conducted on this magnetic disk in the same manner as in Example 1, it was found that 10
Scratches were observed in the protective film after 00 cycles or less.

【0012】0012

【発明の効果】以上説明したように、本発明による磁気
ディスクは、極めて高硬度で耐摩耗性に優れ、かつ高密
度磁気記録技術に要求される、膜厚が500オングスト
ロ―ム以下の保護膜を備えたもので、実用性が高いもの
である。
As explained above, the magnetic disk according to the present invention has extremely high hardness and excellent wear resistance, and has a protective film with a thickness of 500 angstroms or less, which is required for high-density magnetic recording technology. It is highly practical.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による磁気ディスクの一例の平面図およ
び断面図である。
FIG. 1 is a plan view and a cross-sectional view of an example of a magnetic disk according to the present invention.

【図2】本発明による磁気ディスクの保護膜形成に用い
られる装置の一例の概略構成図である。
FIG. 2 is a schematic configuration diagram of an example of an apparatus used for forming a protective film on a magnetic disk according to the present invention.

【図3】本発明による磁気ディスクの保護膜において、
磁気記録媒体直上から保護膜表面に至るカ―ボンおよび
シリコンの分布状態を二次イオン質量分析計により測定
した結果の一例を示す図である。
FIG. 3: In the magnetic disk protective film according to the present invention,
FIG. 3 is a diagram showing an example of the results of measuring the distribution state of carbon and silicon from directly above the magnetic recording medium to the surface of the protective film using a secondary ion mass spectrometer.

【符号の説明】[Explanation of symbols]

11  磁気ディスク               
   12,25  基板 13  磁気記録媒体層              
  14  保護膜21  真空槽         
               22  対向電極23
  直流電源                   
   24  ガス導入口 26  排気ポンプ                
    27  バルブ28  メタンボンベ    
              29  水素ボンベ 30  シランボンベ
11 Magnetic disk
12, 25 Substrate 13 Magnetic recording medium layer
14 Protective film 21 Vacuum chamber
22 Counter electrode 23
DC power supply
24 Gas inlet 26 Exhaust pump
27 Valve 28 Methane cylinder
29 Hydrogen cylinder 30 Silane cylinder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  磁気記録媒体層上に、シリコン(Si
)、カ―ボン(C)および水素(H)を構成元素として
有し、水素(H)の含量が20〜30原子%である保護
膜を形成した磁気ディスクであって、保護膜のC/Si
+Cの原子比が磁気記録媒体に接する面で0.4以下、
保護膜表面において1.0であり、厚み方向に連続的に
変化してなることを特徴とする磁気ディスク。
Claim 1: Silicon (Si) is provided on the magnetic recording medium layer.
), carbon (C) and hydrogen (H) as constituent elements, and has a protective film formed with a hydrogen (H) content of 20 to 30 atomic %, the protective film having C/ Si
The atomic ratio of +C is 0.4 or less on the surface in contact with the magnetic recording medium,
1.0 on the surface of the protective film and continuously changing in the thickness direction.
JP10646691A 1991-04-12 1991-04-12 Magnetic disk Pending JPH04313812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10646691A JPH04313812A (en) 1991-04-12 1991-04-12 Magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10646691A JPH04313812A (en) 1991-04-12 1991-04-12 Magnetic disk

Publications (1)

Publication Number Publication Date
JPH04313812A true JPH04313812A (en) 1992-11-05

Family

ID=14434334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10646691A Pending JPH04313812A (en) 1991-04-12 1991-04-12 Magnetic disk

Country Status (1)

Country Link
JP (1) JPH04313812A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165582A (en) * 1992-11-19 2000-12-26 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US6805941B1 (en) 1992-11-19 2004-10-19 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
JP2006161075A (en) * 2004-12-03 2006-06-22 Shinko Seiki Co Ltd Hard carbon film, and its depositing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476423A (en) * 1987-09-17 1989-03-22 Nec Corp Magnetic disk
JPH0283816A (en) * 1988-09-19 1990-03-23 Semiconductor Energy Lab Co Ltd Magnetic recording medium
JPH0319120A (en) * 1989-06-16 1991-01-28 Teijin Ltd Magnetic recording medium and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476423A (en) * 1987-09-17 1989-03-22 Nec Corp Magnetic disk
JPH0283816A (en) * 1988-09-19 1990-03-23 Semiconductor Energy Lab Co Ltd Magnetic recording medium
JPH0319120A (en) * 1989-06-16 1991-01-28 Teijin Ltd Magnetic recording medium and production thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165582A (en) * 1992-11-19 2000-12-26 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US6194047B1 (en) 1992-11-19 2001-02-27 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US6258434B1 (en) 1992-11-19 2001-07-10 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US6623836B1 (en) 1992-11-19 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US6805941B1 (en) 1992-11-19 2004-10-19 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US7083873B2 (en) 1992-11-19 2006-08-01 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium including a diamond-like carbon protective film with hydrogen and at least two additional elements
US7391592B2 (en) 1992-11-19 2008-06-24 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium including a diamond-like carbon protective film and at least two additional elements
JP2006161075A (en) * 2004-12-03 2006-06-22 Shinko Seiki Co Ltd Hard carbon film, and its depositing method

Similar Documents

Publication Publication Date Title
JP2531438B2 (en) Magnetic head and manufacturing method thereof
JPH04313812A (en) Magnetic disk
JP2623785B2 (en) Magnetic disk
JPH0383224A (en) Magnetic disk
JPH0672303B2 (en) Hard amorphous carbon film
JP2751396B2 (en) Magnetic disk
JPS61117727A (en) Magnetic storage body and its manufacture
JPH0572472B2 (en)
JPH056532A (en) Magnetic disk
JPH04106722A (en) Magnetic disk
JP2727817B2 (en) Magnetic disk
JPH056531A (en) Magnetic disk
JP3310778B2 (en) Thin film magnetic head and method of manufacturing the same
JPH0572471B2 (en)
JPH05325176A (en) Magnetic disk
JPH0778871B2 (en) Magnetic disk
JPS60125949A (en) Optical information recording medium and its production
JPH048509B2 (en)
JPH05298689A (en) Formation of magnetic disk protective film
JPH049868B2 (en)
JPH0613752B2 (en) Hard amorphous carbon film
JPH049870B2 (en)
JPH0335727B2 (en)
JPH049869B2 (en)
JPH0528465A (en) Production of protective film for magnetic disk