JP3310778B2 - Thin film magnetic head and method of manufacturing the same - Google Patents

Thin film magnetic head and method of manufacturing the same

Info

Publication number
JP3310778B2
JP3310778B2 JP13476494A JP13476494A JP3310778B2 JP 3310778 B2 JP3310778 B2 JP 3310778B2 JP 13476494 A JP13476494 A JP 13476494A JP 13476494 A JP13476494 A JP 13476494A JP 3310778 B2 JP3310778 B2 JP 3310778B2
Authority
JP
Japan
Prior art keywords
film
protective film
magnetic head
thin
element group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13476494A
Other languages
Japanese (ja)
Other versions
JPH087227A (en
Inventor
東  和文
一成 竹元
健司 田坂
朝雄 中野
教行 斉木
潔 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13476494A priority Critical patent/JP3310778B2/en
Publication of JPH087227A publication Critical patent/JPH087227A/en
Application granted granted Critical
Publication of JP3310778B2 publication Critical patent/JP3310778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気ディスク装置に用
いられる磁気ヘッドに係り、特に低浮上高密度磁気記録
・再生に好適な薄膜磁気ヘッド及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic head used in a magnetic disk drive, and more particularly to a thin film magnetic head suitable for low-flying high-density magnetic recording / reproduction and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、磁気ディスク装置においては、情
報量の増大とともに、高記録密度化が要求されている。
このため記録媒体への記録、ならびに記録媒体からの再
生を行う薄膜磁気ヘッドスライダには磁気ディスク面上
における浮上量の低減が急務となってきた。一方、ヘッ
ドスライダは構造上ディスク面と接触、非接触を繰り返
すため、磁気ディスク装置の信頼性向上のためには、ヘ
ッドの保護の目的で空気支持面上に保護膜を設けること
が必要である。
2. Description of the Related Art In recent years, magnetic disks have been required to have higher recording densities as the amount of information has increased.
For this reason, there has been an urgent need for a thin film magnetic head slider that performs recording on a recording medium and reproduction from the recording medium to reduce the flying height on the magnetic disk surface. On the other hand, since the head slider repeatedly contacts and non-contacts the disk surface due to its structure, it is necessary to provide a protective film on the air support surface for the purpose of protecting the head in order to improve the reliability of the magnetic disk device. .

【0003】更に、最近では高記録密度を実現する方法
として磁気抵抗(MR)読みとりヘッドを使用すること
が可能になってきたが、従来の誘導ヘッドと異なり、M
Rヘッドはその製造材料(例えばCoNi系等の磁性合
金薄膜)のため非常に腐食しやすい欠点があり、この対
策としても空気支持面上の保護膜は必須の技術となって
きた。
Further, recently, it has become possible to use a magnetoresistive (MR) reading head as a method for realizing a high recording density.
The R head has a drawback that it is very susceptible to corrosion due to its material of manufacture (for example, a magnetic alloy thin film of CoNi or the like), and a protective film on the air support surface has become an indispensable technique as a countermeasure.

【0004】この種の保護膜として、非晶質珪素膜と非
晶質炭素膜とを積層して2重層構造としたものが提案さ
れている。高記録密度化の点からは保護膜はなるべく薄
くしてヘッドとディスク間の距離を小さくしなければな
らないが、通常スライダ材としてアルミナチタンカーバ
イドなどのセラミック材料を用いるため、この上に直接
炭素膜保護膜を単独で形成することは、成膜性の点から
困難(剥離し易い)であり、そのために上記の提案では
炭素膜とスライダ材表面との間に接着層として硅素膜を
形成して接着性の問題を回避している。なお、この種の
関連技術として例えば特開平4−276367号公報が
挙げられる。
As this kind of protective film, there has been proposed a film formed by laminating an amorphous silicon film and an amorphous carbon film to form a double layer structure. In order to increase the recording density, the protective film must be made as thin as possible to reduce the distance between the head and the disk.However, since a ceramic material such as alumina titanium carbide is usually used as the slider material, a carbon film is directly formed on this. It is difficult to form the protective film alone (it is easy to peel off) from the viewpoint of film forming property. Therefore, in the above proposal, a silicon film is formed as an adhesive layer between the carbon film and the slider material surface. Avoids adhesion problems. As a related technique of this type, for example, Japanese Patent Application Laid-Open No. Hei 4-276667 is cited.

【0005】[0005]

【発明が解決しようとする課題】従来の保護膜は、膜厚
25nm程度で十分に実用に供し得たが、今後の高記録
密度化においては、更に薄膜化が要求され、15nm以
下、望ましくは10nm以下と云う厳しい条件が要求さ
れることから、例えば上記の非晶質珪素膜と非晶質炭素
膜とを積層して2重層構造とした場合、接着層として最
低5nmは必要とされることから、残り20nmが炭素
膜となり、この種の多層化による従来技術では実現不可
能であった。
A conventional protective film having a film thickness of about 25 nm has been sufficiently used for practical use. However, in order to increase the recording density in the future, it is required to further reduce the film thickness. Since a strict condition of 10 nm or less is required, for example, when the above-mentioned amorphous silicon film and amorphous carbon film are laminated to form a double-layer structure, at least 5 nm is required as an adhesive layer. Therefore, the remaining 20 nm becomes a carbon film, which cannot be realized by the conventional technology of this kind of multilayering.

【0006】したがって、本発明の目的は上記従来技術
の問題点を解決することにあり、第1の目的は、スライ
ダ材表面への密着性が良好で、しかも耐摺動性(耐磨耗
性、耐腐食性)に優れた薄い単一層の保護膜を備えた改
良された薄膜磁気ヘッドを提供することにあり、第2の
目的は、その製造方法を提供することにある。このよう
にして最終的には、磁気ディスクと磁気ヘッド間の距離
を小さくすることによって低浮上化による高記録密度を
実現することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and a first object of the present invention is to provide good adhesion to the surface of a slider material, and to provide sliding resistance (abrasion resistance). It is an object of the present invention to provide an improved thin-film magnetic head provided with a thin single-layer protective film having excellent corrosion resistance), and a second object of the present invention is to provide a manufacturing method thereof. In this way, the ultimate goal is to realize a high recording density by lowering the flying height by reducing the distance between the magnetic disk and the magnetic head.

【0007】上記第1の目的は、スライダ基板上の上部
磁性膜と下部磁性膜との間に絶縁膜を介して配設された
コイル導体と、前記上部、下部両磁性膜の一端部が磁気
的に接続されてバックコア接続部を構成すると共に、他
端部がギャップ規制絶縁膜を挟んで形成されたフロント
磁気ギャップ部と、空気支持面を構成し、少なくとも前
記フロント磁気ギャップの端面を含む摺動面に形成され
た保護膜とを有してなる薄膜磁気ヘッドにおいて、前記
保護膜を、下地となるスライダ材表面に対する接着性と
耐摺動性とが膜厚方向に連続的に変化し、膜厚増加に伴
い保護膜表面に向けての接着性が大から小に減少する一
方で耐摺動性が小から大に増大する特性を有する非磁性
単一層の無機保護膜で構成して成る薄膜磁気ヘッドによ
り、達成される。
The first object is to provide a coil conductor disposed between an upper magnetic film and a lower magnetic film on a slider substrate via an insulating film, and that one end of each of the upper and lower magnetic films is magnetic. Are connected to each other to form a back core connection portion, the other end portion forms a front magnetic gap portion formed with a gap regulating insulating film interposed therebetween, and an air support surface, and includes at least an end surface of the front magnetic gap. In a thin-film magnetic head having a protective film formed on a sliding surface, the protective film is characterized in that the adhesiveness and sliding resistance to the underlying slider material surface continuously change in the film thickness direction. It is composed of a non-magnetic single-layer inorganic protective film that has the property that the adhesion to the surface of the protective film decreases from large to small as the film thickness increases, while the sliding resistance increases from small to large. This is achieved by a thin-film magnetic head comprising:

【0008】すなわち、膜厚方向で組成を連続的に変化
させた薄い単一層膜構造を用いることにより、膜の下地
に対する接着性と保護膜としての耐摺動性能とを両立さ
せることを特徴としている。一般に、磁気ヘッドの摺動
面と磁気ディスク間の隙間が大きくなると、良好な記録
再生を損なうスペーシングロスが生じる。これを回避す
るためにはヘッド、ディスク双方に形成する保護膜の膜
厚を小さくする必要がある。そこで本発明では、例え
ば、スライダ材表面での保護膜の密着性を確保するため
にシリコン成分の多い非晶質膜を成膜初期に形成し、徐
々に連続的に耐磨耗性の優れた炭素などの元素の比率を
大きくしてシリコン成分を減らし、保護膜の最表面での
耐磨耗性を確保することに注目した。
That is, by using a thin single-layer film structure in which the composition is continuously changed in the film thickness direction, it is characterized in that both the adhesion to the base of the film and the sliding resistance as a protective film are compatible. I have. In general, when the gap between the sliding surface of the magnetic head and the magnetic disk becomes large, a spacing loss occurs that impairs good recording and reproduction. In order to avoid this, it is necessary to reduce the thickness of the protective film formed on both the head and the disk. Therefore, in the present invention, for example, in order to secure the adhesion of the protective film on the surface of the slider material, an amorphous film containing a large amount of silicon is formed at the initial stage of film formation, and the wear resistance is gradually and continuously improved. We focused on increasing the ratio of elements such as carbon to reduce the silicon component and ensuring abrasion resistance on the outermost surface of the protective film.

【0009】このように、単層膜で接着性と耐磨耗性と
を両立させたことにより、保護膜の膜厚を大幅に薄くす
ることが可能で、ヘッド、ディスク間の距離を小さく
し、高記録密度化が可能となる。具体的には、スライダ
材との密着性を確保するためには珪素、アルミニウム及
びホウ素元素からなる少なくとも一種の第1の構成元素
群が多く含まれる膜組成が好ましく、耐磨耗性を高める
ためには、タングステンカーバイド、窒化ホウ素、窒化
アルミニウム、窒化硅素、アルミニウムカーバイド、酸
化アルミニウム、ボロンカーバイド、炭化硅素及び炭素
からなる少なくとも一種の第2の構成元素群および/ま
たは構成化合物群が多く含まれる膜組成が好ましい。
[0009] As described above, since both the adhesiveness and the abrasion resistance are achieved by the single-layer film, the thickness of the protective film can be greatly reduced, and the distance between the head and the disk can be reduced. Thus, high recording density can be achieved. Specifically, in order to ensure adhesion to the slider material, a film composition containing a large amount of at least one first constituent element group consisting of silicon, aluminum, and boron elements is preferable, and in order to increase abrasion resistance. Includes a film containing a large amount of at least one second constituent element group and / or constituent compound group composed of tungsten carbide, boron nitride, aluminum nitride, silicon nitride, aluminum carbide, aluminum oxide, boron carbide, silicon carbide, and carbon. Composition is preferred.

【0010】具体的な膜組成としては、スライダ表面の
状態により必要な元素あるいは化合物の濃度は異なる
が、界面での密着性を確保する目的で、スライダ材表面
保護膜を成膜する成膜初期においては、保護膜中に上記
第1の構成元素群を5〜100原子%、好ましくは10
〜100原子%、上記第2の構成元素群および/または
構成化合物群を95〜0原子%、好ましくは90〜0原
子%の範囲で選択することが可能である。さらに成膜途
中においては、膜厚方向の第1の構成元素群の成分を連
続的に減少させ、そして保護膜の最表面においては50
〜0原子%、好ましくは40〜0原子%とする一方で第
2の構成元素群および/または構成化合物群を50〜1
00原子%、好ましくは60〜100原子%の範囲で選
択することができる。
Although the required element or compound concentration varies depending on the state of the slider surface as a specific film composition, in the initial stage of forming a slider material surface protective film for the purpose of ensuring adhesion at the interface. In the protective film, the first constituent element group is contained in the protective film in an amount of 5 to 100 atomic%, preferably 10 to 100 atomic%.
The second constituent element group and / or the constituent compound group can be selected in the range of 95 to 0 atomic%, preferably 90 to 0 atomic%. Further, during the film formation, the component of the first constituent element group in the film thickness direction is continuously reduced, and 50% on the outermost surface of the protective film.
To 0 atomic%, preferably 40 to 0 atomic%, while the second constituent element group and / or constituent compound group is 50 to 1 atomic%.
It can be selected in the range of 00 at%, preferably 60 to 100 at%.

【0011】スライダ材と保護膜の界面、つまり保護膜
の底面で第1の構成元素群の組成が5%より少なくなる
と保護膜の接着性が悪くなり、また、保護膜の最表面で
40%を越えると耐磨耗性、硬度が低下する。また、第
2の構成元素群および/または構成化合物群の膜厚方向
における組成は第1の構成元素群のそれとは全く逆とな
る。
When the composition of the first constituent element group is less than 5% at the interface between the slider material and the protective film, that is, at the bottom surface of the protective film, the adhesiveness of the protective film deteriorates, and at the outermost surface of the protective film, 40%. If it exceeds the abrasion resistance, the hardness will decrease. Further, the composition in the thickness direction of the second constituent element group and / or the constituent compound group is completely opposite to that of the first constituent element group.

【0012】また、上記保護膜の膜厚は5nm〜15n
mの範囲で目的に応じて設定する、5nmより薄くなる
と組成を連続的に変化させる効果が無くなり、また、膜
のピンホールの問題が生じるため保護膜としての機能が
低下する。また、膜厚が15nmを越えると上述のよう
にスペーシングロスが問題となり、記録密度の向上に障
害となる。したがって、保護膜の膜厚としては、5〜1
5nm、好ましくは5〜10nmの範囲で用いることに
より記録密度と信頼性を両立できる好ましい結果が得ら
れる。
The protective film has a thickness of 5 nm to 15 n.
When the thickness is smaller than 5 nm, which is set according to the purpose in the range of m, the effect of continuously changing the composition is lost, and the function as a protective film is reduced due to the problem of pinholes in the film. On the other hand, when the film thickness exceeds 15 nm, the spacing loss becomes a problem as described above, which hinders the improvement of the recording density. Therefore, the thickness of the protective film is 5 to 1
When used in the range of 5 nm, preferably in the range of 5 to 10 nm, favorable results can be obtained in which both recording density and reliability can be achieved.

【0013】上記第2の目的は、予め薄膜磁気ヘッドを
スライダ基板上に形成する工程と、フロントギャップ端
面を含む空気支持面に保護膜を形成する工程と、前記空
気支持面の少なくともフロントギャップ端面を含む領域
にスライダレール面を形成する工程とを有してなる磁気
ヘッドの製造方法であって、前記保護膜を形成する工程
を、下地であるスライダ材表面に対する接着性と耐摺動
性とが膜厚方向に連続的に変化し、膜厚増加に伴い保護
膜表面に向けての接着性が大から小に減少する一方で耐
摺動性が小から大に増大する特性を有する非磁性単一層
の無機保護膜を形成する工程で構成して成る薄膜磁気ヘ
ッドの製造方法により、達成される。
The second object is to form a thin film magnetic head on a slider substrate in advance, to form a protective film on an air support surface including a front gap end surface, and to form at least a front gap end surface of the air support surface. a method of manufacturing a magnetic head comprising a step of forming a slider rail surface in a region including a step of forming the protective layer, the adhesion and sliding resistance relative to the slider member surface as a base Continuously changes in the film thickness direction, and as the film thickness increases, the adhesiveness toward the protective film surface decreases from large to small, while the sliding resistance increases from small to large. This is achieved by a method of manufacturing a thin-film magnetic head comprising a step of forming a single-layer inorganic protective film.

【0014】更に具体的には、上記非磁性単一層の無機
保護膜を形成する工程を、珪素、アルミニウム、及びホ
ウ素からなる少なくとも一種の第1の構成元素群を堆積
する工程と、タングステンカーバイド、窒化ホウ素、窒
化アルミニウム、窒化珪素、アルミニウムカーバイド、
酸化アルミニウム、ボロンカーバイド、炭化珪素、及び
炭素からなる少なくとも一種の第2の構成元素群および
/または構成化合物群を堆積する工程とを含み、前記第
1の構成元素群を堆積する工程により堆積する構成元素
群の比率を保護膜表面に向けて減少させる一方で前記第
2の構成元素群および/または構成化合物群を堆積する
工程により堆積する構成元素群の比率を増大させて膜厚
方向に連続的に組成変化を生じさせて単一膜を形成する
工程とすることである。
More specifically, the step of forming the inorganic protective film of the non-magnetic single layer includes the step of depositing at least one first element group consisting of silicon, aluminum and boron; Boron nitride, aluminum nitride, silicon nitride, aluminum carbide,
Depositing at least one kind of second constituent element group and / or constituent compound group consisting of aluminum oxide, boron carbide, silicon carbide, and carbon, and depositing the first constituent element group. While decreasing the ratio of the constituent element group toward the surface of the protective film, the ratio of the constituent element group deposited in the step of depositing the second constituent element group and / or the constituent compound group is increased to continuously increase the film thickness direction. That is, a step of forming a single film by causing a compositional change to occur.

【0015】これらの保護膜を形成する方法としては、
高周波、或いはマイクロ波を用いたプラズマCVD法や
多種元素を同時に成膜可能な多元スパッタリング法等が
用いられる。目的に応じてこれら成膜法を選択すること
ができるが、反応性スパッタリングやスパッタリングと
CVDの組み合わせを用いることも可能である。CVD
を用いる場合、シリコン原料としてはSiH4、SiF4
等の硅素を含む化合物を用い、ホウ素原料としてはB2
6など、炭素原料としてはメタンガスなど、アルミニ
ウム原料としてはアルミニウムのアルコキシド化合物な
ど、タングステンカーバイド原料としては6フッ化タン
グステンやタングステンヘキサカルボニルとメタンガス
などの組合せ、窒化ホウ素原料としてはB26ガスとN
3ガス等の組合せ、窒化アルミニウム原料としてはC
VD単独では難しいのでNH3等とアルミニウムターゲ
ットによる反応性スパッタリングの組合せ、窒化硅素原
料としてはSiH4とNH3の組合わせ、アルミニウムカ
ーバイドではメタンガスとアルミニウムアルコキシドの
組合せ、酸化アルミニウムの場合はN2Oや酸素ガスと
アルミニウムターゲットによる反応性スパッタリング、
炭化ホウ素の場合は、B26とメタンガスの組合せ、炭
化珪素の場合はSiH4とメタンガス等の組合せを選ぶ
ことができる。
A method for forming these protective films is as follows.
A plasma CVD method using a high frequency or a microwave, a multi-source sputtering method capable of forming a film of various elements simultaneously, or the like is used. These film formation methods can be selected according to the purpose, but reactive sputtering or a combination of sputtering and CVD can also be used. CVD
When Si is used, SiH 4 , SiF 4
Using a compound containing silicon such as B 2
For example, methane gas is used as a carbon material such as H 6 , an alkoxide compound of aluminum is used as an aluminum material, tungsten hexafluoride or a combination of tungsten hexacarbonyl and methane gas is used as a tungsten carbide material, and B 2 H 6 gas is used as a boron nitride material. And N
Combination of H 3 gas, etc.
Since VD alone is difficult, a combination of reactive sputtering with NH 3 or the like and an aluminum target is used, a combination of SiH 4 and NH 3 is used as a silicon nitride raw material, a combination of methane gas and aluminum alkoxide is used for aluminum carbide, and N 2 O is used for aluminum oxide. Sputtering with oxygen gas and aluminum target,
In the case of boron carbide, a combination of B 2 H 6 and methane gas can be selected, and in the case of silicon carbide, a combination of SiH 4 and methane gas can be selected.

【0016】これらの原料ガスを反応室内に導入し、成
膜中の各原料ガス流量を調節することにより膜厚方向で
連続的に各膜を構成する材料存在比を変化させることが
可能である。また、2種以上のターゲットを使った反応
性スパッタリングを用いて各ターゲットに印加する供給
電力を制御することにより、CVDの場合と同様、膜厚
方向での構成材料の比率を変化させることが可能であ
る。
By introducing these source gases into the reaction chamber and adjusting the flow rates of the source gases during the film formation, it is possible to continuously change the material abundance constituting each film in the film thickness direction. . Also, by controlling the supply power applied to each target by using reactive sputtering using two or more types of targets, it is possible to change the ratio of the constituent materials in the film thickness direction as in the case of CVD. It is.

【0017】また、上述のアルミニウム化合物の場合の
ように必要に応じてこれらCVDとスパッタリングの組
み合わせにより保護膜を形成する場合もあり得る。CV
Dを用いてシリコンと炭素から成る膜を形成する場合、
成膜初期のSiH4ガス流量とメタンガス流量の比をS
iH2ガス100〜5%、メタンガス0〜95%とし、成膜最後
の膜表面での各流量比をSiH4ガス0〜40%、メタンガ
ス100〜60%の範囲で成膜すると下地基板との接着性、
保護膜としての性能を両立する空気支持面保護膜を得る
ことができる。また、成膜時の基板温度はスパッタリン
グ、CVDそれぞれの場合に応じて室温〜250℃の範
囲で加熱してもよい。
Further, as in the case of the above-mentioned aluminum compound, a protective film may be formed by a combination of CVD and sputtering as necessary. CV
When forming a film composed of silicon and carbon using D,
The ratio of the flow rate of the SiH 4 gas to the flow rate of the methane gas in the initial stage of film formation is S
iH 2 gas 100 to 5%, and 0% to 95% methane, in each flow rate ratio in the film forming the final film surface SiH 4 gas 0-40%, the underlying substrate when deposited in the range of 100 to 60% methane Adhesiveness,
It is possible to obtain an air-supporting surface protective film that has both performance as a protective film. Further, the substrate temperature during film formation may be heated in a range from room temperature to 250 ° C. depending on the case of each of sputtering and CVD.

【0018】上記保護膜の形成において、膜厚は5〜1
5nmの範囲で目的に応じて設定する、5nmより薄く
なると組成を連続的に変化させる効果が無くなり、ま
た、膜のピンホールの問題が生じるため保護膜としての
機能が低下する。また、膜厚が15nmを越えると上述
のようにスペーシングロスが問題となり、記録密度の向
上に障害となりうる。したがって、保護膜の形成におい
て膜厚は、5〜15nm更に好ましくは5〜10nmの
範囲で用いることにより記録密度と信頼性を両立できる
好ましい結果が得られる。
In the formation of the protective film, the film thickness is 5 to 1
The thickness is set according to the purpose within the range of 5 nm. If the thickness is smaller than 5 nm, the effect of continuously changing the composition is lost, and the function as a protective film is deteriorated due to the problem of pinholes in the film. On the other hand, if the film thickness exceeds 15 nm, the spacing loss becomes a problem as described above, which may hinder the improvement of the recording density. Therefore, when the protective film is formed with a thickness in the range of 5 to 15 nm, more preferably 5 to 10 nm, a favorable result in which the recording density and the reliability are compatible can be obtained.

【0019】[0019]

【作用】上記のように本発明の薄膜磁気ヘッドによれ
ば、空気支持面保護膜として膜厚方向で組成が連続的に
変化する構造の単一層膜を用いることにより、スライダ
材との密着性を確保し、かつ非常に薄い膜厚で、ヘッド
の摺動特性、磁性材の耐腐食性を大きく向上させること
ができるため、ヘッド、ディスク間距離を低減して記録
密度向上を達成すると同時に、磁気記録再生の信頼性を
向上させることができる。
As described above, according to the thin-film magnetic head of the present invention, by using a single-layer film having a structure in which the composition continuously changes in the film thickness direction as the air support surface protective film, the adhesion to the slider material is improved. With a very thin film thickness, the sliding characteristics of the head and the corrosion resistance of the magnetic material can be greatly improved, so that the recording density is improved by reducing the distance between the head and the disk, The reliability of magnetic recording and reproduction can be improved.

【0020】[0020]

【実施例】以下、図面にしたがって本発明の一実施例を
具体的に説明する。 〈実施例1〉図1は、薄膜磁気ヘッドスライダ13の磁
気ヘッドが形成されている側の端面を示した正面図、図
2は、図1のA−B断面工程図を示している。図1にお
て、1はスライダ、6は薄膜磁気ヘッド素子、9は保護
膜、10は空気支持面を構成する凹部領域、11は空気
支持面を構成するレール部であって、レール11部の一
端部に薄膜磁気ヘッド素子6のフロント磁気ギャップ部
(図示せず)が面している。以下、薄膜磁気ヘッドの構
造を製造方法と共に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below with reference to the drawings. <Embodiment 1> FIG. 1 is a front view showing an end surface of a thin-film magnetic head slider 13 on a side where a magnetic head is formed, and FIG. 2 is a sectional view taken along the line AB in FIG. In FIG. 1, 1 is a slider, 6 is a thin-film magnetic head element, 9 is a protective film, 10 is a concave region forming an air support surface, and 11 is a rail portion forming an air support surface. A front magnetic gap (not shown) of the thin-film magnetic head element 6 faces one end of the head. Hereinafter, the structure of the thin film magnetic head will be described together with the manufacturing method.

【0021】図2(a)に示すように、先ず、アルミナ
チタンカーバイドからなるスライダ基板1に、下部磁性
層2としてCoNi系の磁性膜が周知のスパッタリング
成膜法により形成される。次に、この下部磁性膜2上に
SiO2、ポリイミド等の絶縁材料(ここではポリイミ
ドを使用)、およびコイル材料(ここでは渦巻状のコイ
ルパターンを銅メッキで形成)が周知の方法にて各々成
膜され、エッチングなどにより、絶縁層3、コイル導体
4が形成される。次に、これら積層体の上に、上部磁性
層5が下部磁性層2と同様の成膜方法で形成される。こ
うして、一端部にフロント磁気ギャップ12を備えた磁
気ヘッド素子6が形成される。
As shown in FIG. 2A, first, a CoNi-based magnetic film is formed as a lower magnetic layer 2 on a slider substrate 1 made of alumina titanium carbide by a known sputtering film forming method. Next, an insulating material such as SiO 2 and polyimide (here, polyimide is used) and a coil material (here, a spiral coil pattern is formed by copper plating) on the lower magnetic film 2 by a known method. The insulating layer 3 and the coil conductor 4 are formed by film formation and etching. Next, the upper magnetic layer 5 is formed on these laminates by the same film forming method as the lower magnetic layer 2. Thus, the magnetic head element 6 having the front magnetic gap 12 at one end is formed.

【0022】図2(b)に示すように、磁気ヘッド素子
6上には、続いてアルミナ、酸化硅素等の絶縁物をスパ
ッタリングなどにより成膜し、保護層7が形成される。
As shown in FIG. 2B, a protective layer 7 is formed on the magnetic head element 6 by depositing an insulating material such as alumina or silicon oxide by sputtering or the like.

【0023】このようにして形成された積層体は、その
端部を研削し、研磨することにより、フロント磁気ギャ
ップ12の端面を露出させ、図2(c)に示すように摺
動面8が形成される。
The thus formed laminate is ground and polished at its end to expose the end face of the front magnetic gap 12, and as shown in FIG. It is formed.

【0024】この摺動面加工により摺動面8に露出した
フロント磁気ギャップ12、すなわち、上部磁性層5と
下部磁性層2に挟まれた絶縁層3の厚みがギャップを規
定し、薄膜磁気ヘッドはこのギャップ幅で決まる漏れ磁
界を利用して書き込み、消去を行うことが可能なものと
なる。
The front magnetic gap 12 exposed on the sliding surface 8 by the sliding surface processing, that is, the thickness of the insulating layer 3 sandwiched between the upper magnetic layer 5 and the lower magnetic layer 2 defines the gap. Can perform writing and erasing using a leakage magnetic field determined by the gap width.

【0025】現在ヘッドスライダの浮上量は100nm
程度であるが、記録密度向上の点から、今後80nm以
下に低減されると考えられる。ディスク上には保護膜、
潤滑剤が形成されているが、このディスク上には微少な
突起があり、ヘッドの浮上量が小さくなるとヘッドのデ
ィスクへの衝突の頻度が増大する。本発明で用いる保護
膜はこのディスクへの衝突からヘッド素子6を保護する
とともに、腐食を受け易い磁性材料を保護する役割も担
っている。
At present, the flying height of the head slider is 100 nm.
It is considered to be reduced to 80 nm or less in the future from the viewpoint of improving the recording density. Protective film on the disc,
Although a lubricant is formed, fine protrusions are formed on the disk, and the frequency of collision of the head with the disk increases as the flying height of the head decreases. The protective film used in the present invention not only protects the head element 6 from the collision with the disk, but also has a role of protecting a magnetic material which is susceptible to corrosion.

【0026】そこで図2(d)に示すように、本実施例
の薄膜磁気ヘッドは上記摺動面8を保護するために、摺
動面8が形成された後、13.56MHzの高周波プラ
ズマCVD装置を用いて、ガス圧1×10~1〜1×10
~2Torr、成膜温度150℃で第1の構成元素群の例
としてモノシランガス(SiH4)、第2の構成元素群
の例としてメタンガス(CH4)を成膜室内に導入し、
両ガスの導入量を時間的に制御しつつ、膜厚方向でシリ
コンと炭素の比率が連続的に変化する膜厚10nmの保
護膜9を形成した。この時のガス流量としては成膜開始
時のSiH4ガス流量が10sccm、CH4ガス流量が
0sccmであり、成膜終了時のSiH4ガス流量が0
sccm、メタンガス流量が10sccmであった。
As shown in FIG. 2D, in order to protect the sliding surface 8, the thin-film magnetic head of the present embodiment forms a 13.56 MHz high frequency plasma CVD after the sliding surface 8 is formed. Gas pressure 1 × 10 to 1 to 1 × 10
Monosilane gas (SiH 4 ) as an example of the first constituent element group and methane gas (CH 4 ) as an example of the second constituent element group are introduced into the film formation chamber at ~ 2 Torr and a film formation temperature of 150 ° C.
A protective film 9 having a thickness of 10 nm in which the ratio of silicon and carbon continuously changes in the thickness direction was formed while controlling the introduction amounts of both gases temporally. At this time, the flow rates of the SiH 4 gas at the start of the film formation are 10 sccm, the flow rates of the CH 4 gas are 0 sccm, and the flow rates of the SiH 4 gas at the end of the film formation are 0.
The flow rate of methane gas was 10 sccm.

【0027】こうして形成した保護膜9の膜厚方向の元
素分析を2次イオン質量分析法により測定した結果、シ
リコン原子と炭素原子の存在比率はほぼ直線的に変化し
ており、成膜初期では炭素はほとんど存在せず、成膜終
了時の膜表面ではシリコン原子は5%以下、炭素原子は
95%以上の存在比率の単一層膜であった。
The elemental analysis in the thickness direction of the protective film 9 thus formed was measured by secondary ion mass spectrometry. As a result, the proportion of silicon atoms and carbon atoms changed almost linearly. Carbon was scarcely present, and the film surface at the end of the film formation was a single-layer film having a silicon atom content of 5% or less and a carbon atom content of 95% or more.

【0028】このように、膜組成を連続的に変化させた
保護膜9を形成した薄膜磁気ヘッドスライダを評価した
ところ、保護膜9の密着性は従来のシリコンを接着層と
した多層構造の膜厚25nmの保護膜の場合と比べて差
異はみられず、また、亜硫酸ガス2ppm雰囲気下に放
置した素子の腐食試験では20時間経過後も磁性材料表
面での腐食は観測されなかった。さらに、ディスク上で
の摺動試験を行った結果、従来の多層構造の保護膜で表
面層が非晶質炭素膜である場合と比べて耐摺動性能に差
異はみられなかった。
As described above, when the thin film magnetic head slider having the protective film 9 having the film composition continuously changed was evaluated, the adhesion of the protective film 9 was found to be a conventional film having a multilayer structure using silicon as an adhesive layer. No difference was observed as compared with the case of the protective film having a thickness of 25 nm, and no corrosion was observed on the surface of the magnetic material even after 20 hours in a corrosion test of the device left in an atmosphere of 2 ppm of sulfurous gas. Further, as a result of a sliding test on a disk, no difference was observed in the sliding resistance as compared with the case where the surface layer of the conventional protective film having a multilayer structure was an amorphous carbon film.

【0029】次に、表1に示すように、高周波プラズマ
CVD装置の成膜室内に導入するSiH4とCH4との導
入量を種々変えて、膜厚方向に連続的に組成を変えた場
合における保護膜底面の組成と最表面組成が下地との密
着性、耐摺動性に及ぼす影響、保護膜全体の厚みが耐腐
食性に及ぼす影響について試験を行った。
Next, as shown in Table 1, the composition was continuously changed in the film thickness direction by changing the amounts of SiH 4 and CH 4 introduced into the film forming chamber of the high frequency plasma CVD apparatus. The effect of the composition of the bottom surface of the protective film and the composition of the outermost surface on the adhesion to the base and the sliding resistance, and the effect of the thickness of the entire protective film on the corrosion resistance were tested.

【0030】[0030]

【表1】 [Table 1]

【0031】この結果から、(1)スライダ材界面での
保護膜の良好な密着性を確保するためには、試料No.
2もしくは8と4とを対比すれば明らかなように、成膜
初期に(SiH4)/(SiH4+CH4)比の値が0.
05以上あれば良く、(2)耐摺動性を満足させるため
には、試料No.3と5および7とを対比すれば明らか
なように、成膜終了時に(CH4)/(SiH4+C
4)比の値が0.6以上あれば良いことがわかる。ま
た、(3)保護膜の下に存在する磁性材料の腐食を防止
するためには、試料No.9と10とを対比すれば明ら
かなように、膜厚は5nm以上あることが好ましいこと
がわかる。
From these results, it is found that (1) In order to ensure good adhesion of the protective film at the slider material interface, the sample No.
As is clear from comparing 2 or 8 with 4, the value of the (SiH 4 ) / (SiH 4 + CH 4 ) ratio is 0.1 at the initial stage of film formation.
(2) In order to satisfy the sliding resistance, the sample No. As is clear from the comparison between 3, 5 and 7, (CH 4 ) / (SiH 4 + C
It can be seen that the value of the H 4 ) ratio should be 0.6 or more. (3) In order to prevent corrosion of the magnetic material existing under the protective film, the sample No. As is clear from comparison between 9 and 10, it is understood that the film thickness is preferably 5 nm or more.

【0032】次に、以下の実施例ではシリコン/炭素の
組み合わせ以外の第1の構成元素群と、第2の構成元素
群および/または構成化合物群元素とを含む保護膜の例
について示す。
Next, in the following embodiments, examples of a protective film containing a first constituent element group other than the silicon / carbon combination and a second constituent element group and / or a constituent compound group element will be described.

【0033】〈実施例2〉実施例1と同様の方法にて図
2(a)に示す磁気ヘッド素子6を形成後、同図(b)
の保護層7を成膜し、更に研削加工により同図(c)の
摺動面8を形成した。この摺動面8上に以下の方法にて
同図(d)に示す保護膜9を10nmの膜厚で形成し
た。すなわち、13.56MHzの高周波プラズマCV
D装置内にアルミニウムターゲットを設置してスパッタ
リング機能を有した装置を用いて、ガス圧5×10~3
1×10~2Torr、成膜温度150℃でSiH4ガス
とNH3ガスを成膜室内に導入し、さらに成膜室内にア
ルミニウムのターゲットを設置して同時にスパッタリン
グを行い、膜厚方向でシリコン原子が連続的に減少し、
窒化アルミニウムの存在比率が連続的に増大する構造を
有する膜厚10nmの単一そうで構成された保護膜9を
形成した。
<Embodiment 2> After forming the magnetic head element 6 shown in FIG. 2A by the same method as in Embodiment 1, FIG.
The protective layer 7 was formed, and the sliding surface 8 shown in FIG. On this sliding surface 8, a protective film 9 shown in FIG. That is, 13.56 MHz high frequency plasma CV
Using a device having a sputtering function by installing an aluminum target in a D unit, a gas pressure 5 × 10 ~ 3 ~
SiH 4 gas and NH 3 gas are introduced into the film formation chamber at 1 × 10 to 2 Torr and a film formation temperature of 150 ° C., and an aluminum target is set in the film formation chamber and sputtering is performed at the same time. Atoms are continuously reduced,
A protective film 9 having a thickness of 10 nm and having a structure in which the content ratio of aluminum nitride continuously increases was formed.

【0034】こうして形成した保護膜9の膜厚方向の元
素分析を2次イオン質量分析法により測定した結果、シ
リコン原子と窒化アルミニウムの存在比率はほぼ直線的
に変化しており、成膜初期では窒化アルミニウムはほと
んど存在せず、成膜終了時の膜表面ではシリコン原子は
5%以下、窒化アルミニウム存在比率は95%以上であ
った。
The elemental analysis in the thickness direction of the protective film 9 thus formed was measured by secondary ion mass spectrometry. As a result, the ratio of silicon atoms to aluminum nitride changed almost linearly. Almost no aluminum nitride was present, and silicon atoms were 5% or less and the aluminum nitride abundance was 95% or more on the film surface at the end of film formation.

【0035】このように、膜組成を連続的に変化させた
保護膜9を形成した薄膜磁気ヘッドスライダを評価した
ところ、保護膜9の密着性は従来のシリコンを接着層と
した多層構造の膜厚25nmの保護膜の場合と比べて差
異はみられず、また、亜硫酸ガス2ppm雰囲気下に放
置した素子の腐食試験では20時間経過後も磁性材料表
面での腐食は観測されなかった。さらに、ディスク上で
の摺動試験を行った結果、従来の多層構造の保護膜で表
面層が非晶質炭素膜である場合と比べて耐摺動性能に差
異はみられなかった。すなわち、従来の多層構造の膜厚
25nmに対し本発明の単層膜では10nmでも十分に
実用に供し得るものであることが確認できた。
As described above, when the thin film magnetic head slider having the protective film 9 having the film composition continuously changed was evaluated, the adhesion of the protective film 9 was found to be a conventional film having a multilayer structure using silicon as an adhesive layer. No difference was observed as compared with the case of the protective film having a thickness of 25 nm, and no corrosion was observed on the surface of the magnetic material even after 20 hours in a corrosion test of the device left in an atmosphere of 2 ppm of sulfurous gas. Further, as a result of a sliding test on a disk, no difference was observed in the sliding resistance as compared with the case where the surface layer of the conventional protective film having a multilayer structure was an amorphous carbon film. In other words, it was confirmed that even if the single-layer film of the present invention has a thickness of 10 nm, it can be sufficiently used practically, compared to the conventional multilayer structure having a thickness of 25 nm.

【0036】〈実施例3〉実施例1と同様の方法で図2
(c)における摺動面8を形成した後に、以下の方法で
同図(d)に示すようにシリコンと窒化ホウ素とを含む
単一層で構成された保護膜9を10nm形成した。
<Embodiment 3> In the same manner as in Embodiment 1, FIG.
After forming the sliding surface 8 in (c), a protective film 9 composed of a single layer containing silicon and boron nitride was formed to a thickness of 10 nm as shown in FIG.

【0037】すなわち、実施例1と同様のCVD装置を
用い、成膜ガスとしてSiH4、B26、NH3を成膜室
に導入した。この時のガスの導入条件としては、成膜初
期にSiH4ガスを70体積%、B26とNH3ガスとの
合計を30体積%流し、成膜終了時にはSiH4ガス0
%、B26とNH3ガスとの合計を100体積%とし
た。こうして形成した薄膜磁気ヘッドスライダを実施例
1の場合と同様に評価したところ、下地基板に対する密
着性、耐腐食性、耐摺動性ともに良好な結果が得られ
た。
That is, using the same CVD apparatus as in Example 1, SiH 4 , B 2 H 6 and NH 3 were introduced as film forming gases into the film forming chamber. The delivery conditions at this time of the gas, 70 vol% and SiH 4 gas into the deposition initial, B 2 H 6 and NH 3 flowing sum of the gas 30 vol%, SiH 4 gas 0 on completion of film formation
%, And the total of B 2 H 6 and NH 3 gas was 100% by volume. When the thin-film magnetic head slider thus formed was evaluated in the same manner as in Example 1, good results were obtained in all of the adhesion, corrosion resistance and sliding resistance to the underlying substrate.

【0038】〈実施例4〉実施例1と同様の方法で図2
(c)における摺動面8を形成した後に、以下の方法で
同図(d)に示すようにシリコンと窒化硅素とを含む単
一層で構成された保護膜9を10nm形成した。
<Embodiment 4> In the same manner as in Embodiment 1, FIG.
After forming the sliding surface 8 in (c), a protective film 9 composed of a single layer containing silicon and silicon nitride was formed to a thickness of 10 nm as shown in FIG.

【0039】すなわち、実施例1と同様のCVD装置を
用い、成膜ガスとしてSiH4、NH3を成膜室に導入し
た。この時のガスの導入条件としては、成膜初期にSi
4ガスを70体積%、NH3ガスを30体積%流し、成
膜終了時にはSiH4ガス40%、NH3ガスを60体積
%とした。こうして形成した薄膜磁気ヘッドスライダを
実施例1の場合と同様に評価したところ、下地基板に対
する密着性、耐腐食性、耐摺動性ともに良好な結果が得
られた。
That is, using the same CVD apparatus as in Example 1, SiH 4 and NH 3 were introduced as film forming gases into the film forming chamber. The gas introduction conditions at this time are as follows:
H 4 gas was flowed at 70% by volume and NH 3 gas was flowed at 30% by volume. At the end of film formation, SiH 4 gas was 40% and NH 3 gas was 60% by volume. When the thin-film magnetic head slider thus formed was evaluated in the same manner as in Example 1, good results were obtained in all of the adhesion, corrosion resistance and sliding resistance to the underlying substrate.

【0040】〈実施例5〉実施例1と同様の方法で図2
(c)における摺動面8を形成した後に、以下の方法で
同図(d)に示すようにシリコンと炭化ホウ素とを含む
単一層で構成された保護膜9を10nm形成した。
<Embodiment 5> In the same manner as in Embodiment 1, FIG.
After forming the sliding surface 8 in (c), a protective film 9 composed of a single layer containing silicon and boron carbide was formed to a thickness of 10 nm as shown in FIG.

【0041】すなわち、実施例1と同様のCVD装置を
用い、成膜ガスとしてSiH4、B26、メタンガスを
成膜室に導入した。この時のガスの導入条件としては、
成膜初期にSiH4ガスを70体積%、B26とCH4
スの合計を30体積%流し、成膜終了時にはSiH4
ス0%、B26とCH4ガスの合計を100体積%とし
た。こうして形成した薄膜磁気ヘッドスライダを実施例
1の場合と同様に評価したところ、下地基板に対する密
着性、耐腐食性、耐摺動性ともに良好な結果が得られ
た。
That is, using the same CVD apparatus as in Example 1, SiH 4 , B 2 H 6 , and methane gas were introduced as film forming gases into the film forming chamber. The gas introduction conditions at this time are as follows:
70 vol% of the SiH 4 gas into the deposition initial, B 2 H 6 and CH 4 flow the total gas 30 vol%, SiH 4 gas 0% at completion of film formation, the sum of B 2 H 6 and CH 4 gas 100 % By volume. When the thin-film magnetic head slider thus formed was evaluated in the same manner as in Example 1, good results were obtained in all of the adhesion, corrosion resistance and sliding resistance to the underlying substrate.

【0042】〈実施例6〉実施例1と同様の方法で図2
(c)における摺動面8を形成した後に、以下の方法で
同図(d)に示すようにシリコンと酸化アルミニウムと
を含む単一層で構成された保護膜9を10nm形成し
た。
<Embodiment 6> In the same manner as in Embodiment 1, FIG.
After forming the sliding surface 8 in (c), a protective film 9 composed of a single layer containing silicon and aluminum oxide was formed to a thickness of 10 nm as shown in FIG.

【0043】すなわち、実施例2と同様のスパッタ機能
を有するCVD装置を用い、成膜ガスとしてSiH4
2Oを成膜室に導入した。この時のガスの導入条件と
しては、成膜初期にSiH4ガスを70体積%、N2Oガ
スを30体積%流し、同時にアルミニウムをスパッタリ
ングした。成膜終了時にはSiH4ガス0%、N2Oを1
00体積%とした。こうして形成した薄膜磁気ヘッドス
ライダを実施例1の場合と同様に評価したところ、下地
基板に対する密着性、耐腐食性、耐摺動性ともに良好な
結果が得られた。
That is, using a CVD apparatus having the same sputtering function as in the second embodiment, SiH 4 ,
N 2 O was introduced into the film formation chamber. As the gas introduction conditions at this time, 70% by volume of SiH 4 gas and 30% by volume of N 2 O gas were flowed at the beginning of film formation, and aluminum was sputtered at the same time. At the end of film formation, 0% SiH 4 gas and 1 N 2 O
00% by volume. When the thin-film magnetic head slider thus formed was evaluated in the same manner as in Example 1, good results were obtained in all of the adhesion, corrosion resistance and sliding resistance to the underlying substrate.

【0044】〈実施例7〉実施例1と同様の方法で図2
(c)における摺動面8を形成した後に、以下の方法で
同図(d)に示すようにシリコンとアルミニウムカーバ
イドとを含む単一層で構成された保護膜9を10nm形
成した。
<Embodiment 7> In the same manner as in Embodiment 1, FIG.
After forming the sliding surface 8 in (c), a protective film 9 composed of a single layer containing silicon and aluminum carbide was formed to a thickness of 10 nm as shown in FIG.

【0045】すなわち、実施例2と同様のスパッタ機能
を有するCVD装置を用い、成膜ガスとしてSiH4
CH4を成膜室に導入した。この時のガスの導入条件と
しては、成膜初期にSiH4ガスを70体積%、CH4
スを30体積%流し、同時にアルミニウムをスパッタリ
ングした。成膜終了時にはSiH4ガス0%、CH4を1
00体積%とした。こうして形成した薄膜磁気ヘッドス
ライダを実施例1の場合と同様に評価したところ、下地
基板に対する密着性、耐腐食性、耐摺動性ともに良好な
結果が得られた。
That is, using a CVD apparatus having the same sputtering function as in Example 2, SiH 4 ,
CH 4 was introduced into the film forming chamber. The delivery conditions at this time of the gas, 70 vol% and SiH 4 gas into the deposition initial flushed with CH 4 gas 30 vol%, was sputtered aluminum simultaneously. At the end of film formation, SiH 4 gas is 0% and CH 4 is 1
00% by volume. When the thin-film magnetic head slider thus formed was evaluated in the same manner as in Example 1, good results were obtained in all of the adhesion, corrosion resistance and sliding resistance to the underlying substrate.

【0046】〈実施例8〉実施例1と同様の方法で図2
(c)における摺動面8を形成した後に、以下の方法で
同図(d)に示すようにシリコンとタングステンカーバ
イドとを含む単一層で構成された保護膜9を10nm形
成した。
<Embodiment 8> In the same manner as in Embodiment 1, FIG.
After forming the sliding surface 8 in (c), a protective film 9 composed of a single layer containing silicon and tungsten carbide was formed to a thickness of 10 nm as shown in FIG.

【0047】すなわち、実施例1と同様のCVD装置を
用い、成膜ガスとしてSiH4、CH4、W(CO)6
成膜室に導入した。この時のガスの導入条件としては、
成膜初期にSiH4ガスを70体積%、CH4とW(C
O)6の合計を30体積%流し、成膜終了時にはSiH4
ガス40%、CH4とW(CO)6の合計を60体積%と
した。こうして形成した薄膜磁気ヘッドスライダを実施
例1の場合と同様に評価したところ、下地基板に対する
密着性、耐腐食性、耐摺動性ともに良好な結果が得られ
た。
That is, using the same CVD apparatus as in Example 1, SiH 4 , CH 4 , and W (CO) 6 were introduced as film forming gases into the film forming chamber. The gas introduction conditions at this time are as follows:
70% by volume of SiH 4 gas, CH 4 and W (C
O) 6 is flowed at 30% by volume, and SiH 4
The gas was 40%, and the total of CH 4 and W (CO) 6 was 60% by volume. When the thin-film magnetic head slider thus formed was evaluated in the same manner as in Example 1, good results were obtained in all of the adhesion, corrosion resistance and sliding resistance to the underlying substrate.

【0048】また、上記実施例のほかに、下地との密着
性を高めるため、第1の構成元素群として必要に応じて
シリコン以外にホウ素、アルミニウム元素の何れか、も
しくは両者を用いても同様の結果が得られることを確認
した。
In addition to the above-described embodiments, in order to enhance the adhesion to the base, the first constituent element group may be formed by using one or both of boron and aluminum elements other than silicon, if necessary. It was confirmed that the result was obtained.

【0049】[0049]

【発明の効果】以上説明したように本発明により、所期
の目的を達成することができた。すなわち、本発明の薄
膜磁気ヘッドによれば、摺動面上に保護膜として、第1
の構成元素群と第2の構成元素群および/または構成化
合物群とを含み、膜厚方向に組成が連続的に変化する単
一層の薄膜をスライダの空気支持面上に設けることによ
り、スライダ材界面での良好な接着性と優れた摺動特性
を合わせ持つ薄い保護膜を形成することが可能となり、
磁気記録装置として、スペーシングロスの減少による高
記録密度化、信頼性向上を実現することが可能である。
また、装置的にも単層膜にすることにより、多層膜の際
に必要であった多室の成膜装置が不要になり、装置コス
ト的にも効果が大きい。
As described above, the intended object can be achieved by the present invention. That is, according to the thin-film magnetic head of the present invention, the first protective film is formed on the sliding surface.
By providing a single-layer thin film having a composition that continuously changes in the film thickness direction on the air supporting surface of the slider, the slider material includes the constituent element group and the second constituent element group and / or the constituent compound group. It is possible to form a thin protective film that combines good adhesion at the interface and excellent sliding characteristics.
As a magnetic recording device, it is possible to realize high recording density and improvement in reliability by reducing spacing loss.
In addition, since a single-layer film is used as a device, a multi-chamber film-forming device which is necessary for a multilayer film is not required, and the effect of the device cost is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を説明するための薄膜磁気ヘ
ッド素子を備えた磁気ヘッドスライダの正面図。
FIG. 1 is a front view of a magnetic head slider provided with a thin-film magnetic head element for explaining one embodiment of the present invention.

【図2】同じく図1A−B断面工程図。FIG. 2 is a sectional process view of FIG. 1A-B.

【符号の説明】[Explanation of symbols]

1…スライダ基板、 2…下部磁性層、 3…絶縁層、 4…コイル導体、 5…上部磁性膜、 6…磁気ヘッド素子、 7…保護層、 8…摺動面、 9…保護膜、 10…スライダ凹部領域、 11…レール部、 12…フロント磁気ギャップ、 13…薄膜磁気ヘッドスライダ。 DESCRIPTION OF SYMBOLS 1 ... Slider board, 2 ... Lower magnetic layer, 3 ... Insulating layer, 4 ... Coil conductor, 5 ... Upper magnetic film, 6 ... Magnetic head element, 7 ... Protective layer, 8 ... Sliding surface, 9 ... Protective film, 10 ... Slider recess area, 11 ... Rail part, 12 ... Front magnetic gap, 13 ... Thin film magnetic head slider.

フロントページの続き (72)発明者 中野 朝雄 神奈川県横浜市戸塚区吉田町292番地 株式会社日立製作所生産技術研究所内 (72)発明者 斉木 教行 神奈川県小田原市国府津2880番地 株式 会社日立製作所ストレージシステム事業 部内 (72)発明者 尾形 潔 神奈川県横浜市戸塚区吉田町292番地 株式会社日立製作所生産技術研究所内 (56)参考文献 特開 平4−276367(JP,A) 特開 平6−12615(JP,A) 特開 平7−129924(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 5/31 G11B 5/60 Continued on the front page (72) Inventor Asao Nakano 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Inside the Hitachi, Ltd.Production Technology Research Laboratories Within Business Unit (72) Inventor Kiyoshi Ogata 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Inside Hitachi, Ltd. Production Research Laboratory (56) References JP-A-4-276367 (JP, A) JP-A-6-12615 ( JP, A) JP-A-7-129924 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G11B 5/31 G11B 5/60

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】スライダ基板上の上部磁性膜と下部磁性膜
との間に絶縁膜を介して配設されたコイル導体と、前記
上部、下部両磁性膜の一端部が磁気的に接続されてバッ
クコア接続部を構成すると共に、他端部がギャップ規制
絶縁膜を挟んで形成されたフロント磁気ギャップ部と、
空気支持面を構成し、少なくとも前記フロント磁気ギャ
ップの端面を含む摺動面に形成された保護膜とを有して
なる薄膜磁気ヘッドにおいて、前記保護膜を、下地とな
るスライダ材表面に対する接着性と耐摺動性とが膜厚方
向に連続的に変化し、膜厚増加に伴い保護膜表面に向け
ての接着性が大から小に減少する一方で耐摺動性が小か
ら大に増大する特性を有する非磁性単一層の無機保護膜
で構成して成る薄膜磁気ヘッド。
A coil conductor disposed between an upper magnetic film and a lower magnetic film on a slider substrate via an insulating film, and one end of each of the upper and lower magnetic films is magnetically connected. A front magnetic gap portion that constitutes a back core connection portion, and the other end portion is formed with a gap regulating insulating film interposed therebetween,
In a thin-film magnetic head comprising an air support surface and a protective film formed on a sliding surface including at least an end face of the front magnetic gap, the protective film serves as a base.
The adhesiveness to the slider material surface and the sliding resistance change continuously in the film thickness direction, and as the film thickness increases, the adhesiveness toward the protective film surface decreases from large to small while sliding resistance increases. A thin-film magnetic head comprising a non-magnetic single-layer inorganic protective film having a characteristic of increasing the performance from small to large.
【請求項2】上記非磁性単一層の無機保護膜を、珪素、
アルミニウム、及びホウ素からなる少なくとも一種の第
1の構成元素群と、タングステンカーバイド、窒化ホウ
素、窒化アルミニウム、窒化珪素、アルミニウムカーバ
イド、酸化アルミニウム、ボロンカーバイド、炭化珪
素、及び炭素からなる少なくとも一種の第2の構成元素
群および/または構成化合物群とを含み、前記第1の構
成元素群の存在比率が保護膜表面に向けて減少する一方
で前記第2の構成元素群および/または構成化合物群の
存在比率が増大する単一膜構造で構成して成る請求項1
記載の薄膜磁気ヘッド。
2. The method according to claim 1, wherein the non-magnetic single-layer inorganic protective film is made of silicon,
At least one first element group consisting of aluminum and boron and at least one second element group consisting of tungsten carbide, boron nitride, aluminum nitride, silicon nitride, aluminum carbide, aluminum oxide, boron carbide, silicon carbide, and carbon; And the presence ratio of the second constituent element group and / or the constituent compound group decreases while the proportion of the first constituent element group decreases toward the surface of the protective film. 2. A structure comprising a single film structure having an increased ratio.
The thin-film magnetic head as described in the above.
【請求項3】上記保護膜底面における第1の構成元素群
の組成比が少なくとも5原子%であり、保護膜最表面に
おける第2の構成元素群および/または構成化合物群の
組成比が少なくとも60原子%である保護膜を有して成
る請求項2記載の薄膜磁気ヘッド。
3. The composition ratio of the first constituent element group on the bottom surface of the protective film is at least 5 atomic%, and the composition ratio of the second constituent element group and / or the constituent compound group on the outermost surface of the protective film is at least 60 atomic%. 3. The thin-film magnetic head according to claim 2, further comprising a protective film having an atomic%.
【請求項4】上記保護膜の厚さを5〜15nmとして成
る請求項1乃至の何れか一つに記載の薄膜磁気ヘッ
ド。
4. A thin-film magnetic head according to any one of claims 1 to 3 comprising the thickness of the protective film as 5 to 15 nm.
【請求項5】予め薄膜磁気ヘッドをスライダ基板上に形
成する工程と、フロントギャップ端面を含む空気支持面
に保護膜を形成する工程と、前記空気支持面の少なくと
もフロントギャップ端面を含む領域にスライダレール面
を形成する工程とを有してなる磁気ヘッドの製造方法で
あって、前記保護膜を形成する工程を、下地であるスラ
イダ材表面に対する接着性と耐摺動性とが膜厚方向に連
続的に変化し、膜厚増加に伴い保護膜表面に向けての接
着性が大から小に減少する一方で耐摺動性が小から大に
増大する特性を有する非磁性単一層の無機保護膜を形成
する工程で構成して成る薄膜磁気ヘッドの製造方法。
5. A step of forming a thin film magnetic head on a slider substrate in advance, a step of forming a protective film on an air supporting surface including a front gap end face, and a step of forming a slider on at least a region of the air supporting face including the front gap end face. Forming a rail surface, wherein the step of forming the protective film is performed by using a slurry as an underlayer.
The adhesiveness to the surface of the ida material and the sliding resistance change continuously in the film thickness direction, and as the film thickness increases, the adhesiveness to the protective film surface decreases from large to small while sliding resistance A method for manufacturing a thin-film magnetic head, comprising: forming a nonmagnetic single-layer inorganic protective film having characteristics of increasing from small to large.
【請求項6】上記非磁性単一層の無機保護膜を形成する
工程を、珪素、アルミニウム、及びホウ素からなる少な
くとも一種の第1の構成元素群を堆積する工程と、タン
グステンカーバイド、窒化ホウ素、窒化アルミニウム、
窒化珪素、アルミニウムカーバイド、酸化アルミニウ
ム、ボロンカーバイド、炭化珪素、及び炭素からなる少
なくとも一種の第2の構成元素群および/または構成化
合物群を堆積する工程とを含み、前記第1の構成元素群
を堆積する工程により堆積する構成元素群の比率を保護
膜表面に向けて減少させる一方で前記第2の構成元素群
および/または構成化合物群を堆積する工程により堆積
する構成元素群の比率を増大させて膜厚方向に連続的に
組成変化を生じさせて単一膜を形成する工程として成る
請求項記載の薄膜磁気ヘッドの製造方法。
6. The step of forming the non-magnetic single-layer inorganic protective film includes the steps of: depositing at least one first element group consisting of silicon, aluminum, and boron; and forming tungsten carbide, boron nitride, and nitride. aluminum,
Depositing at least one second constituent element group and / or constituent compound group consisting of silicon nitride, aluminum carbide, aluminum oxide, boron carbide, silicon carbide, and carbon; The ratio of the constituent element group deposited by the step of depositing the second constituent element group and / or the constituent compound group is increased while decreasing the ratio of the constituent element group deposited by the depositing step toward the surface of the protective film. 6. The method for manufacturing a thin-film magnetic head according to claim 5 , comprising a step of forming a single film by continuously changing the composition in the film thickness direction.
【請求項7】上記第1の構成元素群を堆積する工程と、
第2の構成元素群および/または構成化合物群を堆積す
る工程とを、プラズマCVD、もしくはスパッタリング
機能を有するプラズマCVDにより堆積する工程で構成
して成る請求項記載の薄膜磁気ヘッドの製造方法。
7. A step of depositing the first group of constituent elements;
7. The method for manufacturing a thin-film magnetic head according to claim 6 , wherein the step of depositing the second constituent element group and / or the constituent compound group comprises a step of depositing by plasma CVD or plasma CVD having a sputtering function.
【請求項8】上記第1の構成元素群を堆積する工程と、
第2の構成元素群および/または構成化合物群を堆積す
る工程とを、プラズマCVDにより堆積する工程で構成
し、原料ガスにSiH4とCH4とを用い、成膜初期のS
iH4ガス流量比を100〜5%、CH4ガス流量比を0
〜95%、成膜最後のSiH4ガス流量比を0〜40
%、CH4ガス流量比を100〜60%の範囲の組み合
わせで成膜する工程として成る請求項記載の薄膜磁気
ヘッドの製造方法。
8. A step of depositing the first group of constituent elements;
The step of depositing the second group of constituent elements and / or the group of constituent compounds comprises a step of depositing by plasma CVD, and using SiH 4 and CH 4 as source gases,
iH 4 gas flow ratio is 100-5%, CH 4 gas flow ratio is 0
~ 95%, flow rate ratio of SiH 4 gas at the end of film formation is 0 ~ 40
%, CH 4 gas flow rate of the method of manufacturing a thin film magnetic head according to claim 6, wherein comprising a step of forming a combination of the range of 100 to 60%.
JP13476494A 1994-06-17 1994-06-17 Thin film magnetic head and method of manufacturing the same Expired - Fee Related JP3310778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13476494A JP3310778B2 (en) 1994-06-17 1994-06-17 Thin film magnetic head and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13476494A JP3310778B2 (en) 1994-06-17 1994-06-17 Thin film magnetic head and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH087227A JPH087227A (en) 1996-01-12
JP3310778B2 true JP3310778B2 (en) 2002-08-05

Family

ID=15136018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13476494A Expired - Fee Related JP3310778B2 (en) 1994-06-17 1994-06-17 Thin film magnetic head and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3310778B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5447469B2 (en) * 2011-09-22 2014-03-19 Tdk株式会社 Magnetic sensor, magnetic encoder, magnetic encoder module, lens barrel

Also Published As

Publication number Publication date
JPH087227A (en) 1996-01-12

Similar Documents

Publication Publication Date Title
US4833031A (en) Magnetic recording medium
EP0584707B1 (en) Laminate and wear-resistant thin-film magnetic head assembly formed thereon
US5864452A (en) Thin-film magnetic head and method of forming carbon film
US5930077A (en) Magnetic head for recording and reproducing a signal and comprising a slider provided with a protective film including an intermediate layer and an amorphous hard carbon layer
US4840844A (en) Magnetic recording medium
US7638020B2 (en) Vertical magnetic recording medium and manufacturing method thereof
US20060029806A1 (en) Carbonaceous protective layer, magnetic recording medium, production method thereof, and magnetic disk apparatus
EP0590701B1 (en) Magnetic head having a wear-resistant layer, and method of manufacturing such a magnetic head
US6995948B2 (en) Thin-film magnetic head, method for producing the same and magnetic disk device using the same
JP3310778B2 (en) Thin film magnetic head and method of manufacturing the same
US6974642B2 (en) Carbonaceous protective layer, magnetic recording medium, production method thereof, and magnetic disk apparatus
US7280312B2 (en) Method for producing a protective thin film for a magnetic head
US5945190A (en) Magnetic recording medium and magnetic disk device
US7283326B2 (en) Methods for producing a protective film on recording media
US20110032640A1 (en) Multi-layer, thin film overcoat for magnetic media disk
JP2623785B2 (en) Magnetic disk
KR20040029495A (en) Magnetic recording media
JP3585917B2 (en) Thin-film magnetic head, method of manufacturing the same, and magnetic disk drive using the same
JP3705474B2 (en) Magnetic recording medium
JPH09161223A (en) Thin-film magnetic head and magnetic disk recording and reproducing device
JPS63297208A (en) Hard amorphous carbon film
US20040061976A1 (en) Thin-film magnetic head, method for producing the same and magnetic disk device having a slider using the same
JPH10289419A (en) Thin-film head and its production
JP2751396B2 (en) Magnetic disk
JPH0612568B2 (en) Magnetic recording medium

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees