JPH09161223A - Thin-film magnetic head and magnetic disk recording and reproducing device - Google Patents

Thin-film magnetic head and magnetic disk recording and reproducing device

Info

Publication number
JPH09161223A
JPH09161223A JP32262995A JP32262995A JPH09161223A JP H09161223 A JPH09161223 A JP H09161223A JP 32262995 A JP32262995 A JP 32262995A JP 32262995 A JP32262995 A JP 32262995A JP H09161223 A JPH09161223 A JP H09161223A
Authority
JP
Japan
Prior art keywords
film
fluorine
magnetic head
protective film
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32262995A
Other languages
Japanese (ja)
Inventor
Kazufumi Azuma
東  和文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32262995A priority Critical patent/JPH09161223A/en
Publication of JPH09161223A publication Critical patent/JPH09161223A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To embody a thin-film magnetic head having good wear resistance and low tacky adhesiveness. SOLUTION: The surface region of an amorphous protective film 10 contg. carbon is composed of a fluorine-contained film. This amorphous protective film 10 contg. the carbon is composed of carbon protective films consisting of hydrogeneous amorphous carbon, hydrogenous amorphous silicon carbide (hydrogen content 5 to 50%), etc. The film thickness over the entire apart of the protective film is specified to 4 to 25nm and the fluorine-contained layer of its surface region is preferably 1 to 5nm. Fluorine is not incorporated into the protective film of the region where the film comes into direct contact with a magnetic material forming the head and is incorporated into the surface layer part apart by >=3nm than this region. The fluorine content of the fluorine- contained film is preferably 5 to 30atm.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高速回転する磁気
ディスク上を磁気ヘッドが浮上する、所謂ヘッド浮上型
の高記録密度磁気ディスク装置に使用して好適な薄膜磁
気ヘッド及びその製造方法と、それを用いた磁気ディス
ク記録再生装置に係り、特に磁気ヘッドスライダの磁気
ディスク対向面に保護膜を形成した薄膜磁気ヘッド及び
その製造方法と、それを用いた磁気ディスク記録再生装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film magnetic head suitable for use in a so-called head flying type high recording density magnetic disk device, in which a magnetic head floats on a magnetic disk rotating at high speed, and a method for manufacturing the same. The present invention relates to a magnetic disk recording / reproducing apparatus, and more particularly to a thin film magnetic head having a protective film formed on a surface of a magnetic head slider facing a magnetic disk, a manufacturing method thereof, and a magnetic disk recording / reproducing apparatus using the same.

【0002】[0002]

【従来の技術】近年、磁気ディスク記録再生装置(以
下、磁気ディスク装置と略称する)は、取扱情報量の増
大に伴って記録密度の高度化が急速に進展している。磁
気ディスク装置の記録密度を高度化するためには、磁気
ディスク面上に対する薄膜磁気ヘッドの浮上量を100
nm以下に設定する必要があるが、このように浮上量を
小さくした場合は、高速で回転する磁気ディスク面に磁
気ヘッドスライダが接触又は衝突する機会が増える。こ
のため、磁気ヘッドスライダの空気支持面に形成する保
護膜は薄くて強靭であることに加え高度の耐磨耗性を有
することが必要である。
2. Description of the Related Art In recent years, the recording density of a magnetic disk recording / reproducing apparatus (hereinafter, abbreviated as a magnetic disk apparatus) has been rapidly increasing with an increase in the amount of information handled. In order to improve the recording density of the magnetic disk device, the flying height of the thin film magnetic head above the magnetic disk surface is set to 100.
Although it is necessary to set the height to nm or less, when the flying height is reduced in this way, the magnetic head slider has a greater chance of coming into contact with or colliding with the surface of the magnetic disk rotating at high speed. For this reason, it is necessary that the protective film formed on the air bearing surface of the magnetic head slider be thin and tough and have high abrasion resistance.

【0003】また、最近では超高密度の記録を実現する
ため、MRヘッド(磁気抵抗読みとりヘッド)が使用さ
れる様になっているが、MRヘッドは従来の誘導型ヘッ
ドと異なり、磁性材料が腐食しやすい欠点があるため、
保護膜は磁性材料の腐食を防ぐ役割を備えることも必要
になってきた。
Recently, an MR head (magneto-resistive reading head) has been used to realize ultra-high density recording. However, unlike the conventional inductive head, the MR head is made of a magnetic material. Because it has the drawback of being easily corroded,
It has also become necessary for the protective film to have a role of preventing corrosion of the magnetic material.

【0004】更に、高密度化とともに、装置自体の小型
化が要求され、そこで使用される低トルク小型モータに
対応するためにヘッドがディスク表面に対して粘着性の
小さいことも重要になってきた。このような様々な要求
に対応するため、含水素非晶質炭素からなる保護膜を採
用する提案が、例えば、特公平6−103586号公報
に記載されている。含水素非晶質炭素は、ダイヤモンド
ライクカーボンとも呼ばれており、耐磨耗性に優れ、摺
動時に塵を残さない有望な材料である。しかし、最近の
装置の小型化に伴い、粘着特性が重要になってくると、
特に立ち上がり時の摩擦が大きく、問題となってきた。
In addition to high density, miniaturization of the apparatus itself is required, and it is also important that the head has a small adhesiveness to the disk surface in order to correspond to a low torque small motor used therein. . In order to meet such various demands, a proposal of adopting a protective film made of hydrogen-containing amorphous carbon is described in, for example, Japanese Patent Publication No. 6-103586. Hydrogen-containing amorphous carbon, which is also called diamond-like carbon, is a promising material that has excellent wear resistance and does not leave dust during sliding. However, with the recent miniaturization of equipment, when the adhesive property becomes important,
In particular, friction at the time of rising is large, which has become a problem.

【0005】[0005]

【発明が解決しようとする課題】したがって、本発明の
目的は、上記従来の問題点を解決することにあり、その
結果として、良好な耐摩耗性と低粘着性とを有する信頼
性の高い薄膜磁気ヘッド及びその製造方法と、それを用
いた磁気ディスク記録再生装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned conventional problems, and as a result, a highly reliable thin film having good wear resistance and low tackiness. A magnetic head, a method for manufacturing the same, and a magnetic disk recording / reproducing apparatus using the same.

【0006】[0006]

【課題を解決するための手段】本発明の上記目的は、磁
性膜の保護膜を、炭素を含む非晶質保護膜の表面領域に
フッ素(F)原子を含有させた保護膜で構成することに
より効果的に達成することができる。炭素を含む非晶質
保護膜の代表的なものとしては、含水素非晶質炭素膜及
び含水素非晶質炭化珪素膜の少なくとも1種から成る保
護膜が挙げられる。
The above object of the present invention is to provide a protective film for a magnetic film with a protective film containing fluorine (F) atoms in the surface region of an amorphous protective film containing carbon. Can be achieved more effectively. A typical example of the amorphous protective film containing carbon is a protective film made of at least one of a hydrogen-containing amorphous carbon film and a hydrogen-containing amorphous silicon carbide film.

【0007】本発明者等は、これまで良好な耐摩耗性と
低粘着性とを備えた保護膜を実現すべく炭素を含む非晶
質保護膜について種々実験検討を行なってきた。その結
果、保護膜表面に少なくとも5原子%以上のF原子が存
在し、膜中にC−F結合を有する場合、通常用いられて
いるディスク表面の潤滑材に対し、保護膜表面での撥油
効果が生じ、浮上立ち上がり時の摩擦が大幅に小さくな
ることが判明した。
The inventors of the present invention have so far conducted various experimental studies on an amorphous protective film containing carbon in order to realize a protective film having good wear resistance and low tackiness. As a result, when at least 5 atomic% or more of F atoms are present on the surface of the protective film and the film has a C—F bond, the oil repellency on the surface of the protective film is different from that of the lubricant on the surface of the disk which is usually used. It was found that the effect was produced and the friction at the time of rising and rising was significantly reduced.

【0008】この点については、含水素非晶質炭素、含
水素非晶質炭化珪素以外の保護膜となる炭素を含む非晶
質材料一般についても言えることであって、5〜30原
子%のフッ素原子を表面領域に混入させることにより、
同様の効果が期待できる。
This point can also be said for hydrogen-containing amorphous carbon and amorphous materials generally containing carbon other than hydrogen-containing amorphous silicon carbide as a protective film. By mixing fluorine atoms in the surface area,
Similar effects can be expected.

【0009】磁気ヘッドの浮上面保護膜は、前述の様に
薄膜化が要求されており、高密度記録再生においては、
通常25nm以下の膜厚に抑えられている。また、薄膜
化の限界としては、成膜初期の膜の核形成過程を偏光解
析により評価した結果、膜が連続になるためには少なく
とも4nm以上必要であることが判明した。
The air bearing surface protection film of the magnetic head is required to be thin as described above, and in high density recording / reproduction,
Usually, the film thickness is suppressed to 25 nm or less. As a limit of thinning, as a result of evaluating the nucleation process of the film at the initial stage of film formation by ellipsometry, it was found that at least 4 nm or more is necessary for the film to be continuous.

【0010】一方、保護膜形成においてヘッドの磁性体
に直接接する成膜初期の部分にF原子を導入しようとす
ると、磁性体に対してF原子による酸化反応が進行し、
腐食の原因となる。そこで、少なくとも磁性体から3n
m以上はF原子を含まない保護膜層が必要である。結
局、保護膜全体の膜厚のバランスを考慮すると、F原子
を含む表面層の膜厚は、保護膜の全体膜厚が25nmの
最大の場合には22nm、全体膜厚が最小の4nmの場
合には1nmまで可能であり、即ち、場合に応じて1〜
22nmの範囲で選ぶことが可能である。また、F原子
導入の効果という点からも1nm未満では十分な撥油効
果が得られない。
On the other hand, in the formation of the protective film, when an F atom is introduced into a portion of the head which is in direct contact with the magnetic substance at the initial stage of film formation, an oxidation reaction by the F atom proceeds to the magnetic substance,
May cause corrosion. Therefore, at least 3n from the magnetic material
A protective film layer containing no F atom is required for m or more. After all, considering the balance of the thickness of the entire protective film, the thickness of the surface layer containing F atoms is 22 nm when the total thickness of the protective film is 25 nm, and 4 nm when the total thickness is minimum. Can be up to 1 nm, i.e.
It is possible to select in the range of 22 nm. Also, from the viewpoint of the effect of introducing F atoms, if the thickness is less than 1 nm, a sufficient oil repellency effect cannot be obtained.

【0011】次に、膜中に導入するF原子の濃度として
は、5〜30原子%の範囲が好ましい。5%未満では膜
表面の接触角測定などの膜としての評価では0%の場合
に比べて差はあるが、実際に実機試験で摩擦力を比べた
ときに効果が十分でない。
Next, the concentration of F atoms introduced into the film is preferably in the range of 5 to 30 atom%. If it is less than 5%, there is a difference from the case of 0% in the evaluation as a film such as the measurement of the contact angle of the film surface, but the effect is not sufficient when the frictional force is actually compared in the actual machine test.

【0012】一方、F原子が膜中に30%を越す場合に
は、膜を構成するマトリックスの構造が変化し、膜とし
てポーラスで柔らかいものになってしまう。また、後述
のようにF原子を導入する層は、通常成膜雰囲気の中に
水素が存在するため、膜中に取り込まれたF原子は成膜
中の水素によりHFとして引き抜かれる反応が協奏的に
起こり、膜中に30原子%以上導入することが容易では
ない。
On the other hand, when the F atom content exceeds 30% in the film, the structure of the matrix forming the film changes, and the film becomes porous and soft. Further, as will be described later, since hydrogen is usually present in the film-forming atmosphere in the layer into which F atoms are introduced, there is a concerted reaction in which F atoms taken into the film are extracted as HF by hydrogen during film formation. It is not easy to introduce 30 atom% or more into the film.

【0013】表面領域にF原子が導入された炭素を含む
非晶質保護膜を形成する方法としては、以下に説明する
ような二つの方法が挙げられる。
As a method of forming an amorphous protective film containing carbon in which F atoms are introduced in the surface region, there are two methods as described below.

【0014】第1の形成方法は、ヘッドとなる磁性体上
に、例えば、メタン、エチレン等の炭化水素ガスを炭素
源とする周知のマプラズマ励起化学蒸着法(CVD法)
により、予め含水素非晶質炭素膜(a−C:H)を保護
膜として形成する。膜厚が3nm以上の所定膜厚となっ
た時点から、この炭素源となる炭化水素ガスに、例え
ば、CF4、C26、C224等の一般式CxHyFz
(ただし、x=1もしくは2;y=0もしくは1〜5の
整数;z=1〜6の整数;y+z=2xもしくは2x+
2)で表せるフッ素含有ガス及びSF6ガスの少なくと
も1種のフッ素原料ガスを混合してフッ素を含む含水素
非晶質炭素膜(a−C:H:F)を形成する。
The first forming method is a well-known plasma-enhanced chemical vapor deposition method (CVD method) in which a hydrocarbon gas such as methane or ethylene is used as a carbon source on a magnetic body serving as a head.
Thus, the hydrogen-containing amorphous carbon film (aC: H) is previously formed as a protective film. From the time when the film thickness reaches a predetermined film thickness of 3 nm or more, the hydrocarbon gas serving as the carbon source is added to the general formula CxHyFz such as CF 4 , C 2 F 6 , C 2 H 2 F 4, etc.
(However, x = 1 or 2; y = 0 or an integer of 1 to 5; z = 1 to an integer of 6; y + z = 2x or 2x +
The hydrogen-containing amorphous carbon film (aC: H: F) containing fluorine is formed by mixing the fluorine-containing gas represented by 2) and at least one fluorine source gas of SF 6 gas.

【0015】これによって、表層部にフッ素を含む含水
素非晶質炭素膜が形成される。含水素非晶質炭素膜の表
層部のフッ素含有量は、炭化水素ガスに対するフッ素原
料ガスの混合量を調整することにより容易に所望量に制
御できる。好ましくは、ガスの混合量を段階的もしくは
連続的に変化させて表層部に行くにしたがってフッ素量
を増加させ最表面の含有量が最大となるように濃度勾配
を形成させることである。
As a result, a hydrogen-containing amorphous carbon film containing fluorine is formed on the surface layer. The fluorine content in the surface layer portion of the hydrogen-containing amorphous carbon film can be easily controlled to a desired amount by adjusting the mixing amount of the fluorine source gas with respect to the hydrocarbon gas. Preferably, the mixed amount of gas is changed stepwise or continuously to increase the amount of fluorine toward the surface layer portion and form a concentration gradient so that the content on the outermost surface is maximized.

【0016】なお、炭素源となる上記の炭化水素ガスと
共に、珪素源としてシランガスを混合すれば、含水素非
晶質炭化珪素膜(a−SiC:H)から構成される保護
膜が得られ、この膜形成の途中から上記の含水素非晶質
炭素膜の場合と同様にフッ素原料ガスを混合すれば、表
層部には含水素、含フッ素非晶質炭化珪素膜(a−Si
C:H:F)が得られる。
By mixing silane gas as a silicon source together with the above-mentioned hydrocarbon gas as a carbon source, a protective film composed of a hydrogen-containing amorphous silicon carbide film (a-SiC: H) can be obtained. If a fluorine source gas is mixed in the middle of the formation of the film as in the case of the hydrogen-containing amorphous carbon film, the hydrogen-containing and fluorine-containing amorphous silicon carbide film (a-Si) is formed on the surface layer portion.
C: H: F) is obtained.

【0017】第2の形成方法は、予め上記第1の形成方
法の前段と同様の工程でフッ素を含まない保護膜を必要
な膜厚だけ形成しておき、その後で保護膜表面をフッ素
プラズマ中に曝し、表層部にフッ素を導入する方法であ
る。
In the second forming method, a protective film containing no fluorine is formed in advance in the same step as in the first step of the first forming method to a required thickness, and then the surface of the protective film is exposed to fluorine plasma. It is a method in which fluorine is introduced into the surface layer portion by exposing it to the.

【0018】[0018]

【発明の実施の形態】以下、図面を参照して本発明を更
に具体的に説明する。図1は、本発明の薄膜磁気ヘッド
を採用した磁気ディスク記録再生装置の一例を示した一
部切り欠き要部斜視図である。本装置は、情報を記録す
る磁気ディスク(記録媒体)14と、磁気ディスク14
を回転させるモータ(図示せず)と、磁気ディスク14
に情報を書き込み又は磁気ディスク14から情報を読み
出す磁気ヘッドを搭載した磁気ヘッドスライダ15と、
磁気ヘッドスライダ15を支持し、磁気ディスク14の
目標位置に決めるアクチュエータ16及びボイスコイル
モータ17と、磁気ディスク装置内部を清浄に保つエア
フィルタ(図示せず)とをもって構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described more specifically with reference to the drawings. FIG. 1 is a partially cutaway perspective view showing an example of a magnetic disk recording / reproducing apparatus employing a thin-film magnetic head according to the present invention. This apparatus comprises a magnetic disk (recording medium) 14 for recording information, a magnetic disk 14
(Not shown) for rotating the magnetic disk 14
A magnetic head slider 15 equipped with a magnetic head for writing information to or reading information from the magnetic disk 14;
It comprises an actuator 16 and a voice coil motor 17 that support the magnetic head slider 15 and determine the target position of the magnetic disk 14 and an air filter (not shown) that keeps the inside of the magnetic disk device clean.

【0019】磁気ディスク14は、周知の以下の方法に
よって製作した。まず、アルミニウム・マグネシウム合
金円板にニッケル燐膜を鍍金法により10ミクロン形成
し、その表面を研磨した。その上にスパッタ法によりク
ロムを100ミクロン形成し、更にコバルト合金膜をス
パッタ法により50nm形成した。最後に、ディスク表
面の保護膜としてスパッタ法により非晶質炭素膜を数十
nmの厚さ形成してからその表面に膜厚6nmのパーフ
ルオロエーテル系潤滑膜を付着させた。
The magnetic disk 14 was manufactured by the following known method. First, a nickel-phosphorus film was formed on an aluminum-magnesium alloy disk by plating to a thickness of 10 μm, and the surface thereof was polished. A 100-micron chromium film was formed thereon by sputtering, and a 50 nm-thick cobalt alloy film was formed by sputtering. Finally, an amorphous carbon film having a thickness of several tens nm was formed as a protective film on the disk surface by a sputtering method, and then a perfluoroether-based lubricating film having a film thickness of 6 nm was attached to the surface.

【0020】磁気ヘッドスライダ15は、後述する実施
例で製作した薄膜磁気ヘッドを搭載した磁気ヘッドスラ
イダを用いた。この様にして構成した磁気記録再生装置
について摺動試験を行ったところ、再生出力が70%に
低下した時の総回転数は50,000回転であり、この
ときにいずれのヘッドもその表面に傷がないことを確認
し、装置として良好な結果が得られた。
As the magnetic head slider 15, a magnetic head slider equipped with a thin film magnetic head manufactured in an embodiment described later is used. When a sliding test was performed on the magnetic recording / reproducing apparatus thus configured, the total number of rotations when the reproduction output decreased to 70% was 50,000, and at this time, both heads were placed on the surface. It was confirmed that there was no flaw, and good results were obtained as an apparatus.

【0021】[0021]

【実施例】【Example】

<実施例1>本発明に係わる薄膜磁気ヘッドの一実施例
を図2に示した製造工程図にしたがって順次説明する。
<Embodiment 1> One embodiment of a thin film magnetic head according to the present invention will be sequentially described with reference to the manufacturing process chart shown in FIG.

【0022】図2(a)に断面図で示すように、材料が
アルチック(Al23TiC,酸化アルミニウム・炭化
チタン)のスライダ基板1の上に周知の方法により薄膜
磁気ヘッドの積層体を形成した。即ち、スライダ基板1
の上にスパッタ法により下部磁性膜2を形成し、その上
に二酸化珪素、ポリイミド等の絶縁材料を成膜した後、
エッチング等のパターン形成技術により絶縁層3の中に
コイル導体4が埋め込まれた構造の積層体を形成した。
これらの積層体の上に上部磁性膜5を成膜して薄膜磁気
ヘッドの積層体6を形成した。
As shown in the sectional view of FIG. 2A, a laminated body of thin film magnetic heads is formed on the slider substrate 1 made of AlTiC (Al 2 O 3 TiC, aluminum oxide / titanium carbide) by a known method. Formed. That is, the slider substrate 1
After the lower magnetic film 2 is formed on the above by a sputtering method and an insulating material such as silicon dioxide or polyimide is formed thereon,
A laminate having a structure in which the coil conductor 4 was embedded in the insulating layer 3 was formed by a pattern forming technique such as etching.
An upper magnetic film 5 was formed on these laminated bodies to form a laminated body 6 of a thin film magnetic head.

【0023】ここまでの工程では、実際には、図2(a
´)に斜視図で示すように、スライダ基板1の上に薄膜
プロセスを用いて、一括して多数の積層体6のパターン
を同時に形成した。なお、基板1の厚さ方向がスライダ
の長さ方向になる。
In the steps up to this point, as shown in FIG.
As shown in a perspective view of FIG. 2 '), a pattern of a large number of laminates 6 was simultaneously formed on the slider substrate 1 by using a thin film process. Note that the thickness direction of the substrate 1 is the length direction of the slider.

【0024】続いて図2(b)に断面図で示すように、
積層体6の上に、アルミナ、酸化珪素等の絶縁物をスパ
ッタ法により堆積して、絶縁保護膜7を形成した。次い
で、同図の一点鎖線の部分A、Bで、図2(b´)に斜
視図で示すように、基板1を矩形の短冊状に切断して数
個ごとに分離する。すなわち、絶縁保護層7が被覆され
た積層体6が一直線状に複数個配列された列ごとに切断
分離する。
Then, as shown in the sectional view of FIG.
An insulator such as alumina or silicon oxide was deposited on the laminate 6 by a sputtering method to form an insulating protective film 7. Then, as shown in the perspective view of FIG. 2 (b), the substrate 1 is cut into rectangular strips at the portions A and B indicated by alternate long and short dash lines in FIG. That is, the laminated body 6 covered with the insulating protective layer 7 is cut and separated for each row arranged in a straight line.

【0025】切断してから端面8を上にし、端面8を研
削してから研磨し、図2(c)に示すように空気支持面
9を形成した。空気支持面9は、ヘッド及びスライダの
同一平面上に形成される。この空気支持面9の上に、本
発明の保護膜10を次の方法により形成した。
After cutting, the end face 8 was turned up, and the end face 8 was ground and polished to form an air supporting surface 9 as shown in FIG. 2 (c). The air support surface 9 is formed on the same plane of the head and the slider. On this air supporting surface 9, the protective film 10 of the present invention was formed by the following method.

【0026】以下、図2(d)の断面図にしたがって保
護膜10の形成方法を説明する。空気支持面9の全面に
シリコンをターゲットとしたマグネトロンスパッタ法に
より膜厚3nmの非晶質シリコン膜を形成し、接着層2
0とした。成膜の条件は、13.56MHzの高周波電
力200W、圧力0.67Pa(パスカル)、アルゴン
流量20SCCM(Standard Cubic cm/minute)とし
た。なお、スライダ基板1に炭素を含む材料を用いる場
合には、基板上に形成される非晶質炭素系保護膜10と
の密着性に問題はなく、接着層20を省略することがで
きる。
A method of forming the protective film 10 will be described below with reference to the sectional view of FIG. An amorphous silicon film having a film thickness of 3 nm is formed on the entire surface of the air supporting surface 9 by a magnetron sputtering method using a silicon as a target.
It was set to 0. Conditions of deposition, 13.56 MHz high frequency power 200 W, pressure 0.67 Pa (Pascal), and the argon flow 20SCCM (S tandard C ubic c m / m inute). When a material containing carbon is used for the slider substrate 1, there is no problem in adhesion with the amorphous carbon-based protective film 10 formed on the substrate, and the adhesive layer 20 can be omitted.

【0027】次に、メタンガスを原料とした13.56
MHzの平行平板型高周波プラズマCVD法を用いて含
水素非晶質炭素膜21を10nm形成した。形成条件
は、基板側に高周波を印加するカソードカップリング法
を用い、高周波電力150W、メタンガス流量10SC
CM、圧力6.7Paとした。この膜の含有水素量はH
FS(Hydrogen Forward Scattering)分析により、約
36%であった。
Next, 13.56 using methane gas as a raw material
A hydrogen-containing amorphous carbon film 21 having a thickness of 10 nm was formed by using a parallel plate type high frequency plasma CVD method of MHz. The formation conditions are a cathode coupling method in which a high frequency is applied to the substrate side, a high frequency power of 150 W and a methane gas flow rate of 10 SC.
CM and pressure were 6.7 Pa. The hydrogen content of this film is H
The FS (H ydrogen F orward S cattering ) analysis, was about 36%.

【0028】次に、同プラズマCVD装置の成膜室を一
旦高真空に引き、今度はフッ素源としてCF4ガス15
SCCM、メタンガス10SCCMを混合して流し、圧
力10.0Pa、高周波電力250Wで含水素含フッ素
非晶質炭素膜22を5nm形成した。この時と同じ条件
で、別途シリコン基板上に作製した含水素含フッ素非晶
質炭素膜をFT−IR法により膜中のC−F結合を測定
し、F原子の濃度に換算したところ、約8.8%であっ
た。こうして厚さ10nmのフッ素を含まない保護膜2
1の上に、厚さ5nmのフッ素を含む保護膜22を積層
し、全膜厚15nmの積層保護膜10を形成した。
Next, the film forming chamber of the plasma CVD apparatus was once evacuated to a high vacuum, and this time, CF 4 gas 15 was used as a fluorine source.
SCCM and 10 SCCM of methane gas were mixed and flowed, and a hydrogen-containing fluorine-containing amorphous carbon film 22 having a thickness of 5 nm was formed at a pressure of 10.0 Pa and a high frequency power of 250 W. Under the same conditions as this time, a C—F bond in the hydrogen-containing fluorine-containing amorphous carbon film separately prepared on the silicon substrate was measured by the FT-IR method and converted into the F atom concentration. It was 8.8%. Thus, the protective film 2 having a thickness of 10 nm and containing no fluorine
A protective film 22 containing fluorine having a thickness of 5 nm was laminated on the layer No. 1 to form a laminated protective film 10 having a total film thickness of 15 nm.

【0029】このフッ素が導入された保護膜22の接触
角を測定したところ、純水に対して、120度であっ
た。これはフッ素を含まない含水素非晶質炭素膜が同条
件下で接触角70度であったのに比べ、かなり大きくな
っていることがわかる。
When the contact angle of the protective film 22 into which this fluorine was introduced was measured, it was 120 degrees with respect to pure water. This is considerably larger than the hydrogen-containing amorphous carbon film containing no fluorine, which had a contact angle of 70 degrees under the same conditions.

【0030】以上のようにして図2(d)に示すよう
に、空気支持面に保護膜10を有する薄膜磁気ヘッド2
3を搭載したスライダブロックを製作した。
As described above, as shown in FIG. 2D, the thin film magnetic head 2 having the protective film 10 on the air supporting surface.
A slider block equipped with 3 was manufactured.

【0031】図3は、磁気ヘッドスライダの加工工程図
を示したもので、図3(a)は薄膜磁気ヘッド23を搭
載した磁気ヘッドスライダブロックから1個分のスライ
ダを切り出した磁気ヘッドスライダ全体の外観を示して
いる。保護膜10を形成した後、磁気ヘッドスライダに
次の方法によりレール加工を行った。
FIG. 3 is a process drawing of the magnetic head slider. FIG. 3A shows the entire magnetic head slider obtained by cutting out one slider from the magnetic head slider block on which the thin film magnetic head 23 is mounted. Shows the appearance of. After forming the protective film 10, the magnetic head slider was subjected to rail processing by the following method.

【0032】レールは、ヘッドスライダを高速回転する
磁気ディスク上に所望の量(100nm前後)だけ浮上
させるように空気の流れを制御する働きをするものであ
る。レールは浮上量が極端に小さくなった場合(50n
m以下)、コンタクトレコーディング用の突起形状のパ
ッドになる場合もある。いずれの形状の場合でも、加工
方法は同じである。
The rail functions to control the flow of air so that the head slider is levitated on the magnetic disk rotating at a high speed by a desired amount (around 100 nm). If the flying height of the rail becomes extremely small (50n
m or less), the pad may be a projection-shaped pad for contact recording. Regardless of the shape, the processing method is the same.

【0033】まず、図3(b)に示すように、エッチン
グのマスクとなるポジ型の有機レジストをロールコート
印刷法により保護膜10の上に印刷した。これを通常の
フォトリソグラフィ法により露光して現像し、レールパ
ターンのマスク11を形成した。
First, as shown in FIG. 3B, a positive type organic resist that serves as an etching mask was printed on the protective film 10 by a roll coat printing method. This was exposed and developed by a normal photolithography method to form a rail pattern mask 11.

【0034】図3(c)に示すように、このマスク11
を使ってアルゴンガスを用いたイオンミリング法によ
り、レールパターン以外の部分の物質を所定の深さまで
除去してレールの形状の残留マスク12を形成した。
As shown in FIG. 3C, this mask 11
By using an ion milling method using an argon gas, a material other than the rail pattern was removed to a predetermined depth to form a rail-shaped residual mask 12.

【0035】図3(d)に示すように、残留したマスク
12を除去して保護膜10を有するレール13を形成
し、磁気ヘッドスライダを完成させた。
As shown in FIG. 3D, the residual mask 12 was removed to form a rail 13 having a protective film 10 to complete a magnetic head slider.

【0036】このようにして製作した薄膜磁気ヘッドの
特性を次の方法により評価した。まず、ヘッドをジンバ
ルバネに取り付けた状態で標準の潤滑油を付けたディス
クの上を回転させ、回転開始時の摩擦力を測定した。そ
の結果、1.8gf/HGA(ヘッドジンバルアッセン
ブリ)という良好な低粘着特性を得た。
The characteristics of the thin film magnetic head thus manufactured were evaluated by the following methods. First, with the head attached to a gimbal spring, the head was rotated over a disk with standard lubricating oil, and the frictional force at the start of rotation was measured. As a result, a good low tack property of 1.8 gf / HGA (head gimbal assembly) was obtained.

【0037】また、耐磨耗性については回転ディスクを
用い、減速低浮上試験に加え、CSS(Constant Start
Stop)摩耗試験を行った。減速低浮上試験では、ディ
スクの接線方向速度5m/s、浮上量20nm、200
0rpmの条件で500時間後も問題はなく、浮上量4
0nmでのCSS磨耗試験では、50000回転後も損
傷は見られず、良好な耐磨耗性が得られた。
Further, using a rotating disk for wear resistance, in addition to the deceleration low flying test, CSS (C onstant S tart
S top) A wear test was conducted. In the deceleration low flying test, the tangential velocity of the disk was 5 m / s, the flying height was 20 nm, and the
There is no problem even after 500 hours under the condition of 0 rpm, and the flying height is 4
In the CSS wear test at 0 nm, no damage was observed even after 50,000 rotations, and good wear resistance was obtained.

【0038】なお、この保護膜22の構成例の外にフッ
素含有量を変えて種々の組成の含水素含フッ素非晶質炭
素膜22を作製し、同時に下地となった含水素非晶質炭
素膜21の水素含量も変えた場合について調べた。それ
らの結果を表1に示した。
In addition to the constitutional example of the protective film 22, hydrogen-containing fluorine-containing amorphous carbon film 22 having various compositions was prepared by changing the fluorine content, and at the same time, the hydrogen-containing amorphous carbon as the base was formed. The case where the hydrogen content of the membrane 21 was also changed was investigated. The results are shown in Table 1.

【0039】表中の試料No.1は本実施例を、試料N
o.2〜4はその他の実施例を、そして試料No.5〜
6は比較例を、それぞれ示している。また、表中の上段
は、保護膜10の下地となるフッ素を含まない保護膜2
1を、下段は保護膜21の上に形成したフッ素を含む保
護膜22を、それぞれ示している。また、膜構成欄中の
a−C:Hは含水素非晶質炭素膜を、a−C:H:Fは
フッ素を含む含水素非晶質炭素膜を、数値はそれぞれの
膜厚を示している。
Sample No. in the table. 1 is the present embodiment, sample N
o. 2 to 4 are other examples, and sample No. 5-
6 shows comparative examples, respectively. Further, the upper part of the table shows the protective film 2 that does not contain fluorine as the base of the protective film 10.
1 and the lower part shows the protective film 22 containing fluorine formed on the protective film 21. In the column of film constitution, a-C: H is a hydrogen-containing amorphous carbon film, a-C: H: F is a hydrogen-containing amorphous carbon film containing fluorine, and the numerical values indicate respective film thicknesses. ing.

【0040】[0040]

【表1】 [Table 1]

【0041】<実施例2>この実施例は、保護膜10を
構成する基礎材質を実施例1の含水素非晶質炭素膜の代
わりに、含水素非晶質炭化珪素膜としたものである。以
下、実施例1と同様の方法で図2(c)に示す空気支持
面9を形成した後、以下の方法で本発明の保護膜10を
形成した。
<Embodiment 2> In this embodiment, the hydrogen-containing amorphous silicon carbide film is used as the basic material for the protective film 10 instead of the hydrogen-containing amorphous carbon film of Embodiment 1. . Hereinafter, after forming the air supporting surface 9 shown in FIG. 2C by the same method as in Example 1, the protective film 10 of the present invention was formed by the following method.

【0042】接着層20は形成せず、メタンガスとシラ
ンガスの混合ガスを原料とした13.56MHzの平行
平板型高周波プラズマCVD法を用いて、下地層として
含水素非晶質炭化珪素膜21を10nm形成した。形成
条件は、対向電極側に高周波を印加するアノードカップ
リング法を用い、高周波電力150W、メタンガス流量
10SCCM、シランガス流量5SCCM、圧力10.
0Paとした。この膜の含有水素量はHFS分析によ
り、約45%であった。
The adhesive layer 20 was not formed, and a hydrogen-containing amorphous silicon carbide film 21 was formed to a thickness of 10 nm as a base layer by using a parallel plate type high frequency plasma CVD method of 13.56 MHz using a mixed gas of methane gas and silane gas as a raw material. Formed. The forming conditions are an anode coupling method in which a high frequency is applied to the counter electrode side, a high frequency power of 150 W, a methane gas flow rate of 10 SCCM, a silane gas flow rate of 5 SCCM, and a pressure of 10.
It was set to 0 Pa. The hydrogen content of this film was about 45% by HFS analysis.

【0043】次に、同プラズマCVD装置の成膜室を一
旦高真空に引き、今度はフッ素源ガスとしてCF4ガス
15SCCM、C224ガス10SCCMを混合して
流し、圧力10.0Pa、高周波電力250Wで含水素
含フッ素非晶質炭化珪素膜22を5nm形成した。この
ときと同じ条件でシリコン基板上に作製した膜をFT−
IR法により膜中のC−F結合を測定し、F原子の濃度
に換算したところ、約12.5%であった。
Next, the film forming chamber of the plasma CVD apparatus was once evacuated to a high vacuum, and 15 SCCM of CF 4 gas and 10 SCCM of C 2 H 2 F 4 gas were mixed and made to flow as a fluorine source gas at a pressure of 10.0 Pa. A hydrogen-containing fluorine-containing amorphous silicon carbide film 22 having a thickness of 5 nm was formed at a high-frequency power of 250 W. The film formed on the silicon substrate under the same conditions as this time was FT-
When the C—F bond in the film was measured by the IR method and converted into the concentration of F atoms, it was about 12.5%.

【0044】この膜の接触角を測定したところ、純水に
対して、130度であった。これはフッ素を含まない含
水素非晶質炭化珪素膜が同条件下で接触角70度であっ
たのに比べ、かなり大きくなっていることがわかる。
When the contact angle of this film was measured, it was 130 ° with respect to pure water. It can be seen that this is considerably larger than the hydrogen-containing amorphous silicon carbide film containing no fluorine, which had a contact angle of 70 degrees under the same conditions.

【0045】以上のようにして図2(d)に示すよう
に、空気支持面に保護膜10を有する薄膜磁気ヘッドス
ライダ23が搭載されたスライダブロックを製作した。
次いで、図3(a)に示したように、磁気ヘッドスライ
ダブロックから1個分のスライダを切り出し、実施例1
と同様の方法でレール加工を行ない、図3(d)に示し
たように磁気ヘッドスライダを完成させた。
As described above, as shown in FIG. 2D, a slider block in which the thin film magnetic head slider 23 having the protective film 10 on the air supporting surface was mounted was manufactured.
Next, as shown in FIG. 3A, one slider is cut out from the magnetic head slider block, and the first embodiment is carried out.
Rail processing was performed in the same manner as in (1) to complete a magnetic head slider as shown in FIG.

【0046】製作した薄膜磁気ヘッドの特性を以下の方
法で評価した。まず、ヘッドをジンバルバネに取り付け
た状態で標準の潤滑油を付けたディスクの上を回転さ
せ、回転開始時の摩擦力を測定した。その結果、1.6
gf/HGA(ヘッドジンバルアッセンブリ)という良
好な低粘着特性を得た。
The characteristics of the manufactured thin film magnetic head were evaluated by the following methods. First, with the head attached to a gimbal spring, the head was rotated over a disk with standard lubricating oil, and the frictional force at the start of rotation was measured. As a result, 1.6
Good low tack properties of gf / HGA (head gimbal assembly) were obtained.

【0047】また、耐磨耗性については回転ディスクを
用い、減速低浮上試験に加え、CSS摩耗試験を行っ
た。減速低浮上試験では、ディスクの接線方向速度5m
/s、浮上量20nm、2000rpmの条件で500
時間後も問題はなく、浮上量40nmでのCSS磨耗試
験では、50,000回転後も損傷は見られず、良好な
耐磨耗性が得られた。
For abrasion resistance, a rotating disk was used, and a CSS abrasion test was conducted in addition to the deceleration low flying test. In the deceleration low flying test, the tangential velocity of the disk is 5m.
/ S, flying height 20 nm, 500 at 2000 rpm
There was no problem even after a lapse of time, and in the CSS wear test at a flying height of 40 nm, no damage was observed even after 50,000 rotations, and good wear resistance was obtained.

【0048】なお、実施例1の場合と同様に、この保護
膜22の構成例の外にフッ素含有量を変えて種々の組成
の含水素含フッ素非晶質炭化珪素膜22を作製し、同時
に下地となった含水素非晶質炭化珪素膜21の水素含量
も変えた場合について調べた。それらの結果を表2に示
した。
As in the case of Example 1, hydrogen-containing fluorine-containing amorphous silicon carbide films 22 of various compositions were prepared by changing the fluorine content in addition to the constitutional example of the protective film 22, and at the same time. The case was investigated where the hydrogen content of the underlying hydrogen-containing amorphous silicon carbide film 21 was also changed. The results are shown in Table 2.

【0049】なお、表中の試料No.1は本実施例を、
試料No.2〜4はその他の実施例を、そして試料N
o.5〜6は比較例を、それぞれ示している。また、表
中の上段は、保護膜10の下地となるフッ素を含まない
保護膜21を、下段は保護膜21の上に形成したフッ素
を含む保護膜22を、それぞれ示している。また、膜構
成欄中のa−SiC:Hは含水素非晶質炭化珪素膜を、
a−SiC:H:Fはフッ素を含む含水素非晶質炭化珪
素膜を、数値はそれぞれの膜厚を示している。
Sample No. in the table is 1 is the present embodiment,
Sample No. 2 to 4 are other examples, and sample N
o. 5-6 has shown the comparative example, respectively. Further, the upper part of the table shows the protective film 21 containing no fluorine, which is a base of the protective film 10, and the lower part shows the protective film 22 containing fluorine, which is formed on the protective film 21. In addition, a-SiC: H in the film structure column is a hydrogen-containing amorphous silicon carbide film,
a-SiC: H: F is a hydrogen-containing amorphous silicon carbide film containing fluorine, and the numerical values indicate respective film thicknesses.

【0050】[0050]

【表2】 [Table 2]

【0051】〈実施例3〉実施例1及び2と同様にフッ
素を含まない保護膜21を形成した後、表層部の保護膜
22としてフッ素含有量を膜厚と共に増加させ、フッ素
量に濃度勾配をもたせた含水素含フッ素非晶質炭素膜も
しくは含水素含フッ素非晶質炭化珪素膜22を作製し
た。この場合の製造方法は、保護膜22の形成工程にお
いて、フッ素源ガスの混合量を膜厚が増加するにつれて
多くするだけで、基本的には実施例1、2と同様の製造
工程で成膜することができた。
<Example 3> After the protective film 21 containing no fluorine was formed in the same manner as in Examples 1 and 2, the fluorine content as the protective film 22 in the surface layer portion was increased with the film thickness, and the concentration gradient to the amount of fluorine was obtained. A hydrogen-containing fluorine-containing amorphous carbon film or a hydrogen-containing fluorine-containing amorphous silicon carbide film 22 was prepared. The manufacturing method in this case is basically the same manufacturing process as in Examples 1 and 2 in that the mixing amount of the fluorine source gas is increased as the film thickness increases in the process of forming the protective film 22. We were able to.

【0052】[0052]

【発明の効果】以上詳述したように本発明により、所期
の目的を達成することができた。すなわち、保護膜の表
面領域を含フッ素膜で構成したため、良好な耐磨耗性と
潤滑性、低粘着性を有する優れた薄膜磁気ヘッドを実現
することが可能となった。この様な薄膜磁気ヘッドを採
用することにより、低トルクモータ対応の小型で、信頼
性の高い、高密度記録の磁気記録再生装置を実現するこ
とができた。
As described above in detail, according to the present invention, the intended purpose can be achieved. That is, since the surface region of the protective film is composed of the fluorine-containing film, it is possible to realize an excellent thin film magnetic head having good wear resistance, lubricity and low tackiness. By adopting such a thin-film magnetic head, it was possible to realize a compact, highly reliable, high-density magnetic recording / reproducing apparatus compatible with a low torque motor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる磁気ディスク記録再生装置の一
実施例を説明するための一部切欠き断面斜視図。
FIG. 1 is a partially cutaway perspective view for explaining an embodiment of a magnetic disk recording / reproducing apparatus according to the present invention.

【図2】本発明に係わる薄膜磁気ヘッドの一実施例を示
す製作工程図。
FIG. 2 is a manufacturing process diagram showing an embodiment of a thin film magnetic head according to the present invention.

【図3】図2の薄膜磁気ヘッドを搭載した磁気ヘッドス
ライダにレールを形成する工程図。
FIG. 3 is a process chart for forming rails on a magnetic head slider on which the thin film magnetic head of FIG. 2 is mounted.

【符号の説明】[Explanation of symbols]

1…スライダ基板、 2…下部磁性層、 3…絶縁層、 4…コイル導体、 5…上部磁性層、 6…薄膜磁気ヘッドの積層体、 7…絶縁保護膜、 8…端面、 9…空気支持面、 10…保護膜、 11…レールパターンのマスク、 12…残留したマスク、 13…レール、 14…磁気ディスク、 15…磁気ヘッドスライダ、 16…アクチュエータ、 17…ボイスコイルモータ、 20…接着層、 21…含水素非晶質炭素膜または含水素非晶質炭化珪素
膜、 22…含水素含フッ素非晶質炭素膜または含水素含フッ
素非晶質炭化珪素膜、 23…薄膜磁気ヘッド。
DESCRIPTION OF SYMBOLS 1 ... Slider substrate, 2 ... Lower magnetic layer, 3 ... Insulating layer, 4 ... Coil conductor, 5 ... Upper magnetic layer, 6 ... Laminated body of thin film magnetic head, 7 ... Insulating protective film, 8 ... End surface, 9 ... Air support Surface, 10 ... Protective film, 11 ... Rail pattern mask, 12 ... Remaining mask, 13 ... Rail, 14 ... Magnetic disk, 15 ... Magnetic head slider, 16 ... Actuator, 17 ... Voice coil motor, 20 ... Adhesive layer, 21 ... Hydrogen-containing amorphous carbon film or hydrogen-containing amorphous silicon carbide film, 22 ... Hydrogen-containing fluorine-containing amorphous carbon film or hydrogen-containing fluorine-containing amorphous silicon carbide film, 23 ... Thin-film magnetic head.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】磁気ヘッドスライダの磁気ディスク対向面
に、炭素を含む非晶質保護膜を形成してなる磁気ヘッド
であって、非晶質保護膜の表面領域に、フッ素原子を5
〜30原子%含有させて成る薄膜磁気ヘッド。
1. A magnetic head in which an amorphous protective film containing carbon is formed on a surface of a magnetic head slider facing a magnetic disk, and fluorine atoms are added to a surface region of the amorphous protective film.
A thin film magnetic head containing about 30 atomic%.
【請求項2】炭素を含む非晶質保護膜が、含水素非晶質
炭素及び含水素非晶質炭化珪素の少なくとも1種からな
り、保護膜中の水素含有量が5〜50原子%から成る請
求項1記載の薄膜磁気ヘッド。
2. The amorphous protective film containing carbon comprises at least one of hydrogen-containing amorphous carbon and hydrogen-containing amorphous silicon carbide, and the hydrogen content in the protective film is from 5 to 50 atomic%. The thin film magnetic head according to claim 1, wherein
【請求項3】フッ素原子を含む保護膜表面領域の膜厚が
少なくとも1nmであり、かつ、保護膜全体の膜厚が少
なくとも4nmで構成されて成る請求項1に記載の薄膜
磁気ヘッド。
3. The thin film magnetic head according to claim 1, wherein the film thickness of the surface region of the protective film containing fluorine atoms is at least 1 nm, and the film thickness of the entire protective film is at least 4 nm.
【請求項4】保護膜全体の膜厚が4〜25nmの炭素を
含む非晶質保護膜からなり、その表面領域の1〜22n
mにフッ素原子を含有させ、スライダに形成された磁性
体上の少なくとも3nmの領域にはフッ素を含有させな
い炭素を含む非晶質保護膜で構成して成る請求項1記載
の薄膜磁気ヘッド。
4. An amorphous protective film containing carbon having a total film thickness of 4 to 25 nm and having a surface region of 1 to 22 n.
2. The thin film magnetic head according to claim 1, wherein m contains a fluorine atom, and an amorphous protective film containing carbon containing no fluorine is formed in a region of at least 3 nm on the magnetic body formed on the slider.
【請求項5】保護膜上に空気流制御用レールもしくはコ
ンタクトレコーディング用突起形状のパッド部分を配設
して成る請求項1乃至4のいずれか一に記載の薄膜磁気
ヘッド。
5. The thin film magnetic head according to claim 1, wherein an air flow control rail or a contact recording protrusion pad portion is provided on the protective film.
【請求項6】磁気ヘッドスライダの磁気ディスク対向面
に、炭素を含む非晶質保護膜を形成する薄膜磁気ヘッド
の製造方法であって、炭化水素ガスを炭素源とするプラ
ズマ励起化学蒸着法により、予め含水素非晶質炭素膜
(a−C:H)を保護膜として形成する工程と、膜厚が
3nm以上の所定膜厚となった時点から、この炭素源と
なる炭化水素ガスに、フッ素原料ガスを混合して表面領
域にフッ素を含む含水素非晶質炭素膜(a−C:H:
F)を形成する工程とを有して成る薄膜磁気ヘッドの製
造方法。
6. A method of manufacturing a thin film magnetic head, wherein an amorphous protective film containing carbon is formed on a surface of a magnetic head slider facing a magnetic disk by a plasma enhanced chemical vapor deposition method using a hydrocarbon gas as a carbon source. From the step of previously forming a hydrogen-containing amorphous carbon film (a-C: H) as a protective film, and from the time when the film thickness reaches a predetermined film thickness of 3 nm or more, to the hydrocarbon gas serving as the carbon source, A hydrogen-containing amorphous carbon film (aC: H :) containing fluorine in the surface region by mixing a fluorine source gas.
F) forming the thin film magnetic head.
【請求項7】磁気ヘッドスライダの磁気ディスク対向面
に、炭素を含む非晶質保護膜を形成する薄膜磁気ヘッド
の製造方法であって、炭化水素ガスを炭素源とし、シラ
ンガスを珪素源とするプラズマ励起化学蒸着法により、
予め含水素非晶質炭化珪素膜(a−SiC:H)を保護
膜として形成する工程と、膜厚が3nm以上の所定膜厚
となった時点から、さらに、フッ素原料ガスを混合して
表面領域にフッ素を含む含水素非晶質炭化珪素膜(a−
SiC:H:F)を形成する工程とを有して成る薄膜磁
気ヘッドの製造方法。
7. A method of manufacturing a thin film magnetic head, wherein an amorphous protective film containing carbon is formed on a surface of a magnetic head slider facing a magnetic disk, wherein a hydrocarbon gas is used as a carbon source and a silane gas is used as a silicon source. By plasma enhanced chemical vapor deposition,
From the step of forming a hydrogen-containing amorphous silicon carbide film (a-SiC: H) as a protective film in advance, and from the time when the film thickness reaches a predetermined film thickness of 3 nm or more, fluorine raw material gas is further mixed to the surface. Hydrogen-containing amorphous silicon carbide film containing fluorine in the region (a-
And a step of forming SiC: H: F).
【請求項8】フッ素原料ガスを、一般式CxHyFz
(ただし、x=1もしくは2;y=0もしくは1〜5の
整数;z=1〜6の整数;y+z=2xもしくは2x+
2)で表せるフッ素含有ガス及びSF6ガスの少なくと
も1種として成る請求項6もしくは7記載の薄膜磁気ヘ
ッドの製造方法。
8. A fluorine source gas is represented by the general formula CxHyFz.
(However, x = 1 or 2; y = 0 or an integer of 1 to 5; z = 1 to an integer of 6; y + z = 2x or 2x +
8. The method of manufacturing a thin-film magnetic head according to claim 6 or 7, comprising at least one of a fluorine-containing gas and SF 6 gas represented by 2).
【請求項9】フッ素原料ガスを混合して表面領域にフッ
素を含む含水素非晶質炭素膜(a−C:H:F)、もし
くはフッ素を含む含水素非晶質炭化珪素膜(a−Si
C:H:F)を形成する工程において、フッ素原料ガス
の混合量を段階的もしくは連続的に変化させて表層部に
行くにしたがってフッ素量を増加させ最表面の含有量が
最大となるように濃度勾配を形成させる工程として成る
請求項6もしくは7記載の薄膜磁気ヘッドの製造方法。
9. A hydrogen-containing amorphous carbon film (a-C: H: F) containing fluorine in the surface region by mixing a fluorine source gas or a hydrogen-containing amorphous silicon carbide film (a-) containing fluorine. Si
In the step of forming C: H: F), the amount of fluorine source gas is changed stepwise or continuously to increase the amount of fluorine toward the surface layer so that the content of the outermost surface becomes maximum. 8. The method of manufacturing a thin film magnetic head according to claim 6, which is a step of forming a concentration gradient.
【請求項10】請求項1乃至5のいずれか一に記載の薄
膜磁気ヘッドを用いて構成して成る磁気ディスク記録再
生装置。
10. A magnetic disk recording / reproducing apparatus constituted by using the thin film magnetic head according to claim 1. Description:
JP32262995A 1995-12-12 1995-12-12 Thin-film magnetic head and magnetic disk recording and reproducing device Pending JPH09161223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32262995A JPH09161223A (en) 1995-12-12 1995-12-12 Thin-film magnetic head and magnetic disk recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32262995A JPH09161223A (en) 1995-12-12 1995-12-12 Thin-film magnetic head and magnetic disk recording and reproducing device

Publications (1)

Publication Number Publication Date
JPH09161223A true JPH09161223A (en) 1997-06-20

Family

ID=18145852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32262995A Pending JPH09161223A (en) 1995-12-12 1995-12-12 Thin-film magnetic head and magnetic disk recording and reproducing device

Country Status (1)

Country Link
JP (1) JPH09161223A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004075177A1 (en) * 2003-02-19 2004-09-02 Fujitsu Limited Magnetic head slider
KR100750229B1 (en) * 2005-06-08 2007-08-20 후지쯔 가부시끼가이샤 Magnetic head slider
CN100354934C (en) * 2003-02-19 2007-12-12 富士通株式会社 Magnetic head slider

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004075177A1 (en) * 2003-02-19 2004-09-02 Fujitsu Limited Magnetic head slider
US7154710B2 (en) 2003-02-19 2006-12-26 Fujitsu Limited Magnetic head slider
CN100354934C (en) * 2003-02-19 2007-12-12 富士通株式会社 Magnetic head slider
KR100750229B1 (en) * 2005-06-08 2007-08-20 후지쯔 가부시끼가이샤 Magnetic head slider

Similar Documents

Publication Publication Date Title
US6728069B2 (en) Magnetic head slider having protrusions with high abrasion resistance provided on the medium-facing surface and manufacturing method therefor
US7682711B2 (en) Magnetic recording medium, magnetic recording and reproducing apparatus, and manufacturing method of magnetic recording medium
US8252437B2 (en) Planarized magnetic recording disk with pre-patterned surface features and secure adhesion of planarizing fill material and method for planarizing the disk
JPH10228640A (en) Hydrocarbon thin film
US20060083952A1 (en) Magnetic recording medium with diamond-like carbon protective film, and manufacturing method thereof
KR100216324B1 (en) Thin-film magnetic disk and manufacture thereof magnetic recording metal disk drive magnetic recording texturing starting and stopping metal disk drive
JP2006236474A (en) Magnetic recording medium and magnetic recording/reproducing device
US5562982A (en) Magnetic recording medium
JP4718797B2 (en) Magnetic recording medium and magnetic recording apparatus
US6477011B1 (en) Magnetic recording device having an improved slider
JPH09161223A (en) Thin-film magnetic head and magnetic disk recording and reproducing device
JPH07161034A (en) Magnetic recording medium
US8419951B2 (en) Method of manufacturing magnetic recording medium, and magnetic recording/reproducing device
JPH09128708A (en) Thin-film magnetic head and magnetic disk recording and reproducing device
JP3657196B2 (en) Magnetic recording medium and magnetic disk device
JP3585917B2 (en) Thin-film magnetic head, method of manufacturing the same, and magnetic disk drive using the same
US7283326B2 (en) Methods for producing a protective film on recording media
JPH08171708A (en) Thin-film magnetic head and magnetic disk recording and reproducing device
JP3310778B2 (en) Thin film magnetic head and method of manufacturing the same
KR100244059B1 (en) Magnetic recording medium and method for producing the same
JP3539225B2 (en) Magnetic head and magnetic disk drive
JP3046846B2 (en) Magnetic recording media
JPH10326406A (en) Magnetic head slider and its production
JPH0855333A (en) Protective film for magnetic disk device and its production
JP2002117514A (en) Thin film magnetic head and magnetic disk recording and reproducing device