JPS62149883A - Chemical vapor deposition device - Google Patents

Chemical vapor deposition device

Info

Publication number
JPS62149883A
JPS62149883A JP24856786A JP24856786A JPS62149883A JP S62149883 A JPS62149883 A JP S62149883A JP 24856786 A JP24856786 A JP 24856786A JP 24856786 A JP24856786 A JP 24856786A JP S62149883 A JPS62149883 A JP S62149883A
Authority
JP
Japan
Prior art keywords
raw material
base material
chemical vapor
material gas
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24856786A
Other languages
Japanese (ja)
Other versions
JPS6249350B2 (en
Inventor
Michihiro Umemori
梅森 道弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP24856786A priority Critical patent/JPS62149883A/en
Publication of JPS62149883A publication Critical patent/JPS62149883A/en
Publication of JPS6249350B2 publication Critical patent/JPS6249350B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a stable vapor deposited film having uniform quality over the entire surface of a substrate by constituting the titled device in such a manner that the gaseous raw material introduced into a reaction chamber does not collide against the gaseous raw material making natural convection in the reaction chamber. CONSTITUTION:A gaseous raw material supply member is constituted of a gaseous raw material ejection pipe 22 having a Venturi shape, a jacket 23 on the outside thereof and a joint pipe 24. A tray-shaped flow regulating plate 18 is mounted around the substrate 9. The tray-shaped flow regulating plate 18 consists of a horizontal part 18b in proximity to the periphery of the substrate 9 and a peripheral edge part 18a curving upward. The gaseous raw material 12 is supplied via a nozzle holder 21 to the pipe 22.

Description

【発明の詳細な説明】 本発明は例えば基材の被膜形成処理などに用いられる化
学気相蒸着装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a chemical vapor deposition apparatus used, for example, for forming a film on a substrate.

一般に黒鉛や金属などの表面に化学蒸着法により炭化ケ
イ素、窒化ケイ素などの被膜を形成する場合などには第
1図の断面図に示すような化学気相蒸着装置が使用され
ている。すなわち該化学気相蒸着装置は円板形のステン
レスff、”zどのチャンバーペース1の上に外筒4a
、内筒4bおよび天井部4cからなる石英2Mのワーク
コイルカバー4が設置され該ワークコイルカバー4内に
高周波誘導加熱用の銅製のワークコイル5が収納される
。該ワークコイル5は内Hj 4 bの内側周囲を円形
の渦巻状に同一水平面上で巻かれた形状を有し両端部5
aおよび5bはチャンバーペース1に設けられた孔部1
a、Ibを通り加熱源である高周波発振器(図示せず)
に接続され加熱手段を構成している。
Generally, when forming a film of silicon carbide, silicon nitride, etc. on the surface of graphite, metal, etc. by chemical vapor deposition, a chemical vapor deposition apparatus as shown in the cross-sectional view of FIG. 1 is used. That is, the chemical vapor deposition apparatus has an outer cylinder 4a on top of a disk-shaped stainless steel chamber pace 1.
A quartz 2M work coil cover 4 consisting of an inner cylinder 4b and a ceiling portion 4c is installed, and a copper work coil 5 for high frequency induction heating is housed within the work coil cover 4. The work coil 5 has a shape in which it is wound around the inner circumference of the inner Hj 4 b in a circular spiral shape on the same horizontal plane, and both ends 5
a and 5b are hole portions 1 provided in chamber space 1;
A high frequency oscillator (not shown) which is a heating source passes through a and Ib.
is connected to the heating means.

次に原料ガス供給部材の構造を説明する。7はチャンバ
ーペース1の中央孔部1cと内筒4b中に挿入された下
部基材ホルダーでこの上につば部8aを設けた上部基材
ホルダー8が接続され、上記つば部8a上に中央に孔を
有する板状の基材9が水平に載せられている。なお図示
はしないが下部8ホルダー7はモータに接続され30 
rpm以下に低速回転し、これにともない上部基材ホル
ダー8.基材9が水平に回転する。下部基材ホルダー7
と上部基材ホルダー8の内部における軸方向の孔部にノ
ズルホルダー10が挿入され、この上にノズル11が隙
間ばめで接合されている。ノズル11は上端封止部11
aおよび水平方向放射状に多数の噴出口11bが設けら
れている。
Next, the structure of the raw material gas supply member will be explained. Reference numeral 7 denotes a lower base material holder inserted into the central hole 1c and the inner cylinder 4b of the chamber pace 1, and an upper base material holder 8 having a collar 8a is connected thereto. A plate-shaped base material 9 having holes is placed horizontally. Although not shown, the lower part 8 holder 7 is connected to the motor 30.
The upper substrate holder 8. rotates at a low speed below rpm. The base material 9 rotates horizontally. Lower base material holder 7
A nozzle holder 10 is inserted into an axial hole inside the upper substrate holder 8, and a nozzle 11 is joined thereon with a clearance fit. The nozzle 11 has an upper end sealing part 11
a and a large number of jet ports 11b are provided radially in the horizontal direction.

なお、上記下部基材ホルダー7は電気絶縁性ならびに断
熱性をもつ石英、セラミックなど、上部基材ホルダー8
は1000〜1600℃の耐熱性を有する黒鉛、アルミ
ナ、  SiCなど、またノズルホルダー】0は石英、
ノズル11は黒鉛、アルミナ、 SiCなどが用いられ
る。
Note that the lower base material holder 7 is made of quartz, ceramic, or the like having electrical insulation and heat insulation properties.
0 is graphite, alumina, SiC, etc. that have heat resistance of 1000 to 1600℃, and nozzle holder]0 is quartz,
The nozzle 11 is made of graphite, alumina, SiC, or the like.

さらに反応室として2はステンレスまたは石英製のドー
ム状のチャンバーで該チャンバー2の外側はステンレス
茫たは石英製の水冷ジャケット3で辿れる。チー・ンバ
ー2の下端部はナヤンバーペース1の外周側に設けられ
たリング状の突起部1dシてOリング6を介し接触しガ
スシールされる。
Furthermore, the reaction chamber 2 is a dome-shaped chamber made of stainless steel or quartz, and the outside of the chamber 2 is covered with a water cooling jacket 3 made of stainless steel or quartz. The lower end of the chamber 2 comes into contact with a ring-shaped protrusion 1d provided on the outer circumferential side of the Nayanbar pace 1 via an O-ring 6 and is gas-sealed.

尚チャンバー2は冷却水人口3aから出口3bに向って
流れる冷却水15によって冷却される。
The chamber 2 is cooled by the cooling water 15 flowing from the cooling water port 3a toward the outlet 3b.

化学蒸着法とは高温での気相化学反応例えば揮発性の金
属の・・ロゲン化物や有機化合物、炭化水素化合物など
の熱分解、水素還元、置換反応などによって金へ、黒鉛
などの基材の表面に高融点金属、炭化物、硼化物、珪化
物、窒化物などの蒸着〜を形成する方法であり、上記蒸
着層は加熱された基材表面に原料ガスが接触し核を生成
し、これが結晶に成長することにより形成される。した
がって上記結晶の成長速度は物質が気相から基材表面に
到達する速度すなわち気相中の物質の移動速度と物質が
結晶構造に組上げられる速度すなわち表面反応速度によ
り支配される。そして気相中の物質の移動速度は気相中
の物質の過飽和度および基材表面附近におけるガスの流
動状態が主な要因となり、捷だ一方2表面反応速度は主
に反応温度に左右される。上記中反応温度を十分高くと
れば表面反応速度は一定となるが、一方基材表面附近に
おけるカスの流動状態は複雑で安定した蒸着層の形成上
問題となる。すなわち基材表面附近には原料ガスの乱れ
がない層状に流れている層流境界層のみでは5なく、じ
よう乱と呼ばれる不規則な渦で満され1いる乱流境界層
が形成される。この乱流境界層においては層流境界層に
くらべ基材表面に持込廿れる物質の量も多いが同時に基
材表面から持出される最も多くなり安定した結晶ができ
にくい。てらに熱移動も活発であシ急激な温度変化を受
けながら生長する被膜の結晶内部には熱応力が残留する
不具合がある。
Chemical vapor deposition is the process of converting volatile metals, organic compounds, hydrocarbon compounds, etc. into gold through gas-phase chemical reactions at high temperatures, such as thermal decomposition, hydrogen reduction, and substitution reactions. This is a method of forming vapor deposits of high melting point metals, carbides, borides, silicides, nitrides, etc. on the surface, and the vapor deposited layer is formed by the raw material gas coming into contact with the heated base material surface to generate nuclei, which become crystals. It is formed by the growth of Therefore, the growth rate of the crystal is controlled by the rate at which the substance reaches the surface of the substrate from the gas phase, ie, the rate of movement of the substance in the gas phase, and the rate at which the substance is assembled into a crystal structure, ie, the surface reaction rate. The rate of movement of substances in the gas phase is mainly determined by the degree of supersaturation of the substance in the gas phase and the flow state of the gas near the surface of the substrate, whereas the rate of reaction on two surfaces is mainly influenced by the reaction temperature. . If the above-mentioned reaction temperature is set high enough, the surface reaction rate becomes constant, but on the other hand, the flow state of the dregs near the surface of the substrate is complicated and poses a problem in forming a stable vapor deposited layer. That is, near the surface of the base material, there is not only a laminar boundary layer in which the raw material gas flows in a layered manner without disturbance, but a turbulent boundary layer filled with irregular vortices called turbulence. In this turbulent boundary layer, a larger amount of substances can be brought to the substrate surface than in a laminar boundary layer, but at the same time, the largest amount is taken out from the substrate surface, making it difficult to form stable crystals. In addition, heat transfer is active, and there is a problem in that thermal stress remains inside the crystals of the film, which grows while undergoing rapid temperature changes.

上記を第1図に示す従来の化学気相蒸着装置の場合につ
き具体的に説明するとチャンバー2の中:こおいてム噴
出口1ibからの原料ガス噴出流] 2Q>よびこれの
チャンバー2内での自然対流である下降流13.上昇1
13a、斜上昇DK 13bを生ずるが、原料ガス12
の噴出流12aが上昇流13aや斜上昇流13bなどに
衝突し、さらに斜上昇流13bの一部は基材9の側面9
bK直接衝突して周囲の気流はかく乱状態となる。上記
の流動状態によって前述の乱流境界層が発生し不均質な
結晶被膜が基材表面9aの大部分あるいは中央部や側面
9bに形成されることになる(尚9反応後の排ガス14
は排気口1eよシ外部に排出される)。
The above will be specifically explained in the case of the conventional chemical vapor deposition apparatus shown in FIG. Downflow which is natural convection 13. Rise 1
13a, sloping rise DK 13b occurs, but the raw material gas 12
The ejected flow 12a collides with the upward flow 13a, the oblique upward flow 13b, etc., and a part of the oblique upward flow 13b also collides with the side surface 9 of the base material 9.
bK directly collides and the surrounding airflow becomes disturbed. Due to the above-mentioned flow state, the aforementioned turbulent boundary layer is generated, and an inhomogeneous crystalline film is formed on most of the substrate surface 9a or on the center and side surfaces 9b (in addition, the exhaust gas 14 after the 9 reaction
is discharged to the outside through the exhaust port 1e).

本発明の目的は上記欠点のない化学気相蒸着装置を提供
することにある。
The object of the invention is to provide a chemical vapor deposition apparatus which does not have the above-mentioned disadvantages.

本発明は化学気相反応を行う念めの反応室と。The present invention includes a reaction chamber for carrying out a chemical vapor phase reaction.

該反応室に原料ガスを供給する原料ガス供給部材と、上
記反応室内に被処理表面が水平と;ケるよって配置され
る基材を加熱する加熱手段とを具備しかつ上記原料ガス
供給部材を上記基材の中央部に設けた孔部を貫通して立
設して7する化学気相蒸着装置において、1肥原料ガス
供給部材を、ベンチュリー!し状の中空部を有し、該中
空部下方の縮径部の側面に複数個の孔部を設け上端(て
噴出開口部を有する原料ガス噴出管と、該原料ガス噴出
管の外周に間隔を存して設けられ、下端に外側に湾曲状
に拡るつば部を有するジャケットと上方にひろがるラッ
パ管状で、かつ複数個の孔部を設けその下縁を上記原料
ガス噴出管の噴出開口部外側にまたその上縁を上記ジャ
ケットの上端内側に接続する接合管とから構成し、さら
に基材の周囲に、該周囲に近接し基材の上面と同じかや
や高い水平部および上方に向い湾曲する周縁部を有する
皿形整流板を具備してなる化学気相蒸着装置に関する。
A raw material gas supply member for supplying raw material gas to the reaction chamber, and a heating means for heating a substrate disposed in the reaction chamber such that the surface to be treated is horizontal; In the chemical vapor deposition apparatus which is installed vertically through the hole provided in the center of the base material, 1 the fertilizer raw material gas supply member is connected to the Venturi! It has a wedge-shaped hollow part, and a plurality of holes are provided on the side surface of the reduced diameter part below the hollow part, and a raw material gas jetting pipe having a spouting opening at the upper end is provided, and a gap is formed on the outer periphery of the raw material gas jetting pipe. The jacket is provided with a flange extending outwardly in a curved manner at the lower end, and a trumpet tubular shape extending upward, with a plurality of holes, the lower edge of which is connected to the ejection opening of the raw material gas ejection pipe. on the outside and a joint pipe whose upper edge is connected to the inside of the upper end of the jacket, and further around the base material, a horizontal part that is close to the periphery and is at the same level or slightly higher than the top surface of the base material, and a curved part facing upward. The present invention relates to a chemical vapor deposition apparatus comprising a dish-shaped baffle plate having a peripheral edge.

以下図面によυ本発明を説明する。The present invention will be explained below with reference to the drawings.

第2図は本発明になるチャンバー径360gの化学気相
蒸着装置の一実施例の概略を示す断面図であり、原料ガ
ス供給部材はベンチュリー形状の原料ガス噴出管22.
その外側に設けた内径35加のジャケット23及び接合
管24からなシ。
FIG. 2 is a cross-sectional view schematically showing an embodiment of the chemical vapor deposition apparatus with a chamber diameter of 360 g according to the present invention, in which the source gas supply member is a venturi-shaped source gas ejection pipe 22.
It consists of a jacket 23 with an inner diameter of 35 mm and a joint pipe 24 provided on the outside thereof.

18は皿形整流板である。第3図は第2図における原料
ガス供給部材を説明する拡大断面図である。
18 is a dish-shaped rectifying plate. FIG. 3 is an enlarged sectional view illustrating the raw material gas supply member in FIG. 2.

上記本発明の実施例に示される化学気相蒸着装置は基材
の表面積、原料ガスの供給量やチャンバー内の空間の大
きざなどの設計条件に応じて特に表面積の大きい基材の
場合、該基材の表面を流れる原料ガスを基材の中央部ま
でできるだけ平行に移動する必要性のある場合に使用さ
れるものである。図において22はノズルホルダー21
に隙間バメ(ネジ接合でもよいンで接続された外径15
価の原料ガス噴出管であり、原料ガス噴出管22はベン
チュリー形状の中空部22aを有し、該中空部22aの
縮径部22b(内径4用)の側面に2段8個の孔部22
cをまた上端に内径10叩の噴出開口部22dが設けら
れる。まfc23は原料ガス噴出管22の外周に10m
mの間隔を存して設けられ下端に外側に湾曲状に拡るつ
ば部23aを有し、上端が原料ガス噴出管22の噴出開
口部22dよりも高いジャケットでるる(高さ120m
+n )。また24は上方にひろがるラッパ管状で8個
の上下方向の孔部24aを有する接合管であシ。
The chemical vapor deposition apparatus shown in the above embodiments of the present invention may be used depending on the design conditions such as the surface area of the substrate, the amount of raw material gas supplied, and the size of the space in the chamber. This is used when it is necessary to move the raw material gas flowing on the surface of the base material as parallel as possible to the center of the base material. In the figure, 22 is a nozzle holder 21
Outer diameter 15mm connected with a clearance fit (screwed connection is also acceptable)
The raw material gas jetting pipe 22 has a venturi-shaped hollow part 22a, and eight holes 22 in two stages are formed on the side surface of the reduced diameter part 22b (for inner diameter 4) of the hollow part 22a.
A spout opening 22d with an inner diameter of 10 mm is also provided at the upper end of c. The fc23 is 10m around the outer circumference of the raw material gas ejection pipe 22.
It has a collar part 23a which is provided at an interval of m and expands outward in a curved manner at the lower end, and the upper end is a jacket higher than the ejection opening 22d of the raw material gas ejection pipe 22 (height: 120 m).
+n). Further, 24 is a joint tube which is shaped like a trumpet tube and extends upward and has eight vertical holes 24a.

接合管24の上縁はジャケット23の上端内側Kまた下
縁は原料ガス噴出管22の噴出開口部22dに接続され
る。なおジャケット23と接合管24とは一体に形成し
ても差支えない。なおジャケット23の上端はできるだ
けチャンバー2の天井中央部内壁に接近して組立てられ
る。本実施例の場合け511nI11とした。ま念ジャ
ケット23および接合管24には黒鉛を使用する。
The upper edge of the joint pipe 24 is connected to the upper inner side K of the jacket 23, and the lower edge is connected to the ejection opening 22d of the raw material gas ejection pipe 22. Note that the jacket 23 and the joint pipe 24 may be formed integrally. The upper end of the jacket 23 is assembled as close as possible to the inner wall of the central part of the ceiling of the chamber 2. In this example, it was set to 511nI11. Graphite is used for the jacket 23 and the joint tube 24.

第2図において18は円形の基材9の周囲に取付けられ
た外径345m、内径180mmの円形の皿形整流板で
あり、該皿形整流板18は基材9の周囲に近接する水平
部18b、上方に向い湾曲する半径50柑の周縁部18
aからなる。なお18cは皿形整流板の下方に設けられ
た円筒形の脚部であり、これによって上記水平部18b
が基材9の基材表面9..3同一高さか、これよりやや
高く配置される。なお上記皿形整流板18は高さ53m
+nの一体品であるが、基材9の大きさなどに応じて円
周上複数に分割してもよい。さらに材質は耐熱性のある
石英、アルミナ磁器、黒鉛等を用いる。
In FIG. 2, reference numeral 18 denotes a circular dish-shaped rectifier plate with an outer diameter of 345 m and an inner diameter of 180 mm attached around the circular base material 9. 18b, an upwardly curved peripheral edge 18 with a radius of 50 mm;
Consists of a. Note that 18c is a cylindrical leg section provided below the dish-shaped rectifying plate, which allows the above-mentioned horizontal section 18b to
is the base material surface 9. of the base material 9. .. 3 Placed at the same height or slightly higher. The height of the dish-shaped rectifying plate 18 is 53 m.
Although the base material 9 is a one-piece product, it may be divided into a plurality of parts on the circumference depending on the size of the base material 9. Furthermore, the materials used include heat-resistant quartz, alumina porcelain, and graphite.

なま>第2図の上記以外の構成は第1図の場合と同じで
ある。
The configuration of FIG. 2 other than the above is the same as that of FIG. 1.

上記実lイ4例における原料ガスの流れを説明する。The flow of the raw material gas in the above four examples will be explained.

第3図において原料ガス12の圧力エネルギーは縮径部
22bを通過するときに速度エネルギーに変換されこの
部分で減圧状態になるので側面の複数個の孔部22cか
ら、基材表面9aに接近して流れるガス25(原料ガス
噴出流12aの水平流)の一部は原料ガス噴出管中に吸
引され、原料ガス】2と混合しながら原料ガス噴出管2
2中を上昇し接合管24の曲面の効果によって水平方向
放射状に進路を変えチャンバー2の内壁に沿って下降流
25aとして降下する。そして皿形整流板18の周縁部
18aにより方向が変り水平部18bに到り水平方向に
均一に整流された水平流25となる。一方ジャケット2
3と原料噴出管22との間の空間部23bは非常に高温
となっているために活発な上昇流251)も発生し、接
合管24の孔部24.Iから吐出され前述の原料ガス噴
出流12aと共に水平方向放射状に流れる。なお上記ジ
ャケット23と原料噴出管22との空間部23bは自然
対流ガスの水平流25を基材表面9aの中央まで十分に
吸引する作用を有する。
In FIG. 3, the pressure energy of the raw material gas 12 is converted into velocity energy when it passes through the reduced diameter part 22b, and the pressure is reduced in this part, so that it approaches the base material surface 9a through the plurality of holes 22c on the side surface. A part of the flowing gas 25 (horizontal flow of the raw material gas jet flow 12a) is sucked into the raw material gas jet pipe 2, and is mixed with the raw material gas 2 while flowing into the raw material gas jet pipe 2.
2, changes its course horizontally and radially due to the effect of the curved surface of the joint pipe 24, and descends along the inner wall of the chamber 2 as a downward flow 25a. Then, the direction is changed by the peripheral edge 18a of the dish-shaped rectifier plate 18, and reaches the horizontal portion 18b, resulting in a horizontal flow 25 that is uniformly rectified in the horizontal direction. On the other hand jacket 2
Since the space 23b between the joint pipe 24 and the raw material ejection pipe 22 is at a very high temperature, an active upward flow 251) is generated, and the hole 24. It is discharged from I and flows radially in the horizontal direction together with the aforementioned raw material gas jet flow 12a. The space 23b between the jacket 23 and the raw material ejection pipe 22 has the function of sufficiently sucking the horizontal flow 25 of natural convection gas to the center of the substrate surface 9a.

次に本発明による化学気相蒸着装置を用いた場合と従来
の装置により形成した蒸着層の特性の比較を示す。
Next, a comparison will be made between the characteristics of deposited layers formed using the chemical vapor deposition apparatus according to the present invention and those formed using a conventional apparatus.

本発明実験例 第2図に示した装置(で、中央に孔を有する直径160
m+nの円板形の黒鉛基材を配置し、原料ガスとして8
iCla及びCC14の各12 X 10−3mol 
7分をキャリアーガスH,(30//分)と共にチャン
バー内に送シ込み2反応温度1500℃(±20℃)2
反応時間60分の条件で黒鉛基材の表面にSiC層を形
成した。
EXPERIMENTAL EXAMPLE OF THE INVENTION The apparatus shown in FIG.
A disk-shaped graphite base material of m+n is arranged, and 8
12 x 10-3 mol each of iCla and CC14
Pour 7 minutes into the chamber together with carrier gas H (30//min) 2 Reaction temperature 1500°C (±20°C) 2
A SiC layer was formed on the surface of the graphite base material under the condition that the reaction time was 60 minutes.

比較実験例 一方第1図に示す従来装置に、上記本発明実験例と同じ
仕様の円板形の黒鉛基材を配置し、以下H2ガスの流量
を15で7分とした以外は本発明実験例と同一条件で上
記黒鉛基材の表面にSiCの蒸着膜を形成した。
Comparative Experimental Example On the other hand, a disk-shaped graphite substrate having the same specifications as the above-mentioned inventive experimental example was placed in the conventional apparatus shown in FIG. A vapor deposited SiC film was formed on the surface of the graphite base material under the same conditions as in the example.

上記の実験例によれば、蒸着膜の結晶粒の大きさは従来
方式では平均約20μmであるのに対し。
According to the above experimental example, the average size of crystal grains in the deposited film is about 20 μm in the conventional method.

本発明の場合では平均約50μmで約2倍以上の結晶成
長が認められた。次に従来方式の場合には基材表面の孔
部のI¥I囲と基材表面の外周部の角部に柱状に異常に
沖びた結晶が徂の状態で蒸着されたが本発明の場合には
上記のような現象は認められなかった。さらに上記蒸S
層を形成した基材についてヒートサイクルテストを行っ
た。すなわち上記基材を加熱炉で400℃に加熱した後
20℃の水中に投下する試験を行った結果、従来装置の
場合には4回目の水中投下で蒸着層にクラックが現れた
が2本発明の場合には133回目はじめてクラックが出
現した。(いずれも目視観察による)したがって本発明
の蒸着層の耐熱衝撃性が従来装置の場合より向上してい
ることが判明できた。
In the case of the present invention, crystal growth of about twice or more was observed with an average diameter of about 50 μm. Next, in the case of the conventional method, crystals that are abnormally protruded in a columnar manner are deposited in the I\I circle of the hole on the surface of the base material and at the corner of the outer periphery of the surface of the base material, but in the case of the present invention. In this case, the above phenomenon was not observed. Furthermore, the above steam S
A heat cycle test was conducted on the base material on which the layer was formed. That is, as a result of a test in which the above-mentioned substrate was heated to 400°C in a heating furnace and then dropped into water at 20°C, cracks appeared in the vapor deposited layer on the fourth drop in water using the conventional device, but with the present invention. In the case of , a crack appeared for the first time at the 133rd time. (All results were based on visual observation) Therefore, it was found that the thermal shock resistance of the vapor deposited layer of the present invention was improved compared to that of the conventional apparatus.

このように本発明によると化学気相蒸着装置における反
応室内において導入する原料ガスと先に導入され反応室
内を自然対流している原料ガスとが衝突することがない
ので基材の上面にこれと平行に乱れのない原料ガスを均
一に流すことができるため基材の全表面に均質で安定し
た蒸着層を形成しうるなどその効果は極めて大である。
As described above, according to the present invention, there is no collision between the raw material gas introduced into the reaction chamber of the chemical vapor deposition apparatus and the raw material gas introduced earlier and undergoing natural convection within the reaction chamber, so that the upper surface of the substrate is coated with the raw material gas. Since the raw material gas can be uniformly flowed in parallel without any turbulence, it is possible to form a homogeneous and stable vapor deposition layer on the entire surface of the base material, which is extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の化学気相蒸着装置の断面図、第2図は本
発明になる化学気相蒸着装置の一実施例の概略を示す断
面図、第3図は第2図における原料ガス供給部材を説明
する拡大断面図である。 符号の説明
Fig. 1 is a sectional view of a conventional chemical vapor deposition apparatus, Fig. 2 is a sectional view schematically showing an embodiment of the chemical vapor deposition apparatus of the present invention, and Fig. 3 is a raw material gas supply in Fig. 2. It is an enlarged sectional view explaining a member. Explanation of symbols

Claims (1)

【特許請求の範囲】[Claims] 1、化学気相反応を行うための反応室と、該反応室に原
料ガスを供給する原料ガス供給部材と、上記反応室内に
被処理表面が水平となるように配置さるる基材を加熱す
る加熱手段とを具備し、かつ上記原料ガス供給部材を上
記基材の中央部に設けた孔部を貫通して立設してなる化
学気相蒸着装置において、上記原料ガス供給部材を、ベ
ンチュリー形状の中空部を有し、該中空部下方の縮径部
の側面に複数個の孔部を設け上端に噴出開口部を有する
原料ガス噴出管と、該原料ガス噴出管の外周に間隔を存
して設けられ、下端に外側に湾曲状に拡るつば部を有す
るジャケットと上方にひろがるラッパ管状で、かつ複数
個の孔部を設けその下縁を上記原料ガス噴出管の噴出開
口部外側にまたその上縁を上記ジャケットの上端内側に
接続する接合管とから構成し、さらに基材の周囲に該周
囲に近接し基材の上面と同じかやや高い水平部および上
方に向い湾曲する周縁部を有する皿形整流板を具備して
なる化学気相蒸着装置。
1. Heating a reaction chamber for carrying out a chemical vapor phase reaction, a raw material gas supply member that supplies raw material gas to the reaction chamber, and a base material placed in the reaction chamber so that the surface to be treated is horizontal. In the chemical vapor deposition apparatus, the source gas supply member is provided with a heating means, and in which the source gas supply member is erected through a hole provided in the center of the base material, wherein the source gas supply member has a venturi shape. A raw material gas ejection pipe having a hollow part, a plurality of holes on the side surface of the reduced diameter part below the hollow part, and an ejection opening at the upper end, and a gap around the outer periphery of the raw material gas ejection pipe. It is provided with a jacket having a flange extending outwardly in a curved shape at the lower end, and a trumpet tube shape extending upward, and having a plurality of holes, the lower edge of which extends outward from the ejection opening of the raw material gas ejection pipe. a joint pipe whose upper edge is connected to the inside of the upper end of the jacket, and a horizontal part that is close to the periphery of the base material and is the same as or slightly higher than the top surface of the base material, and a peripheral edge that curves upward. A chemical vapor deposition apparatus comprising a dish-shaped rectifying plate.
JP24856786A 1986-10-20 1986-10-20 Chemical vapor deposition device Granted JPS62149883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24856786A JPS62149883A (en) 1986-10-20 1986-10-20 Chemical vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24856786A JPS62149883A (en) 1986-10-20 1986-10-20 Chemical vapor deposition device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15529583A Division JPS6046374A (en) 1983-08-25 1983-08-25 Chemical gaseous phase vapor deposition apparatus

Publications (2)

Publication Number Publication Date
JPS62149883A true JPS62149883A (en) 1987-07-03
JPS6249350B2 JPS6249350B2 (en) 1987-10-19

Family

ID=17180062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24856786A Granted JPS62149883A (en) 1986-10-20 1986-10-20 Chemical vapor deposition device

Country Status (1)

Country Link
JP (1) JPS62149883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933445A1 (en) * 1998-01-30 1999-08-04 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Method and apparatus for CVD coating of workpieces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933445A1 (en) * 1998-01-30 1999-08-04 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Method and apparatus for CVD coating of workpieces

Also Published As

Publication number Publication date
JPS6249350B2 (en) 1987-10-19

Similar Documents

Publication Publication Date Title
CN105143507B (en) Chemical vapor deposition unit
CN105164308B (en) Chemical vapor deposition unit
JP3414475B2 (en) Crystal growth equipment
JP2006069888A (en) Method for manufacturing polycrystal silicon rod and manufacturing apparatus
US7942951B2 (en) Apparatus and method for providing heated effluent gases to a scrubber
JPH06247789A (en) Inert gas straightening and blowing device for device for pulling up single crystal
JP2005520932A (en) Thin film deposition equipment on substrate
JPS62149883A (en) Chemical vapor deposition device
JP2018029181A (en) Upper cone body for epitaxy chamber
US20080041309A1 (en) Silicon Manufacturing Apparatus
JPS6214222B2 (en)
JP6413925B2 (en) Silicon carbide single crystal manufacturing equipment
JP2003137697A (en) Method and apparatus for producing silicon carbide single crystal
JPS59207622A (en) Semiconductor thin film vapor phase growth apparatus
JP6078428B2 (en) Wafer support and chemical vapor deposition apparatus using the wafer support
JPS6254081A (en) Vapor growth device
JP5482669B2 (en) Silicon carbide single crystal manufacturing equipment
JPH0530350Y2 (en)
JPH07109198A (en) Device and method for producing bar-like high-purity silicon for semiconductor
JPH10177960A (en) Vapor growth device and method
JPS61202424A (en) Chemical vapor deposition equipment
JPH0437901Y2 (en)
JP4515227B2 (en) Vapor growth equipment
JPH06232054A (en) Manufacture of susceptor
JPH0642461B2 (en) Semiconductor thin film vapor phase growth equipment