JPS61202424A - Chemical vapor deposition equipment - Google Patents

Chemical vapor deposition equipment

Info

Publication number
JPS61202424A
JPS61202424A JP4317285A JP4317285A JPS61202424A JP S61202424 A JPS61202424 A JP S61202424A JP 4317285 A JP4317285 A JP 4317285A JP 4317285 A JP4317285 A JP 4317285A JP S61202424 A JPS61202424 A JP S61202424A
Authority
JP
Japan
Prior art keywords
jig plate
heating jig
chemical vapor
vapor deposition
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4317285A
Other languages
Japanese (ja)
Inventor
Michihiro Umemori
梅森 道弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP4317285A priority Critical patent/JPS61202424A/en
Publication of JPS61202424A publication Critical patent/JPS61202424A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To uniformize the vapor-deposition rate for the all parts of the object to be treated present on a heating jig plate by forming the inclined plane on the heating jig plate, which has such shape that the upper plane of a longitudinal cross section penetrating through the axis core of the heating jig plate is axial symmetry and the gradient becomes higher toward the periphery on the heating jig plate. CONSTITUTION:In a reaction chamber 22 for carrying out a chemical gas-phase reaction, a heating jig plate 18 of disc form is arranged horizontally, which is heated by high-frequency induction and on which an object to be treated is mounted. A nozzle 17 for supplying a material gas comprising a blow-off hole 17a from which the material gas is blown off radially on the upper surface of the treated object is stood vertically with the center of the jig plate 18 penetrated through. On the jig plate 18, the inclined plane 18b is formed, which has such a shape that the upper surface of a longitudinal cross section penetrating the axis core of the jig plate 18 is axial symmetry and the gradient becomes higher toward the periphery. Consequently the supplied gas flows in such a manner that the reaction becomes uniform from the central part of the jig plate 18 toward the peripheral edge part thereby uniformizing the vapor-deposition rate for the all parts of the treated object.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は化学気相蒸着装置に関する。[Detailed description of the invention] (Industrial application field) FIELD OF THE INVENTION The present invention relates to chemical vapor deposition apparatus.

(従来技術) シリコン(Si)等の単結晶で構成される半導体基板の
上に同じ単結晶の薄膜を成長させるエピタキシャル成長
は、最近半導体の分野において高集積化、高性能化、高
信頼性化が促進されるに伴い重要な工程である。エピタ
キシャル成長は気相法。
(Prior art) Epitaxial growth, in which a thin film of the same single crystal is grown on a semiconductor substrate made of a single crystal such as silicon (Si), has recently been used in the field of semiconductors to achieve higher integration, higher performance, and higher reliability. This is an important process as it is promoted. Epitaxial growth is a vapor phase method.

液相法など数多くの方法が検討又は実用化されているが
、このうち気相法は最近急速に普及してきている。この
気相法では、気相から固相界面に凝縮によって固体薄膜
を析出させる物理蒸着法及び化学反応によって気相から
固体として析出させる化学気相蒸着法が代表的なもので
ある。以下従来の化学気相蒸着法及びその装置について
説明する。
Although many methods such as liquid phase method have been studied or put into practical use, gas phase method has recently become popular. Typical gas phase methods include a physical vapor deposition method in which a solid thin film is deposited by condensation from a gas phase to a solid phase interface, and a chemical vapor deposition method in which a solid thin film is deposited from a gas phase by a chemical reaction. A conventional chemical vapor deposition method and its apparatus will be explained below.

化学気相蒸着法の一例としてシリコンエピタキシャル成
長の場合、気体の5iC1a (他K 5iHC13゜
5iHzCb、 SiH4等が用いられる場合本ある)
が。
As an example of chemical vapor deposition, in the case of silicon epitaxial growth, gaseous 5iC1a (there are other cases where K5iHC13゜5iHzCb, SiH4, etc. are used)
but.

高温(900〜1200℃)K加熱されたSi基板上で
、キャリアガスのH2によって次式のように還元され、
基板上にSiの固体薄膜が成長する。
On a Si substrate heated to a high temperature (900-1200°C) K, it is reduced by carrier gas H2 as shown in the following formula,
A solid thin film of Si is grown on the substrate.

8iC1s<気)+ZHz(気)→Si(固)↓+4H
CJ(気)↑しかじ、上記の反応式は、あくまで直接的
な表現で、この反応過程では多成分の反応種を生成する
副反応が介在する。また、この反応系は気相。
8iC1s<Ki) + ZHz (Ki) → Si (Hard) ↓ + 4H
CJ (qi) ↑ However, the above reaction formula is just a direct expression, and this reaction process involves side reactions that generate multiple reactive species. Also, this reaction system is in the gas phase.

界面上の化学反志だけでなく、物質移動、熱移動。Chemical reaction on the interface as well as mass transfer and heat transfer.

ガス流動が互いに影響し合う複雑な系になっている。It is a complex system in which gas flows interact with each other.

従って、蒸着装置内における反応領域の全てKわたって
、均一な蒸着条件を与えることは非常に困難であシ、そ
の九めに同一基板上あるいは基板間で、均一な膜厚およ
び膜質のエピタキシャル層を得るために現在も装置上な
らびに操作条件上における研究が数多くなされている。
Therefore, it is very difficult to provide uniform vapor deposition conditions over the entire reaction region in the vapor deposition apparatus, and it is difficult to provide an epitaxial layer with uniform thickness and quality on the same substrate or between substrates. Many studies are currently being conducted on equipment and operating conditions to obtain this.

これに対して、上述したように半導体分野では。On the other hand, as mentioned above, in the semiconductor field.

高集積化、高信頼性化が急速に進んでおシ、これに伴っ
てエピタキシャル層の膜厚および膜質に関する均一性は
今後もますます厳しく要求される。
High integration and high reliability are rapidly progressing, and as a result, uniformity in the thickness and quality of the epitaxial layer will continue to be required more and more in the future.

エピタキシャル成長を行なうための化学気相蒸着装置は
、現在までに数多くの形式のものが実用化されている。
Many types of chemical vapor deposition apparatuses for epitaxial growth have been put into practical use to date.

これらの中で、最も代表的な例を第8図に示す。この形
式は一般にパン・ケーキ型と呼ばれ、高周波誘導加熱炉
の一種である。
Among these, the most typical example is shown in FIG. This type is generally called a pan-cake type and is a type of high-frequency induction heating furnace.

装置中央にノズル12及びノズルホルダー11が固定さ
れ、これらと同志でかつ外側に円筒形のチャック13.
支持管14.アダプター15が設けられている。アダプ
ター15の上には、上下両面が平行な円板形の加熱治具
板16が設置され。
A nozzle 12 and a nozzle holder 11 are fixed at the center of the device, and a cylindrical chuck 13 is attached to the outside.
Support tube 14. An adapter 15 is provided. A disk-shaped heating jig plate 16 whose upper and lower surfaces are parallel is installed on the adapter 15.

この加熱治具板16の上表面は多数のザグリ部16aを
有し、これらの中に被処理物の基板3がセットされてい
る。
The upper surface of this heating jig plate 16 has a large number of counterbore portions 16a, and the substrate 3 to be processed is set in these.

一般にチャック13は回転駆動体に連結されておシ、こ
のため加熱治具板16は装置中心部の軸のまわ)を低速
に回転する。
Generally, the chuck 13 is connected to a rotational drive body, so that the heating jig plate 16 rotates at a low speed around an axis at the center of the apparatus.

一方、チャンバーベース4とワークコイルカバー8.9
.IOKよって囲まれた環状空間内に渦巻状の高周波誘
導用のワークコイル7が取付けられており、このワーク
コイル7に高周波電流を流すと、上記加熱治具板16の
下面に誘導電流が発生し2発熱する。しかる後、加熱治
具板16の板厚方向(上方)K熱が伝わ)(熱伝導)、
加熱治具板の上に乗った各基板3が加熱される。このと
き基板上方のチャンバー5に囲まれた反応室22内に、
ノズルホルダー11およびノズル12を通して原料ガス
1が供給される。原料ガスは高温に加熱された基板表面
上を流動し、このとき基板表面に沿って形成される高温
の境界層内で、原料成分は化学反応を起こし、エピタキ
シャル層を形成する。なお、ノズルにおけるガスの吐出
については従来よシ色々な形式が考案され、実用化され
て来たが、現在の主流である形式には二連シある。
On the other hand, chamber base 4 and work coil cover 8.9
.. A spiral high-frequency induction work coil 7 is installed in an annular space surrounded by the IOK, and when a high-frequency current is passed through this work coil 7, an induced current is generated on the lower surface of the heating jig plate 16. 2 I have a fever. After that, K heat is transferred in the thickness direction (upward direction) of the heating jig plate 16 (thermal conduction),
Each substrate 3 placed on the heating jig plate is heated. At this time, in the reaction chamber 22 surrounded by the chamber 5 above the substrate,
Raw material gas 1 is supplied through nozzle holder 11 and nozzle 12 . The raw material gas flows over the substrate surface heated to a high temperature, and at this time, the raw material components cause a chemical reaction in a high temperature boundary layer formed along the substrate surface, forming an epitaxial layer. Note that various types of gas discharge from the nozzle have been devised and put into practical use in the past, but the current mainstream type is a two-way type.

すなわち、一つはノズルの上端に開口部を設け。That is, one is to provide an opening at the upper end of the nozzle.

チャンバー5の天井部(中央)の方向にガスを吐出し、
チャンバー内を環状に循環させる形式で。
Discharge gas in the direction of the ceiling (center) of chamber 5,
In the form of circular circulation within the chamber.

他はノズル側壁に水平方向放射状に多数の吐出孔12a
を設け、これらの孔から実線矢印のように基板表面に平
行にガスを吐出させる形式である。
The other is a large number of discharge holes 12a arranged radially in the horizontal direction on the nozzle side wall.
are provided, and gas is discharged from these holes parallel to the substrate surface as shown by solid arrows.

第8図には後者の例を示した。ガスはチャンバー内を一
点鎖線のように循環したのち排ガス2として排出される
。尚図において6はシールリングである。ただしいずれ
の場合も、基板表面付近及び基板表面から上方の5iC
1l及びH2のガヌ本体流は基板表面は平行に流れ、基
板表面に沿って極力。
FIG. 8 shows an example of the latter. After the gas circulates within the chamber as shown by the dashed line, it is discharged as exhaust gas 2. In the figure, 6 is a seal ring. However, in either case, the 5iC near the substrate surface and above the substrate surface
The Ganu body flow of 1l and H2 flows parallel to the substrate surface, and flows as much as possible along the substrate surface.

均一な層流境界層を形成しなければならず2両者の相違
点は円板形の加熱治具板について、装置の中心方向か外
周方向かのガス流方向の違いのみである。
A uniform laminar boundary layer must be formed, and the only difference between the two is the gas flow direction of the disk-shaped heating jig plate, either toward the center or toward the outer circumference of the device.

(発明の解決しようとする問題点) ここで、エピタキシャル層の膜厚に直接関係する成長速
度に対して、ガス流動及び反応物質であるSi成分の移
動が一般的にどのように影響するかについて述べる。基
板表面の反応温度が、全ての場所で一定であると仮定す
ると、成長速度は主に基板表面近くに形成される境界層
における反応物質の移動速度と境界層の上方を流れるガ
ス本体流が持っている反応物質の濃度という2つの要因
に大きく影響を受ける。一般に両要因とも増加するほど
、成長速度は大きくなる傾向にある。上記要因のうち反
応物質の移動速度は基板表面に沿って形成される境界層
の厚さに反比例し、また境界層の厚さはその境界層が出
現した起点から、ガスの流動方向に測った距離の1/2
乗に比例する。従って、ガスの流れ方向に境界層は厚く
なると共に反応物質の移動速度は減少する。また、ガス
本体流が持っている反応物質の濃度は基板表面及び加熱
治具板表面に対する反応消費及び周囲ガスへの拡散によ
シ、ガスの流れ方向に次第に減少する。
(Problems to be Solved by the Invention) Here, we will discuss how the gas flow and the movement of the Si component, which is a reactant, generally affect the growth rate, which is directly related to the thickness of the epitaxial layer. state Assuming that the reaction temperature on the substrate surface is constant at all locations, the growth rate is mainly determined by the movement rate of reactants in the boundary layer formed near the substrate surface and the gas main flow flowing above the boundary layer. It is strongly influenced by two factors: the concentration of the reactants present. Generally, as both factors increase, the growth rate tends to increase. Among the above factors, the moving speed of the reactant is inversely proportional to the thickness of the boundary layer formed along the substrate surface, and the thickness of the boundary layer is measured from the origin where the boundary layer appears in the direction of gas flow. 1/2 of the distance
Proportional to the power. Therefore, in the direction of gas flow, the boundary layer becomes thicker and the moving speed of the reactants decreases. Further, the concentration of the reactant contained in the main gas flow gradually decreases in the gas flow direction due to reaction consumption on the substrate surface and the heating jig plate surface and diffusion into the surrounding gas.

従って、原理的にはガスの流れ方向に、成長速度は減少
せざるをえない。この傾向については経験的にも確認さ
れておシ、第8図に示したような従来構造の蒸着装置で
は避けられない問題である。
Therefore, in principle, the growth rate must decrease in the direction of gas flow. This tendency has been confirmed empirically, and is an unavoidable problem in a vapor deposition apparatus having a conventional structure as shown in FIG.

本発明の目的は上述のガス流動を改善することによυ全
ての基板表面において、より均一な成長速度を図シ、エ
ピタキシャル層の均一な膜厚分布を得ることが可能な化
学気相蒸着装置を提供することにある。
The purpose of the present invention is to achieve a more uniform growth rate on all substrate surfaces by improving the above-mentioned gas flow, and to provide a chemical vapor deposition apparatus capable of obtaining a uniform thickness distribution of the epitaxial layer. Our goal is to provide the following.

(問題点を解決するための手段) 本発明は、化学気相反応を行わせる反応室内に高周波誘
導で加熱され被処理物を載置する円板状の加熱治具板を
水平に配置し、該加熱治具板の中央部を貫通し上記被処
理物の上面に原料ガスを放射状に吐出する吐出孔を有す
る原料ガス供給用のノズルを垂直に立設した化学気相蒸
着装置において、前記加熱治具板にその細心を通る縦断
面における上面が軸対象でかつ外周方向に上昇する勾配
を有する形状の傾斜面を形成した化学気相蒸着装置に関
する。
(Means for solving the problem) The present invention horizontally arranges a disc-shaped heating jig plate on which a workpiece heated by high-frequency induction is placed in a reaction chamber in which a chemical vapor phase reaction is performed. In a chemical vapor deposition apparatus in which a nozzle for supplying raw material gas is vertically installed and has a discharge hole that penetrates the center of the heating jig plate and discharges raw material gas radially onto the upper surface of the object to be processed, the heating The present invention relates to a chemical vapor deposition apparatus in which a jig plate has an inclined surface whose upper surface in a vertical cross section passing through the narrow center of the jig plate is axially symmetrical and has a slope rising toward the outer circumference.

エピタキシャル層の成長速度をガスの流れ方向に対し均
一化を図る上で1本発明ではガス流動。
In order to make the growth rate of the epitaxial layer uniform in the direction of gas flow, the present invention uses gas flow.

特に被処理物の基板表面に沿って形成される境界層の厚
さに着目した。通常、ガス体は粘性流体であり、ガスが
固体表面上を一様に流れるとき、ガスの流速は表面でO
となシ9表面から離れるに従かい表面からある距離にあ
る本体ガス流の平均流速に向かって指数関数的に近づい
て行く。この表面付近においてガス流速が変化する領域
を境界層C厳密には速度境界層)と呼ぶ。一般に、この
境界層内の流れは層流状態とみなすことができ、熱移動
又は物質移動現象を取扱うとき、この境界層での移動速
度が最も大きな要因となる。すなわち。
In particular, we focused on the thickness of the boundary layer formed along the substrate surface of the processed object. Usually, a gas body is a viscous fluid, and when gas flows uniformly over a solid surface, the gas flow rate is O at the surface.
Tonashi 9 As the distance from the surface increases, the average flow velocity of the main body gas flow at a certain distance from the surface approaches exponentially. The region in which the gas flow velocity changes near the surface is called a boundary layer (strictly speaking, a velocity boundary layer). Generally, the flow within this boundary layer can be considered as a laminar flow state, and when dealing with heat transfer or mass transfer phenomena, the velocity of movement in this boundary layer is the most important factor. Namely.

本体ガス流によって運ばれて来た反応物質が基板表面で
反応するには、この境界層を通して反応゛物質が固体表
面に向かって拡散し、また固体表面から本体ガス流に向
かって熱が移動しなければならない。この層流境界層の
厚さが小さいほど物質移動速度(又は熱移動速度)は大
きくなり2両者はほぼ反比例関係にある。
In order for the reactants carried by the body gas flow to react on the substrate surface, the reactants diffuse toward the solid surface through this boundary layer, and heat moves from the solid surface toward the body gas flow. There must be. The smaller the thickness of this laminar boundary layer, the higher the mass transfer rate (or heat transfer rate), and the two are approximately inversely proportional.

そこで1層流境界層の厚さは、どのような因子にどのよ
うに影響を受けるかについて述べる。境界層の厚さをδ
、ガスの粘性係数をμ、ガス密度をρ2本体ガス流の平
均流速をU、境界層が出現した起点からガスの流動方向
に測った距離をXとなる比例関係が認められる。ここで
、固体表面でるる基板表面ならびに加熱治具板の表面は
均一温度に加熱されていると仮定すると、境界層内のガ
スの特性、すなわちμ、ρはガスの流れ方向にほぼ一定
とみなすことができる。厳密には、ガスが高温面に沿っ
て流れる過程で、熱を受けるため。
Therefore, we will discuss how the thickness of the one-layer boundary layer is influenced by what factors. The thickness of the boundary layer is δ
, the viscosity coefficient of the gas is μ, the gas density is ρ2, the average flow velocity of the main gas flow is U, and the distance measured in the gas flow direction from the starting point where the boundary layer appears is X. Here, assuming that the surface of the substrate and the surface of the heating jig plate, which are exposed to the solid surface, are heated to a uniform temperature, the characteristics of the gas in the boundary layer, that is, μ and ρ, are assumed to be approximately constant in the direction of gas flow. be able to. Strictly speaking, this is because gas receives heat as it flows along a hot surface.

流れ方向にガスの温度上昇が生じる。しかし境界層内で
のガス温度の変化(冒温面の温度〜本体ガス温度)の方
がはるかに大きく、この境界層内の平均温度を求めた場
合、ガスの流れ方向の温度上昇はほとんど無視できる程
度である。このとき。
An increase in the temperature of the gas occurs in the direction of flow. However, the change in gas temperature within the boundary layer (temperature on the heated surface to main body gas temperature) is much larger, and when calculating the average temperature within this boundary layer, the temperature increase in the gas flow direction is almost ignored. As much as possible. At this time.

境界層の厚さδはNロシτに比例する。The boundary layer thickness δ is proportional to Nrosi τ.

従って、距離Xと平均流速Uとの比(X/u)を一定に
することができれば境界層の厚さδはガス流に沿ってほ
ぼ一定に制御することが可能である。
Therefore, if the ratio (X/u) between the distance X and the average flow velocity U can be kept constant, the thickness δ of the boundary layer can be controlled to be almost constant along the gas flow.

そこで、ガスの平均流速UをXの関数で表わす。Therefore, the average gas flow velocity U is expressed as a function of X.

通常、化学気相蒸着装置における加熱治具板は一定肉厚
の円板(外半径b)で、中央に同容の孔(内半径a)を
設ける。この半径aからbまでの区間の環状平面上に多
数の基板を配置する。また加熱治具板はノズル中心軸の
まわシを一定速度(角速度ω)で回転し、さらにノズル
側壁には水平方向放射状に多数の孔を設ける。原料ガス
を加熱治具板中央から外周部に向って放射状に流速Vr
で吐出した場合、上記の流動条件の下では加熱治具板の
表面に沿って流れる本体ガスの平均流速Uは場所によっ
て大きさ及び方向は異なシ、外周方向の速度ベクトルす
なわちノズルの吐出流速V「と回転方向の速度ベクトル
すなわち加熱治具板の回転速度Vθとの合ベクトルで表
わされる。さらに回転速度Vθは距離Xの関数であり、
Vθ=(x−)−a)ωで表わされる。
Usually, a heating jig plate in a chemical vapor deposition apparatus is a circular plate with a constant thickness (outer radius b), and a hole of the same size (inner radius a) is provided in the center. A large number of substrates are arranged on this annular plane in the section from radius a to b. Further, the heating jig plate rotates the nozzle center axis at a constant speed (angular velocity ω), and furthermore, a number of holes are provided in the nozzle side wall radially in the horizontal direction. The raw material gas flows radially from the center of the heating jig plate toward the outer periphery at a flow rate Vr.
When the gas is discharged at It is expressed as the sum vector of " and the speed vector in the rotational direction, that is, the rotational speed Vθ of the heating jig plate. Furthermore, the rotational speed Vθ is a function of the distance X,
It is expressed as Vθ=(x−)−a)ω.

従って2本体ガスの平均流速Uは u=!丁〒:;]八へ−となシ、Xに関する増加関数で
ある。しかし一般に、ノズルの吐出速度Vrの方が回転
速度Vθよシ大きく、シかもVrは周囲ガスの巻込現象
により、ガスの流れ方向(遠心方向)にわずかながら減
少する傾向があるため。
Therefore, the average flow velocity U of the two main gases is u=! It is an increasing function with respect to X. However, in general, the discharge speed Vr of the nozzle is greater than the rotational speed Vθ, and Vr tends to decrease slightly in the gas flow direction (centrifugal direction) due to the entrainment phenomenon of surrounding gas.

現実にはUはXに関しほぼ一定とみなしうる。In reality, U can be considered almost constant with respect to X.

以上から2本発明では加熱治具板の上面にノズルの吐出
孔から加熱治具板の外周部に水平かつ放射状に吐出され
るガスの方向に対して上昇する勾配(ガス流速が増加す
る傾き)を有する形状の傾斜面を形成して、ガスの流量
をガスの流れ方向に沿って累積させ、加熱治具板の傾斜
面上方を通過するガス流速をガスの流れ方向にほぼ直線
的に増加するようにした。ノズル側壁部にはノズルの周
方向に等間隔に複数個の吐出孔を設けるが、ノズルの軸
方向にも加熱治具板に形成した前記傾斜面の高さに対応
する位置に狭い間隔で多数段の吐出孔を設け、かつ上下
に隣シ合う各段の吐出孔の位置を周方向にずらして、吐
出される原料ガスの濃度を大きくかつガス流を均一にす
ると共に、各吐出孔の間隔を小さくするととKよる管体
のノズルの強度低下を防止することが好ましい。
From the above, in the present invention, the upper surface of the heating jig plate has a gradient that rises in the direction of the gas discharged horizontally and radially from the discharge hole of the nozzle to the outer periphery of the heating jig plate (the gradient in which the gas flow rate increases). The gas flow rate is accumulated along the gas flow direction by forming an inclined surface having a shape of I did it like that. A plurality of discharge holes are provided in the nozzle side wall at equal intervals in the circumferential direction of the nozzle, and a large number of discharge holes are provided at narrow intervals in the axial direction of the nozzle at positions corresponding to the height of the inclined surface formed on the heating jig plate. By providing discharge holes in stages and shifting the positions of the discharge holes in each vertically adjacent stage in the circumferential direction, the concentration of the raw material gas to be discharged is increased and the gas flow is made uniform, and the interval between each discharge hole is It is preferable to reduce the strength of the nozzle of the tube body due to K.

上記の場合、遠心方向の流速VrをVr==CX(C:
比例定数)とおくと2本体ガスの平均流速Uはu=J(
マIア;り77 と表わすことができる。従って となシ、前述の関係から境界層の厚さδはXに対して減
少傾向を示す。
In the above case, the flow velocity Vr in the centrifugal direction is Vr==CX(C:
proportionality constant), the average flow velocity U of the two main gases is u=J(
It can be expressed as 77. Therefore, from the above-mentioned relationship, the boundary layer thickness δ tends to decrease with respect to X.

しかし、現実にはノズルから吐出された各々のガス噴流
は流れ方向に拡がシを見せ、それに伴って減速するため
加熱治具板の面に勾配がついていても必ずしもVrはX
に比例するとは限らず(むしろVr = cx’ : 
n =O〜1とおく方が現実的)、従って境界層の厚さ
はXに対して減少傾向とはならない。しかしながら、従
来のノズルからのガス流と加熱治具板表面が平行な装置
に比較して、流れ方向に沿った境界層の厚さの増加傾向
は、はるかに小さくなってほぼ一定に近くなる。
However, in reality, each gas jet discharged from a nozzle expands in the flow direction and decelerates accordingly, so even if the surface of the heating jig plate has a slope, Vr does not necessarily
It is not necessarily proportional to (rather, Vr = cx':
It is more realistic to set n = O~1), therefore, the thickness of the boundary layer does not tend to decrease with respect to X. However, compared to a conventional device in which the gas flow from the nozzle and the heating jig plate surface are parallel, the increasing trend of the boundary layer thickness along the flow direction is much smaller and nearly constant.

このように、加熱治具板の一面(基板がのる面)に一定
の勾配をつければ、境界層の厚さをガスの流れ方向に沿
って、はぼ一定に制御することができる。境界層の厚さ
が一定であれば、物質移動速度及び熱移動速度は場所に
よらず、一定の値をとる。とのとき9本体ガス中の原料
成分濃度が、ガスの流れ方向にほとんど変化し々いとみ
なし得る条件の場合は、前記加熱治具板の勾配を直線的
にシテモエビタキシャル層の成長速度は場所によらず一
定で、均一な膜厚分布が得られる。
In this way, by creating a certain slope on one surface of the heating jig plate (the surface on which the substrate is placed), the thickness of the boundary layer can be controlled to be approximately constant along the gas flow direction. If the thickness of the boundary layer is constant, the mass transfer rate and heat transfer rate take constant values regardless of location. 9 If the concentration of the raw material components in the main gas is considered to change almost in the direction of gas flow, the growth rate of the epitaxial layer can be determined by linearly changing the slope of the heating jig plate. A constant and uniform film thickness distribution can be obtained regardless of the thickness of the film.

一方、原料成分濃度が、ガスの流れ方向に変化する(通
常2反応による原料消費の関係から、流れ方向に濃度は
減少する)場合には、加熱治具板の当該面を直線的な勾
配ではなく、より高次の曲線状(例えば2次曲線)の勾
配をつければ、境界層の厚さは流れ方向に沿って減少傾
向を示す。この場合、物質移動速度は逆に流れ方向に増
加するため、原料成分濃度の減少傾向を補うことができ
る。
On the other hand, when the concentration of raw material components changes in the gas flow direction (normally, the concentration decreases in the flow direction due to the relationship between raw material consumption by two reactions), the surface of the heating jig plate cannot be However, if a higher-order curved (eg, quadratic) slope is applied, the boundary layer thickness tends to decrease along the flow direction. In this case, since the mass transfer rate increases in the flow direction, it is possible to compensate for the decreasing tendency of the raw material component concentration.

エピタキシャル層の成長速度は物質移動速度と濃度の積
に比例すると考えられるから物質移動速度の増加傾向と
境界層厚さの減少傾向との間にバランスをとることによ
って成長速度を流れ方向に一定にすることができる。
Since the growth rate of the epitaxial layer is considered to be proportional to the product of the mass transfer rate and the concentration, the growth rate can be kept constant in the flow direction by balancing the increasing tendency of the mass transfer rate and the decreasing tendency of the boundary layer thickness. can do.

なお、上記の高次曲線状の勾配に対して、実際には円弧
状の勾配又は流れ方向に段階的に角度を増す折線状の勾
配で近似させて、加熱治具板の面加工を行ってもよい。
In addition, the above-mentioned high-order curved slope is actually approximated by an arc-shaped slope or a broken-line slope whose angle increases stepwise in the flow direction, and the surface of the heating jig plate is processed. Good too.

但し、原料成分濃度がガスの流れ方向に一様に減少しな
い場合もある。例えば、ノズルからの噴流が加熱治具板
の最外周部を通過して、最終的に化学気相蒸着装置のチ
ャンバー側壁に衝突し、その後一部のガスが再度、加熱
治具板上に流入する。
However, there are cases where the raw material component concentration does not decrease uniformly in the gas flow direction. For example, the jet from the nozzle passes through the outermost periphery of the heating jig plate and finally collides with the side wall of the chamber of a chemical vapor deposition apparatus, after which some of the gas flows onto the heating jig plate again. do.

この現象が顕著な場合は、加熱治具板上の外周側は局部
的に濃度が高くなる。このような場合には。
If this phenomenon is significant, the concentration will be locally high on the outer peripheral side of the heating jig plate. In such cases.

外周側の上昇勾配を減少させるか、あるいは外周側を水
平にするのが有効な手段である。
An effective means is to reduce the upward slope on the outer circumferential side or to make the outer circumferential side horizontal.

本発明における加熱治具板の材質は、高周波誘導によシ
加熱され易く、均熱化するために熱伝導率が高く2反応
源度に対して充分な耐熱性を有し。
The material of the heating jig plate in the present invention is easily heated by high-frequency induction, has high thermal conductivity for uniform temperature, and has sufficient heat resistance against two reaction sources.

H,、HCI、シラン等の反応ガス及びキャリアガスに
腐食されないものであればよく、特に制限はないが黒鉛
材が好ましい。またエピタキシャル成長では化学気相蒸
着装置の内部は不純物濃度を厳密に管理するのが一般で
ある。黒鉛材は多数の小さな気孔によって不純物のガス
を吸着し易い欠点があるので、黒鉛製加熱治具板は全表
面にSiC。
Any material may be used as long as it is not corroded by reactive gases such as H, HCI, silane, and carrier gas, and graphite material is preferred, although there is no particular limitation. Furthermore, in epitaxial growth, it is common to strictly control the impurity concentration inside the chemical vapor deposition apparatus. Graphite material has the disadvantage of easily adsorbing impurity gases due to its large number of small pores, so graphite heating jig plates are made of SiC on the entire surface.

S i3 N4等の気密性を有する蒸着被膜を形成する
ことが好ましい。ノズルの材質は気密性、耐熱性及び耐
食性を有するものであればよく制限はないが石英が好ま
しい。
It is preferable to form a vapor-deposited film having airtightness such as S i3 N4. The material of the nozzle is not limited as long as it has airtightness, heat resistance, and corrosion resistance, but quartz is preferable.

(実施例) て 以上の本発明につい帯1本発明の実施例を示す第1〜7
図で、具体的に説明する。
(Example) Regarding the above-mentioned present invention, Sections 1 to 7 showing Examples of the present invention are as follows.
This will be explained in detail using figures.

まず第1図は2反応炉の内部構造を示す縦断面図で、こ
の中に本発明になるSiC被覆人造黒鉛製の加熱治具板
18及び石英製のノズル17が装着されている。
First, FIG. 1 is a vertical sectional view showing the internal structure of a two-reactor reactor, in which a heating jig plate 18 made of SiC-coated artificial graphite and a nozzle 17 made of quartz according to the present invention are installed.

ノズル17にはガス1の噴流が加熱治具板18の傾斜面
18bの全域に均一に接触す石ように、傾斜面18bの
高さに対応する位置の側壁部に軸方向に狭い間隔で多数
段の吐出孔17aを設け、しかも上下に隣シ合う各段の
吐出孔の位置を周方向にずらし、かつ吐出孔は周方向に
等間隔に複数個設けた。
The nozzle 17 has a large number of stones arranged at narrow intervals in the axial direction on the side wall at a position corresponding to the height of the inclined surface 18b, so that the jet of gas 1 uniformly contacts the entire area of the inclined surface 18b of the heating jig plate 18. Discharge holes 17a in stages were provided, and the positions of the discharge holes in each vertically adjacent stage were shifted in the circumferential direction, and a plurality of discharge holes were provided at equal intervals in the circumferential direction.

加熱治具板18は、第4図に示したように傾斜面18b
が直線的な勾配をもったもので、この傾斜面18bには
基板3が配置されるためのザグリ部18aが多数、設け
られている。また、第2図。
The heating jig plate 18 has an inclined surface 18b as shown in FIG.
has a linear slope, and this inclined surface 18b is provided with a number of counterbore portions 18a on which the substrate 3 is placed. Also, Fig. 2.

第3図は加熱治具板18の上面図で、いずれも傾斜面1
8bの形とザグリ部18aの配置方法の例を示すもので
ある。
FIG. 3 is a top view of the heating jig plate 18, both of which show the inclined surface 1.
8b and an example of how to arrange the counterbore portion 18a.

第2図は傾斜面18bが加熱治具板自身の芯と同軸の円
錐面で構成されたもので、多数のザグリ部18aがこの
円錐面に周方向に配置された例を示す。
FIG. 2 shows an example in which the inclined surface 18b is constituted by a conical surface coaxial with the core of the heating jig plate itself, and a large number of counterbore portions 18a are arranged on this conical surface in the circumferential direction.

第3図は傾斜面18bが多角形の角錐面(治具板と同軸
)で構成されたもので、各面(平面)に同数のザグリ部
18aが配置された例を示す。
FIG. 3 shows an example in which the inclined surface 18b is composed of a polygonal pyramidal surface (coaxial with the jig plate), and the same number of counterbore portions 18a are arranged on each surface (plane).

さらに第5〜7図は傾斜面が一つの直線以外の勾配をも
った種類の加熱治具板の例を示す縦断面図である。
Furthermore, FIGS. 5 to 7 are longitudinal cross-sectional views showing examples of heating jig plates having slopes other than one straight line.

第5図はガス1の流れ方向に原料成分濃度が変化する度
合に応じて、高次曲線状の勾配をもった傾斜面19bを
設は九治具板の例である。
FIG. 5 shows an example of a nine jig plate in which an inclined surface 19b having a higher-order curved slope is provided depending on the degree of change in the raw material component concentration in the flow direction of the gas 1.

また、第6図、第7図はいずれも第5図の複雑表彰状の
勾配に対し、より簡単な加工し易い形状で、近似させた
治具板の例である。すなわち、第6図は円弧で近似させ
た勾配の傾斜面20bをもつ加熱治具板20.第7図は
ガスの流れ方向に段階的に角度を増す折線状の勾配をも
った傾斜面21b、21C,21dで構成された加熱治
具板21を示す。尚図において19a、20a、21a
はザグリ部である。
Furthermore, both FIGS. 6 and 7 are examples of jig plates that approximate the slope of the complex award certificate shown in FIG. 5 with a simpler shape that is easier to process. That is, FIG. 6 shows a heating jig plate 20. with an inclined surface 20b having a slope approximated by a circular arc. FIG. 7 shows a heating jig plate 21 composed of inclined surfaces 21b, 21C, and 21d having a polygonal slope whose angle increases stepwise in the gas flow direction. In the figure, 19a, 20a, 21a
is the counterbore section.

(、実験例) 前記実施例における石英製ノズルの吐出孔及び外径30
5閣のピッチコークス系人造黒鉛製加熱治具板の勾配を
第1表のような構成として、加熱治具棒には第4図、第
5図、第6図及び第7図に示すようなザグリ部18a、
19a、20a及び21aを外周側及び内周側に各5個
、計10個設け、各ザグリ部にシリコン半導体の基板を
載置して、第1図における化学気相蒸着装置のチャンバ
−内に原料ガス8iC14をキャリアガスH2と共に送
シ込み、基板表面の温度を1200℃になるようにワー
クコイルに電流を通じて加熱してエピタキシャル成長を
行った。
(Experimental example) Discharge hole and outer diameter of quartz nozzle in the above example 30
The slope of the pitch coke-based artificial graphite heating jig plate of the five cabinets is configured as shown in Table 1, and the heating jig rod is configured as shown in Figures 4, 5, 6, and 7. counterbore portion 18a,
19a, 20a, and 21a were provided on the outer circumferential side and five on the inner circumferential side, for a total of 10 pieces, and a silicon semiconductor substrate was placed on each counterbore, and placed in the chamber of the chemical vapor deposition apparatus shown in FIG. Raw material gas 8iC14 was pumped together with carrier gas H2, and epitaxial growth was performed by heating the substrate surface by passing an electric current through the work coil so that the temperature of the substrate surface reached 1200°C.

比較例として第8図に示す化学気相蒸着装置を用いてエ
ピタキシャル成長実験を行った。基板に成長したエピタ
キシャル層の膜厚分布を第1表に示す。
As a comparative example, an epitaxial growth experiment was conducted using a chemical vapor deposition apparatus shown in FIG. Table 1 shows the film thickness distribution of the epitaxial layer grown on the substrate.

第1表から上記実験例の膜厚のバラツキは比較例のもの
に較べて、同一基板内で1/2以下、基板間で1/3以
下に減少し均一化されるのがわかる。
It can be seen from Table 1 that the variation in film thickness in the above experimental example is reduced to 1/2 or less within the same substrate and to 1/3 or less between substrates and is made uniform compared to that of the comparative example.

(発明の効果) 本発明によれば、供給されるガスが加熱治具板の中央部
から外周端部に向って反応が均一になるように流動する
から、加熱治具板上に載置された被処理物への蒸着速度
がどの部分に対しても均一化され、蒸着膜厚の均一な被
処理物が得られる。
(Effects of the Invention) According to the present invention, since the supplied gas flows from the center of the heating jig plate toward the outer peripheral edge so that the reaction is uniform, the gas that is placed on the heating jig plate is The rate of vapor deposition on the object to be processed is made uniform over all parts, and the object to be processed can have a uniform vapor-deposited film thickness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す化学気相蒸着装置の縦
断面図、第2図および第3図は本発明の実施例における
加熱治具板を示す上面図、第4乃至第7図は本発明の実
施例における加熱治具板の縦断面図、第8図は従来の化
学気相蒸着装置の構造を示す縦断面図である。 符号の説明 1・・・原料ガス     2・・・排ガス3・・・基
板       4・・・チャンバーペース5・・・チ
ャンバー    6・・・シールリング7・・・ワーク
コイル   8・・・ワークコイルカバー9・・・ワー
クコイルカバー 10・・・ワークコイルカバー 11・・・ノズルホルダー 12・・・ノズル13・・
・チャック    14・・・支持管15・・・アダプ
ター   16・・・加熱治具板17・・・ノズル  
   18・・・加熱治具板19・・・加熱治具板  
 20・・・加熱治具板21・・・加熱治具板   2
2・・・反応室第1口 ′42目       茅3図
FIG. 1 is a longitudinal sectional view of a chemical vapor deposition apparatus according to an embodiment of the present invention, FIGS. 2 and 3 are top views showing a heating jig plate in an embodiment of the present invention, and FIGS. The figure is a longitudinal sectional view of a heating jig plate according to an embodiment of the present invention, and FIG. 8 is a longitudinal sectional view showing the structure of a conventional chemical vapor deposition apparatus. Explanation of symbols 1... Raw material gas 2... Exhaust gas 3... Substrate 4... Chamber pace 5... Chamber 6... Seal ring 7... Work coil 8... Work coil cover 9 ...Work coil cover 10...Work coil cover 11...Nozzle holder 12...Nozzle 13...
・Chuck 14... Support tube 15... Adapter 16... Heating jig plate 17... Nozzle
18... Heating jig plate 19... Heating jig plate
20...Heating jig plate 21...Heating jig plate 2
2...Reaction chamber 1st port'42nd figure Kaya 3

Claims (5)

【特許請求の範囲】[Claims] 1.化学気相反応を行わせる反応室内に高周波誘導で加
熱され被処理物を載置する円板状の加熱治具板を水平に
配置し、該加熱治具板の中央部を貫通し上記被処理物の
上面に原料ガスを放射状に吐出する吐出孔を有する原料
ガス供給用のノズルを垂直に立設した化学気相蒸着装置
において、前記加熱治具板にその軸心を通る縦断面にお
ける上面が軸対象でかつ外周方向に上昇する勾配を有す
る形状の傾斜面を形成した化学気相蒸着装置。
1. A disk-shaped heating jig plate on which the object to be processed is placed and heated by high-frequency induction is horizontally arranged in a reaction chamber in which a chemical vapor phase reaction is carried out, and the object to be processed is inserted through the center of the heating jig plate. In a chemical vapor deposition apparatus in which a nozzle for supplying raw material gas is vertically installed and has a discharge hole for discharging raw material gas radially onto the upper surface of an object, the upper surface of the heating jig plate in a longitudinal section passing through its axis is A chemical vapor deposition device that forms an inclined surface that is axially symmetrical and has a slope that rises toward the outer circumference.
2.加熱治具板上面の傾斜面が断面高次曲線状の傾斜面
である特許請求の範囲第1項記載の化学気相蒸着装置。
2. 2. The chemical vapor deposition apparatus according to claim 1, wherein the inclined surface of the upper surface of the heating jig plate is an inclined surface having a high-order curved cross section.
3.加熱治具板上面の傾斜面が断面円弧状の傾斜面であ
る特許請求の範囲第1項記載の化学気相蒸着装置。
3. 2. The chemical vapor deposition apparatus according to claim 1, wherein the inclined surface of the upper surface of the heating jig plate is an inclined surface having an arcuate cross section.
4.加熱治具板上面の傾斜面が断面折線状の傾斜面であ
る特許請求の範囲第1項記載の化学気相蒸着装置。
4. 2. The chemical vapor deposition apparatus according to claim 1, wherein the inclined surface of the upper surface of the heating jig plate is an inclined surface having a broken line shape in cross section.
5.ノズルの吐出孔が加熱治具板上面の傾斜面の高さに
対応する位置のノズル側壁部に設けられた吐出孔である
特許請求の範囲第1項乃至第4項記載の化学気相蒸着装
置。
5. The chemical vapor deposition apparatus according to any one of claims 1 to 4, wherein the discharge hole of the nozzle is a discharge hole provided in the side wall of the nozzle at a position corresponding to the height of the inclined surface of the upper surface of the heating jig plate. .
JP4317285A 1985-03-05 1985-03-05 Chemical vapor deposition equipment Pending JPS61202424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4317285A JPS61202424A (en) 1985-03-05 1985-03-05 Chemical vapor deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4317285A JPS61202424A (en) 1985-03-05 1985-03-05 Chemical vapor deposition equipment

Publications (1)

Publication Number Publication Date
JPS61202424A true JPS61202424A (en) 1986-09-08

Family

ID=12656461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4317285A Pending JPS61202424A (en) 1985-03-05 1985-03-05 Chemical vapor deposition equipment

Country Status (1)

Country Link
JP (1) JPS61202424A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685308U (en) * 1993-05-21 1994-12-06 株式会社ナイガイ Socks
US5902407A (en) * 1987-03-31 1999-05-11 Deboer; Wiebe B. Rotatable substrate supporting mechanism with temperature sensing device for use in chemical vapor deposition equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902407A (en) * 1987-03-31 1999-05-11 Deboer; Wiebe B. Rotatable substrate supporting mechanism with temperature sensing device for use in chemical vapor deposition equipment
JPH0685308U (en) * 1993-05-21 1994-12-06 株式会社ナイガイ Socks

Similar Documents

Publication Publication Date Title
US4858558A (en) Film forming apparatus
JP4108748B2 (en) Cold wall vapor deposition
KR100435119B1 (en) Apparatus for processing individual wafers
JP4511722B2 (en) Chemical vapor deposition reactor
KR102222947B1 (en) Chemical vapor deposition device
US6352593B1 (en) Mini-batch process chamber
KR20040101400A (en) Gas driven planetary rotation apparatus and methods for forming silicon carbide layers
JP2004534905A (en) Reactor for chemical vapor deposition of titanium
JP2009120859A (en) Atomic layer deposition apparatus
JP2001522138A5 (en)
EP0562035A1 (en) Minimization of particle generation in cvd reactors and methods
US7314526B1 (en) Reaction chamber for an epitaxial reactor
JP7018882B2 (en) High temperature heater for processing chamber
JP2024501860A (en) System and method for preheating ring in semiconductor wafer reactor
JP2641351B2 (en) Variable distribution gas flow reaction chamber
JPS63144513A (en) Barrel type epitaxial growth device
JPS61202424A (en) Chemical vapor deposition equipment
CN115595552B (en) Silicon carbide ring for plasma etching equipment and forming process of silicon carbide ring
JPS6090894A (en) Vapor phase growing apparatus
JP2013201317A (en) Surface treatment device
JPH09245957A (en) High frequency induction heating furnace
JPS63147894A (en) Vapor growth method and vertical vapor growth device
JP2006032459A (en) Chemical vapor phase growing device
JPH0193130A (en) Vertical furnace
EP0330708B1 (en) Apparatus for forming thin films