JPS6249350B2 - - Google Patents

Info

Publication number
JPS6249350B2
JPS6249350B2 JP24856786A JP24856786A JPS6249350B2 JP S6249350 B2 JPS6249350 B2 JP S6249350B2 JP 24856786 A JP24856786 A JP 24856786A JP 24856786 A JP24856786 A JP 24856786A JP S6249350 B2 JPS6249350 B2 JP S6249350B2
Authority
JP
Japan
Prior art keywords
raw material
material gas
base material
jacket
chemical vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24856786A
Other languages
Japanese (ja)
Other versions
JPS62149883A (en
Inventor
Michihiro Umemori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP24856786A priority Critical patent/JPS62149883A/en
Publication of JPS62149883A publication Critical patent/JPS62149883A/en
Publication of JPS6249350B2 publication Critical patent/JPS6249350B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は例えば基材の被膜形成処理などに用い
られる化学気相蒸着装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a chemical vapor deposition apparatus used, for example, for forming a film on a substrate.

一般に黒鉛や金属などの表面に化学蒸着法によ
り炭化ケイ素、窒化ケイ素などの被膜を形成する
場合などには第1図の断面図に示すような化学気
相蒸着装置が使用されている。すなわち該化学気
相蒸着装置は円板形のステンレス製などのチヤン
バーベース1の上に外筒4a、内筒4bおよび天
井部4cからなる石英製のワークコイルカバー4
が設置され該ワークコイルカバー4内に高周波誘
導加熱用の銅製のワークコイル5が収納される。
該ワークコイル5は内筒4bの内側周囲を円形の
渦巻状に同一水平面上で巻かれた形状を有し両端
部5aおよび5bはチヤンバーベース1に設けら
れた孔部1a,1bを通り加熱源である高周波発
振器(図示せず)に接続され加熱手段を構成して
いる。
Generally, when forming a film of silicon carbide, silicon nitride, etc. on the surface of graphite, metal, etc. by chemical vapor deposition, a chemical vapor deposition apparatus as shown in the cross-sectional view of FIG. 1 is used. That is, the chemical vapor deposition apparatus has a work coil cover 4 made of quartz, which is composed of an outer cylinder 4a, an inner cylinder 4b, and a ceiling part 4c, on a disc-shaped chamber base 1 made of stainless steel or the like.
is installed, and a copper work coil 5 for high frequency induction heating is housed within the work coil cover 4.
The work coil 5 has a circular spiral shape wound around the inner circumference of the inner cylinder 4b on the same horizontal plane, and both ends 5a and 5b pass through holes 1a and 1b provided in the chamber base 1 and are heated. The heating means is connected to a high frequency oscillator (not shown) as a source.

次に原料ガス供給部材の構造を説明する。7は
チヤンバーベース1の中央孔部1cと内筒4b中
に挿入された下部基材ホルダーでこの上につば部
8aを設けた上部基材ホルダー8が接続され、上
記つば部8a上に中央に孔を有する板状の基材9
が水平に載せられている。なお図示はしないが下
部基材ホルダー7はモータに接続され30rpm以下
に低速回転し、これにともない上部基材ホルダー
8、基材9が水平に回転する。下部基材ホルダー
7と上部基材ホルダー8の内部における軸方向の
孔部にノズルホルダー10が挿入され、この上に
ノズル11が隙間ばめで接合されている。ノズル
11は上端封止部11aおよび水平方向放射状に
多数の噴出口11bが設けられている。
Next, the structure of the raw material gas supply member will be explained. Reference numeral 7 denotes a lower base material holder inserted into the center hole 1c of the chamber base 1 and the inner tube 4b, and an upper base material holder 8 having a collar 8a is connected thereto. A plate-shaped base material 9 having holes in the
is placed horizontally. Although not shown, the lower substrate holder 7 is connected to a motor and rotates at a low speed of 30 rpm or less, and the upper substrate holder 8 and the substrate 9 rotate horizontally accordingly. A nozzle holder 10 is inserted into an axial hole inside the lower substrate holder 7 and the upper substrate holder 8, and a nozzle 11 is joined thereon by a clearance fit. The nozzle 11 is provided with an upper end sealing portion 11a and a large number of ejection ports 11b radially arranged in the horizontal direction.

なお、上記下部基材ホルダー7は電気絶縁性な
らびに断熱性をもつ石英、セラミツクなど、上部
基材ホルダー8は1000〜1600℃の耐熱性を有する
黒鉛、アルミナ、SiCなど、またノズルホルダー
10は石英、ノズル11は黒鉛、アルミナ、SiC
などが用いられる。
The lower substrate holder 7 is made of quartz, ceramic, etc. that have electrical insulation and heat insulation properties, the upper substrate holder 8 is made of graphite, alumina, SiC, etc. that have heat resistance of 1000 to 1600°C, and the nozzle holder 10 is made of quartz. , the nozzle 11 is made of graphite, alumina, SiC
etc. are used.

さらに反応室として2はステンレスまたは石英
製のドーム状のチヤンバーで該チヤンバー2の外
側はステンレスまたは石英製の水冷ジヤケツト3
で覆れる。チヤンバー2の下端部はチヤンバーベ
ース1の外周側に設けられたリング状の突起部1
dにOリング6を介し接触しガスシールされる。
尚チヤンバー2は冷却水入口3aから出口3bに
向つて流れる冷却水15によつて冷却される。
Furthermore, the reaction chamber 2 is a dome-shaped chamber made of stainless steel or quartz, and the outside of the chamber 2 is a water-cooled jacket 3 made of stainless steel or quartz.
It can be covered with The lower end of the chamber 2 is a ring-shaped protrusion 1 provided on the outer circumferential side of the chamber base 1.
d through the O-ring 6 and is gas-sealed.
The chamber 2 is cooled by the cooling water 15 flowing from the cooling water inlet 3a toward the outlet 3b.

化学蒸着法とは高温での気相化学反応例えば揮
発性の金属のハロゲン化物や有機化合物、炭化水
素化合物などの熱分解、水素還元、置換反応など
によつて金属、黒鉛などの基材の表面に高融点金
属、炭化物、硼化物、珪化物、窒化物などの蒸着
層を形成する方法であり、上記蒸着層は加熱され
た基材表面に原料ガスが接触し核を生成し、これ
が結晶に成長することにより形成される。したが
つて上記結晶の成長速度は物質が気相から基材表
面に到達する速度すなわち気相中の物質の移動速
度と物質が結晶構造に組上げられる速度すなわち
表面反応速度により支配される。そして気相中の
物質の移動速度は気相中の物質の過飽和度および
基材表面附近におけるガスの流動状態が主な要因
となり、また一方、表面反応速度は主に反応温度
に左右される。上記中反応温度を十分高くとれば
表面反応速度は一定となるが、一方基材表面附近
におけるガスの流動状態は複雑で安定した蒸着層
の形成上問題となる。すなわち基材表面附近には
原料ガスの乱れがない層状に流れている層流境界
層のみではなく、じよう乱と呼ばれる不規則な渦
で満されている乱流境界層が形成される。この乱
流境界層においては層流境界層にくらべ基材表面
に持込まれる物質の量も多いが同時に基材表面か
ら持出される量も多くなり安定した結晶ができに
くい。さらに熱移動も活発であり急激な温度変化
を受けながら生長する被膜の結晶内部には熱応力
が残留する不具合がある。
Chemical vapor deposition is a vapor phase chemical reaction at high temperatures, such as thermal decomposition of volatile metal halides, organic compounds, hydrocarbon compounds, hydrogen reduction, substitution reactions, etc. This is a method of forming a vapor deposited layer of high melting point metal, carbide, boride, silicide, nitride, etc. on Formed by growth. Therefore, the growth rate of the crystal is controlled by the rate at which the substance reaches the surface of the substrate from the gas phase, ie, the transfer rate of the substance in the gas phase, and the rate at which the substance is assembled into a crystal structure, ie, the surface reaction rate. The transfer rate of a substance in the gas phase is mainly determined by the degree of supersaturation of the substance in the gas phase and the flow state of the gas near the surface of the substrate, while the surface reaction rate is mainly influenced by the reaction temperature. If the above-mentioned reaction temperature is set high enough, the surface reaction rate becomes constant, but on the other hand, the flow state of the gas near the surface of the substrate is complicated and poses a problem in forming a stable vapor deposited layer. That is, near the surface of the base material, not only a laminar boundary layer in which the raw material gas flows in a layered manner without turbulence, but also a turbulent boundary layer filled with irregular vortices called turbulence is formed. In this turbulent boundary layer, the amount of substances brought into the substrate surface is larger than in the laminar boundary layer, but at the same time, the amount taken out from the substrate surface is also large, making it difficult to form stable crystals. Furthermore, heat transfer is active, and there is a problem in that thermal stress remains inside the crystals of the coating, which grows while undergoing rapid temperature changes.

上記を第1図に示す従来の化学気相蒸着装置の
場合につき具体的に説明するとチヤンバー2の中
においては噴出口11bからの原料ガス噴出流1
2aおよびこれのチヤンバー2内での自然対流で
ある下降流13、上昇流13a、斜上昇流13b
を生ずるが、原料ガス12の噴出流12aが上昇
流13aや斜上昇流13bなどに衝突し、さらに
斜上昇流13bの一部は基材9の側面9bに直接
衝突して周囲の気流はかく乱状態となる。上記の
流動状態によつて前述の乱流境界層が発生し不均
質な結晶被膜が基材表面9aの大部分あるいは中
央部や側面9bに形成されることになる(尚、反
応後の排ガス14は排気口1eより外部に排出さ
れる)。
To explain the above specifically in the case of the conventional chemical vapor deposition apparatus shown in FIG.
2a and its natural convection within the chamber 2, such as a downward flow 13, an upward flow 13a, and an inclined upward flow 13b.
However, the jet flow 12a of the raw material gas 12 collides with the upward flow 13a, the oblique upward flow 13b, etc., and a part of the oblique upward flow 13b directly collides with the side surface 9b of the base material 9, disturbing the surrounding airflow. state. Due to the above-mentioned flow state, the above-mentioned turbulent boundary layer is generated, and an inhomogeneous crystalline film is formed on most of the substrate surface 9a or on the center and side surfaces 9b (note that the exhaust gas 14 after the reaction is discharged to the outside from the exhaust port 1e).

本発明の目的は上記欠点のない化学気相蒸着装
置を提供することにある。
The object of the invention is to provide a chemical vapor deposition apparatus which does not have the above-mentioned disadvantages.

本発明は化学気相反応を行うための反応室と、
該反応室に原料ガスを供給する原料ガス供給部材
と、上記反応室内に被処理表面が水平となるよう
に配置される基材を加熱する加熱手段とを具備し
かつ上記原料ガス供給部材を上記基材の中央部に
設けた孔部を貫通して立設してなる化学気相蒸着
装置において、上記原料ガス供給部材を、ベンチ
ユリー形状の中空部を有し、該中空部下方の縮径
部の側面に複数個の孔部を設け上端に噴出開口部
を有する原料ガス噴出管と、該原料ガス噴出管の
外周に間隔を存して設けられ、下端に外側に湾曲
状に拡るつば部を有するジヤケツトと上方にひろ
がるラツパ管状で、かつ複数個の孔部を設けその
下縁を上記原料ガス噴出管の噴出開口部外側にま
たその上縁を上記ジヤケツトの上端内側に接続す
る接合管とから構成し、さらに基材の周囲に、該
周囲に近接し基材の上面と同じかやや高い水平部
および上方に向い湾曲する周縁部を有する皿形整
流板を具備してなる化学気相蒸着装置に関する。
The present invention includes a reaction chamber for carrying out a chemical vapor phase reaction;
The raw material gas supply member is provided with a raw material gas supply member that supplies raw material gas to the reaction chamber, and a heating means that heats a substrate disposed in the reaction chamber so that the surface to be treated is horizontal, and the raw material gas supply member is In a chemical vapor deposition apparatus that is installed vertically through a hole provided in the center of a base material, the raw material gas supply member has a ventilate-shaped hollow part, and a reduced diameter part below the hollow part. a raw material gas ejection pipe having a plurality of holes on the side surface thereof and an ejection opening at the upper end; and a collar part provided at a distance on the outer periphery of the raw material gas ejection pipe and expanding outward in a curved shape at the lower end. and a joint pipe having an upwardly extending wrapper tubular shape and having a plurality of holes, the lower edge of which is connected to the outside of the ejection opening of the raw material gas ejection pipe, and the upper edge of which is connected to the inside of the upper end of the jacket. , and further comprising a dish-shaped rectifying plate around the base material, which is close to the periphery and has a horizontal part that is the same as or slightly higher than the upper surface of the base material, and a peripheral part that curves upward. Regarding equipment.

以下図面により本発明を説明する。 The present invention will be explained below with reference to the drawings.

第2図は本発明になるチヤンバー径360mmの化
学気相蒸着装置の一実施例の概略を示す断面図で
あり、原料ガス供給部材はベンチユリー形状の原
料ガス噴出管22、その外側に設けた内径35mmの
ジヤケツト23及び接合管24からなり、18は
皿形整流板である。第3図は第2図における原料
ガス供給部材を説明する拡大断面図である。
FIG. 2 is a cross-sectional view schematically showing an embodiment of a chemical vapor deposition apparatus with a chamber diameter of 360 mm according to the present invention, in which the source gas supply member is a ventilate-shaped source gas ejection pipe 22, and an inner diameter provided on the outside thereof. It consists of a 35 mm jacket 23 and a joint tube 24, and 18 is a dish-shaped rectifying plate. FIG. 3 is an enlarged sectional view illustrating the raw material gas supply member in FIG. 2.

上記本発明の実施例に示される化学気相蒸着装
置は基材の表面積、原料ガスの供給量やチヤンバ
ー内の空間の大きさなどの設計条件に応じて特に
表面積の大きい基材の場合、該基材の表面を流れ
る原料ガスを基材の中央部までできるだけ平行に
移動する必要性のある場合に使用されるものであ
る。図において22はノズルホルダー21に隙間
バメ(ネジ接合でもよい)で接続された外径15mm
の原料ガス噴出管であり、原料ガス噴出管22は
ベンチユリー形状の中空部22aを有し、該中空
部22aの縮径部22b(内径4mm)の側面に2
段8個の孔部22cをまた上端に内径10mmの噴出
開口部22dが設けられる。また23は原料ガス
噴出管22の外周に10mmの間隔を存して設けられ
下端に外側に湾曲状に拡るつば部23aを有し、
上端が原料ガス噴出管22の噴出開口部22dよ
りも高いジヤケツトである(高さ120mm)。また2
4は上方にひろがるラツパ管状で8個の上下方向
の孔部24aを有する接合管であり、接合管24
の上縁はジヤケツト23の上端内側にまた下縁は
原料ガス噴出管22の噴出開口部22dに接続さ
れる。なおジヤケツト23と接合管24とは一体
に形成しても差支えない。なおジヤケツト23の
上端はできるだけチヤンバー2の天井中央部内壁
に接近して組立てられる。本実施例の場合は5mm
とした。またジヤケツト23および接合管24に
は黒鉛を使用する。
The chemical vapor deposition apparatus shown in the above embodiments of the present invention may be used depending on the design conditions such as the surface area of the substrate, the amount of raw material gas supplied, and the size of the space within the chamber. This is used when it is necessary to move the raw material gas flowing on the surface of the base material as parallel as possible to the center of the base material. In the figure, 22 is connected to the nozzle holder 21 with a clearance fit (screw connection may also be used) with an outer diameter of 15 mm.
The raw material gas jetting pipe 22 has a hollow part 22a in the shape of a ventilate, and the side surface of the reduced diameter part 22b (inner diameter 4 mm) of the hollow part 22a has two
A jet opening 22d having an inner diameter of 10 mm is provided at the upper end of the eight stages of holes 22c. Further, 23 has a flange portion 23a that is provided on the outer periphery of the raw material gas ejection pipe 22 at an interval of 10 mm and that extends outward in a curved manner at the lower end.
It is a jacket whose upper end is higher than the ejection opening 22d of the raw material gas ejection pipe 22 (height: 120 mm). Also 2
Reference numeral 4 denotes a joint pipe which is shaped like a flat tube and has eight vertical holes 24a, and the joint pipe 24
The upper edge is connected to the inside of the upper end of the jacket 23, and the lower edge is connected to the ejection opening 22d of the source gas ejection pipe 22. Note that the jacket 23 and the joint pipe 24 may be formed integrally. The upper end of the jacket 23 is assembled as close as possible to the inner wall of the ceiling center of the chamber 2. In this example, 5mm
And so. Furthermore, graphite is used for the jacket 23 and the joint tube 24.

第2図において18は円形の基材9の周囲に取
付けられた外径345mm、内径180mmの円形の皿形整
流板であり、該皿形整流板18は基材9の周囲に
近接する水平部18b、上方に向い湾曲する半径
50mmの周縁部18aからなる。なお18cは皿形
整流板の下方に設けられた円筒形の脚部であり、
これによつて上記水平部18bが基材9の基材表
面9aと同一高さか、これよりやや高く配置され
る。なお上記皿形整流板18は高さ53mmの一体品
であるが、基材9の大きさなどに応じて円周上複
数に分割してもよい。さらに材質は耐熱性のある
石英、アルミナ磁器、黒鉛等を用いる。なお第2
図の上記以外の構成は第1図の場合と同じであ
る。
In FIG. 2, reference numeral 18 denotes a circular dish-shaped rectifying plate with an outer diameter of 345 mm and an inner diameter of 180 mm attached around the circular base material 9. 18b, upwardly curved radius
It consists of a peripheral edge part 18a of 50 mm. Note that 18c is a cylindrical leg provided below the dish-shaped rectifier plate,
As a result, the horizontal portion 18b is placed at the same height as the base material surface 9a of the base material 9, or slightly higher than this. Although the dish-shaped rectifying plate 18 is a single piece with a height of 53 mm, it may be divided into a plurality of parts on the circumference depending on the size of the base material 9 and the like. Furthermore, the materials used include heat-resistant quartz, alumina porcelain, and graphite. Furthermore, the second
The configuration of the figure other than the above is the same as that of FIG. 1.

上記実施例における原料ガスの流れを説明す
る。第3図において原料ガス12の圧力エネルギ
ーは縮径部22bを通過するときに速度エネルギ
ーに変換されこの部分で減圧状態になるので側面
の複数個の孔部22cから、基材表面9aに接近
して流れるガス25(原料ガス噴出流12aの水
平流)の一部は原料ガス噴出管中に吸引され、原
料ガス12と混合しながら原料ガス噴出管22中
を上昇し接合管24の曲面の効果によつて水平方
向放射状に進路を変えチヤンバー2の内壁に沿つ
て下降流25aとして降下する。そして皿形整流
板18の周縁部18aにより方向が変り水平部1
8bに到り水平方向に均一に整流された水平流2
5となる。一方ジヤケツト23と原料噴出管22
との間の空間部23bは非常に高温となつている
ために活発な上昇流25bも発生し、接合管24
の孔部24aから吐出され前述の原料ガス噴出流
12aと共に水平方向放射状に流れる。なお上記
ジヤケツト23と原料噴出管22との空間部23
bは自然対流ガスの水平流25を基材表面9aの
中央まで十分に吸引する作用を有する。
The flow of the raw material gas in the above embodiment will be explained. In FIG. 3, the pressure energy of the raw material gas 12 is converted into velocity energy when it passes through the diameter-reduced portion 22b, and the pressure is reduced in this portion. A part of the flowing gas 25 (horizontal flow of the raw material gas jet flow 12a) is sucked into the raw material gas jet pipe, and rises in the raw material gas jet pipe 22 while mixing with the raw material gas 12 due to the effect of the curved surface of the joint pipe 24. As a result, the flow changes its course horizontally and radially and descends along the inner wall of the chamber 2 as a downward flow 25a. Then, the direction changes due to the peripheral edge 18a of the dish-shaped rectifying plate 18, and the horizontal portion 1
Horizontal flow 2 that reaches 8b and is rectified uniformly in the horizontal direction
It becomes 5. On the other hand, the jacket 23 and the raw material spouting pipe 22
Since the space 23b between the two is at a very high temperature, an active upward flow 25b is generated, and the
The raw material gas is discharged from the hole 24a and flows radially in the horizontal direction together with the aforementioned raw material gas jet stream 12a. Note that the space 23 between the jacket 23 and the raw material ejection pipe 22
b has the function of sufficiently sucking the horizontal flow 25 of natural convection gas to the center of the base material surface 9a.

次に本発明による化学気相蒸着装置を用いた場
合と従来の装置により形成した蒸着層の特性の比
較を示す。
Next, a comparison will be made between the characteristics of deposited layers formed using the chemical vapor deposition apparatus according to the present invention and those formed using a conventional apparatus.

本発明実験例 第2図に示した装置に、中央に孔を有する直径
160mmの円板形の黒鉛基材を配置し、原料ガスと
してSiCl4及びCCl4の各12×10-3mol/分をキヤリ
アーガスH2(30/分)と共にチヤンバー内に
送り込み、反応温度1500℃(±20℃)、反応時間
60分の条件で黒鉛基材の表面にSiC層を形成し
た。
Experimental Example of the Present Invention The device shown in Figure 2 has a diameter hole in the center.
A 160 mm disk-shaped graphite substrate was placed, and SiCl 4 and CCl 4 were fed into the chamber at 12 × 10 -3 mol/min each as raw material gases together with carrier gas H 2 (30/min), and the reaction temperature was set at 1500 mol/min. °C (±20 °C), reaction time
A SiC layer was formed on the surface of the graphite base material for 60 minutes.

比較実験例 一方第1図に示す従来装置に、上記本発明実験
例と同じ仕様の円板形の黒鉛基材を配置し、以下
H2ガスの流量を15/分とした以外は本発明実
験例と同一条件で上記黒鉛基材の表面にSiCの蒸
着膜を形成した。
Comparative Experimental Example On the other hand, a disk-shaped graphite base material with the same specifications as the above-mentioned experimental example of the present invention was placed in the conventional apparatus shown in FIG.
A vapor deposited SiC film was formed on the surface of the graphite base material under the same conditions as in the experimental example of the present invention except that the flow rate of H 2 gas was 15/min.

上記の実験例によれば、蒸着膜の結晶粒の大き
さは従来方式では平均約20μmであるのに対し、
本発明の場合では平均約50μmで約2倍以上の結
晶成長が認められた。次に従来方式の場合には基
材表面の孔部の周囲と基材表面の外周部の角部に
柱状に異常に伸びた結晶が粗の状態で蒸着された
が本発明の場合には上記のような現象は認められ
なかつた。さらに上記蒸着層を形成した基材につ
いてヒートサイクルテストを行つた。すなわち上
記基材を加熱炉で400℃に加熱した後20℃の水中
に投下する試験を行つた結果、従来装置の場合に
は4回目の水中投下で蒸着層にクラツクが現れた
が、本発明の場合には13回目ではじめてクラツク
が出現した。(いずれも目視観察による)したが
つて本発明の蒸着層の耐熱衝撃性が従来装置の場
合より向上していることが判明できた。
According to the above experimental example, the average size of the crystal grains in the deposited film is about 20 μm in the conventional method, whereas
In the case of the present invention, crystal growth of about twice or more was observed with an average diameter of about 50 μm. Next, in the case of the conventional method, abnormally elongated columnar crystals were deposited in a rough state around the holes on the substrate surface and at the corners of the outer periphery of the substrate surface, but in the case of the present invention, the above No such phenomenon was observed. Furthermore, a heat cycle test was conducted on the base material on which the vapor deposited layer was formed. That is, as a result of a test in which the above-mentioned substrate was heated to 400°C in a heating furnace and then dropped into water at 20°C, cracks appeared in the vapor deposited layer after the fourth drop into water using the conventional device, but with the present invention, cracks appeared in the vapor deposition layer. In the case of , the crack appeared for the first time on the 13th time. (All results were based on visual observation) Therefore, it was found that the thermal shock resistance of the vapor deposited layer of the present invention was improved compared to that of the conventional apparatus.

このように本発明によると化学気相蒸着装置に
おける反応室内において導入する原料ガスと先に
導入され反応室内を自然対流している原料ガスと
が衝突することがないので基材の上面にこれと平
行に乱れのない原料ガスを均一に流すことができ
るため基材の全表面に均質で安定した蒸着層を形
成しうるなどその効果は極めて大である。
As described above, according to the present invention, there is no collision between the raw material gas introduced into the reaction chamber of the chemical vapor deposition apparatus and the raw material gas introduced earlier and undergoing natural convection within the reaction chamber, so that the upper surface of the substrate is coated with the raw material gas. Since the raw material gas can be uniformly flowed in parallel without turbulence, it is possible to form a homogeneous and stable vapor deposition layer on the entire surface of the base material, which is extremely effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の化学気相蒸着装置の断面図、第
2図は本発明になる化学気相蒸着装置の一実施例
の概略を示す断面図、第3図は第2図における原
料ガス供給部材を説明する拡大断面図である。 符号の説明、1……チヤンバーベース、1a…
…孔部、1b……孔部、1c……中央孔部、1d
……突起部、1e……排気口、2……チヤンバ
ー、3……水冷ジヤケツト、3a……冷却水入
口、3b……冷却水出口、4……ワークコイルカ
バー、4a……外筒、4b……内筒、4c……天
井部、5……ワークコイル、5a,5b……端
部、6……Oリング、7……下部基材ホルダー、
8……上部基材ホルダー、8a……つば部、9…
…基材、9a……基材表面、10……ノズルホル
ダー、11……ノズル、11a……上端封止部、
11b……噴出口、12……原料ガス、12a…
…原料ガス噴出流、13……下降流、13a……
上昇流、13b……斜上昇流、14……排ガス、
15……冷却水、18……皿形整流板、18a…
…周縁部、18b……水平部、18c……脚部、
21……ノズルホルダー、22……原料ガス噴出
管、22a……中空部、22b……縮径部、22
c……孔部、22d……噴出開口部、23……ジ
ヤケツト、23a……つば部、23b……空間
部、24……接合管、24a……孔部、25……
水平流、25b……上昇流。
Fig. 1 is a sectional view of a conventional chemical vapor deposition apparatus, Fig. 2 is a sectional view schematically showing an embodiment of the chemical vapor deposition apparatus of the present invention, and Fig. 3 is a raw material gas supply in Fig. 2. It is an enlarged sectional view explaining a member. Explanation of symbols, 1...Chamber base, 1a...
...hole, 1b...hole, 1c...center hole, 1d
...Protrusion, 1e...Exhaust port, 2...Chamber, 3...Water cooling jacket, 3a...Cooling water inlet, 3b...Cooling water outlet, 4...Work coil cover, 4a...Outer cylinder, 4b ... Inner cylinder, 4c ... Ceiling part, 5 ... Work coil, 5a, 5b ... End part, 6 ... O ring, 7 ... Lower base material holder,
8...Upper base material holder, 8a...Brim part, 9...
... Base material, 9a ... Base material surface, 10 ... Nozzle holder, 11 ... Nozzle, 11a ... Upper end sealing part,
11b...Ejection port, 12...Source gas, 12a...
... Raw material gas jet flow, 13... Downflow, 13a...
Upflow, 13b... Oblique upflow, 14... Exhaust gas,
15...Cooling water, 18...Dish-shaped rectifying plate, 18a...
...peripheral part, 18b...horizontal part, 18c...leg part,
21... Nozzle holder, 22... Raw material gas ejection pipe, 22a... Hollow part, 22b... Diameter reduction part, 22
c... hole, 22d... jet opening, 23... jacket, 23a... collar, 23b... space, 24... joint pipe, 24a... hole, 25...
Horizontal flow, 25b...upward flow.

Claims (1)

【特許請求の範囲】[Claims] 1 化学気相反応を行うための反応室と、該反応
室に原料ガスを供給する原料ガス供給部材と、上
記反応室内に被処理表面が水平となるように配置
さるる基材を加熱する加熱手段とを具備し、かつ
上記原料ガス供給部材を上記基材の中央部に設け
た孔部を貫通して立設してなる化学気相蒸着装置
において、上記原料ガス供給部材を、ベンチユリ
ー形状の中空部を有し、該中空部下方の縮径部の
側面に複数個の孔部を設け上端に噴出開口部を有
する原料ガス噴出管と、該原料ガス噴出管の外周
に間隔を存して設けられ、下端に外側に湾曲状に
拡るつば部を有するジヤケツトと上方にひろがる
ラツパ管状で、かつ複数個の孔部を設けその下縁
を上記原料ガス噴出管の噴出開口部外側にまたそ
の上縁を上記ジヤケツトの上端内側に接続する接
合管とから構成し、さらに基材の周囲に該周囲に
近接し基材の上面と同じかやや高い水平部および
上方に向い湾曲する周縁部を有する皿形整流板を
具備してなる化学気相蒸着装置。
1. A reaction chamber for carrying out a chemical vapor phase reaction, a raw material gas supply member for supplying raw material gas to the reaction chamber, and heating for heating a base material placed in the reaction chamber so that the surface to be treated is horizontal. In the chemical vapor deposition apparatus, the source gas supply member is provided vertically through a hole provided in the center of the base material. A raw material gas jet pipe having a hollow part, a plurality of holes on the side surface of the reduced diameter part below the hollow part, and a jet opening at the upper end, and a space provided on the outer periphery of the raw material gas jet pipe. The jacket is provided with a jacket having a flange extending outwardly in a curved manner at the lower end, and a jacket extending upwardly in the shape of a tube and having a plurality of holes, the lower edge of which is located outside the ejection opening of the raw material gas ejection pipe. a joint pipe whose upper edge connects to the inside of the upper end of the jacket, and further has a horizontal part around the base material close to the periphery and at the same level or slightly higher than the top surface of the base material, and a peripheral edge part that curves upward. A chemical vapor deposition device equipped with a dish-shaped rectifying plate.
JP24856786A 1986-10-20 1986-10-20 Chemical vapor deposition device Granted JPS62149883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24856786A JPS62149883A (en) 1986-10-20 1986-10-20 Chemical vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24856786A JPS62149883A (en) 1986-10-20 1986-10-20 Chemical vapor deposition device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15529583A Division JPS6046374A (en) 1983-08-25 1983-08-25 Chemical gaseous phase vapor deposition apparatus

Publications (2)

Publication Number Publication Date
JPS62149883A JPS62149883A (en) 1987-07-03
JPS6249350B2 true JPS6249350B2 (en) 1987-10-19

Family

ID=17180062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24856786A Granted JPS62149883A (en) 1986-10-20 1986-10-20 Chemical vapor deposition device

Country Status (1)

Country Link
JP (1) JPS62149883A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19803740C2 (en) * 1998-01-30 2001-05-31 Mtu Aero Engines Gmbh Gas phase coating method and device for gas phase coating workpieces

Also Published As

Publication number Publication date
JPS62149883A (en) 1987-07-03

Similar Documents

Publication Publication Date Title
JP4587640B2 (en) Crystal layer deposition apparatus and crystal layer deposition method
KR101167664B1 (en) Baffled liner cover
KR20120094038A (en) Fluid bed reactor
JP3414475B2 (en) Crystal growth equipment
JP2006527157A (en) System for growing silicon carbide crystals
JP2006069888A (en) Method for manufacturing polycrystal silicon rod and manufacturing apparatus
JPH06247789A (en) Inert gas straightening and blowing device for device for pulling up single crystal
TWI579419B (en) Reactor and process for preparing granular polysilicon
JPS6249350B2 (en)
JP2009071210A (en) Susceptor and epitaxial growth system
JP2018029181A (en) Upper cone body for epitaxy chamber
JPS6214222B2 (en)
US20080041309A1 (en) Silicon Manufacturing Apparatus
JPH09245957A (en) High frequency induction heating furnace
JP4354758B2 (en) Single crystal pulling device
JP4542859B2 (en) Vapor growth equipment
JP2012049316A (en) Film deposition apparatus and film deposition method
JP2011184243A (en) Apparatus for producing chlorosilane
JP6078428B2 (en) Wafer support and chemical vapor deposition apparatus using the wafer support
JP6413925B2 (en) Silicon carbide single crystal manufacturing equipment
CN220012799U (en) Temperature control part and CVD reaction device
JPS6254081A (en) Vapor growth device
WO2024045822A1 (en) Temperature control component and cvd reaction device
JP4515227B2 (en) Vapor growth equipment
JPH06232054A (en) Manufacture of susceptor