JPS6214222B2 - - Google Patents

Info

Publication number
JPS6214222B2
JPS6214222B2 JP15529583A JP15529583A JPS6214222B2 JP S6214222 B2 JPS6214222 B2 JP S6214222B2 JP 15529583 A JP15529583 A JP 15529583A JP 15529583 A JP15529583 A JP 15529583A JP S6214222 B2 JPS6214222 B2 JP S6214222B2
Authority
JP
Japan
Prior art keywords
raw material
material gas
base material
chemical vapor
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15529583A
Other languages
Japanese (ja)
Other versions
JPS6046374A (en
Inventor
Michihiro Umemori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP15529583A priority Critical patent/JPS6046374A/en
Publication of JPS6046374A publication Critical patent/JPS6046374A/en
Publication of JPS6214222B2 publication Critical patent/JPS6214222B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45506Turbulent flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/4551Jet streams
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は例えば基材の被膜形成処理などに用い
られる化学気相蒸着装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a chemical vapor deposition apparatus used, for example, for forming a film on a substrate.

一般に黒鉛や金属などの表面に化学蒸着法によ
り炭化ケイ素、窒化ケイ素などの被膜を形成する
場合などには第1図の断面図に示すような化学気
相蒸着装置が使用されている。すなわち該化学気
相蒸着装置は円板形のステンレス製などのチヤン
バーベース1の上に外筒4a、内筒4bおよび天
井部4cからなる石英製のワークコイルカバー4
が設置され該ワークコイルカバー4内に高周波誘
導加熱用の銅製のワークコイル5が収納される。
該ワークコイル5は内筒4bの内側周囲を円形の
渦巻状に同一水平面上で巻かれた形状を有し両端
部5aおよび5bはチヤンバーベース1に設けら
れた孔部1a,1bを通り加熱源である高周波発
振器(図示せず)に接続され加熱手段を構成して
いる。
Generally, when forming a film of silicon carbide, silicon nitride, etc. on the surface of graphite, metal, etc. by chemical vapor deposition, a chemical vapor deposition apparatus as shown in the cross-sectional view of FIG. 1 is used. That is, the chemical vapor deposition apparatus has a work coil cover 4 made of quartz, which is composed of an outer cylinder 4a, an inner cylinder 4b, and a ceiling part 4c, on a disc-shaped chamber base 1 made of stainless steel or the like.
is installed, and a copper work coil 5 for high frequency induction heating is housed within the work coil cover 4.
The work coil 5 has a circular spiral shape wound around the inner circumference of the inner cylinder 4b on the same horizontal plane, and both ends 5a and 5b pass through holes 1a and 1b provided in the chamber base 1 and are heated. The heating means is connected to a high frequency oscillator (not shown) as a source.

次に原料ガス供給部材の構造を説明する。7は
チヤンバーベース1の中央孔部1cと内筒4b中
に挿入された下部基材ホルダーでこの上につば部
8aを設けた上部基材ホルダー8が接続され、上
記つば部8a上に中央に孔を有する板状の基材9
が水平に載せられている。なお図示はしないが下
部基材ホルダー7はモータに接続され30rpm以下
に低速回転し、これにともない上部基材ホルダー
8、基材9が水平に回転する。下部基材ホルダー
7と上部基材ホルダー8の内部における軸方向の
孔部にノズルホルダー10が挿入され、この上に
ノズル11が隙間ばめで接合されている。ノズル
11は上端封止部11aおよび水平方向放射状に
多数の噴出口11bが設けられている。
Next, the structure of the raw material gas supply member will be explained. Reference numeral 7 denotes a lower base material holder inserted into the center hole 1c of the chamber base 1 and the inner tube 4b, and an upper base material holder 8 having a collar 8a is connected thereto. A plate-shaped base material 9 having holes in the
is placed horizontally. Although not shown, the lower substrate holder 7 is connected to a motor and rotates at a low speed of 30 rpm or less, and the upper substrate holder 8 and the substrate 9 rotate horizontally accordingly. A nozzle holder 10 is inserted into an axial hole inside the lower substrate holder 7 and the upper substrate holder 8, and a nozzle 11 is joined thereon by a clearance fit. The nozzle 11 is provided with an upper end sealing portion 11a and a large number of ejection ports 11b radially arranged in the horizontal direction.

なお、上記下部基材ホルダー7は電気絶縁性な
らびに断熱性をもつ石英、セラミツクなど、上部
基材ホルダー8は1000〜1600℃の耐熱性を有する
黒鉛、アルミナ、SiCなど、またノズルホルダー
10は石英、ノズル11は黒鉛、アルミナ、SiC
などが用いられる。
The lower substrate holder 7 is made of quartz, ceramic, etc. that have electrical insulation and heat insulation properties, the upper substrate holder 8 is made of graphite, alumina, SiC, etc. that have heat resistance of 1000 to 1600°C, and the nozzle holder 10 is made of quartz. , the nozzle 11 is made of graphite, alumina, SiC
etc. are used.

さらに反応室として2はステンレスまたは石英
製のドーム状のチヤンバーで該チヤンバー2の外
側はステンレスまたは石英製の水冷ジヤケツト3
で覆れる。チヤンバー2の下端部はチヤンバーベ
ース1の外周側に設けられたリング状の突起部1
dにOリング6を介し接触しガスシールされる。
尚チヤンバー2は冷却水入口3aから出口3bに
向つて流れる冷却水15によつて冷却される。
Furthermore, the reaction chamber 2 is a dome-shaped chamber made of stainless steel or quartz, and the outside of the chamber 2 is a water-cooled jacket 3 made of stainless steel or quartz.
It can be covered with The lower end of the chamber 2 is a ring-shaped protrusion 1 provided on the outer circumferential side of the chamber base 1.
d through the O-ring 6 and is gas-sealed.
The chamber 2 is cooled by the cooling water 15 flowing from the cooling water inlet 3a toward the outlet 3b.

化学蒸着法とは高温での気相化学反応例えば揮
発性の金属のハロゲン化物や有機化合物、炭化水
素化合物などの熱分解、水素還元、置換反応など
によつて金属、黒鉛などの基材の表面に高融点金
属、炭化物、硼化物、珪化物、窒化物などの蒸着
層を形成する方法であり、上記蒸着層は加熱され
た基材表面に原料ガスが接触し核を生成し、これ
が結晶に成長することにより形成される。したが
つて上記結晶の成長速度は物質が気相から基材表
面に到達する速度すなわち気相中の物質の移動速
度と物質が結晶構造に組上げられる速度すなわち
表面反応速度により支配される。そして気相中の
物質の移動速度は気相中の物質の過飽和度および
基材表面附近におけるガスの流動状態が主な要因
となり、また一方、表面反応速度は主に反応温度
に左右される。上記中反応温度を十分高くとれば
表面反応速度は一定となるが、一方基材表面附近
におけるガスの流動状態は複雑で安定した蒸着層
の形成上問題となる。すなわち基材表面附近には
原料ガスの乱れがない層状に流れている層流境界
層のみではなく、じよう乱と呼ばれる不規則な渦
で満されている乱流境界層が形成される。この乱
流境界層においては層流境界層にくらべ基材表面
に持込まれる物質の量も多いが同時に基材表面か
ら持出される量も多くなり安定した結晶ができに
くい。さらに熱移動も活発であり急激な温度変化
を受けながら生長する被膜の結晶内部には熱応力
が残留する不具合がある。
Chemical vapor deposition is a vapor phase chemical reaction at high temperatures, such as thermal decomposition of volatile metal halides, organic compounds, hydrocarbon compounds, hydrogen reduction, substitution reactions, etc. This is a method of forming a vapor deposited layer of high melting point metal, carbide, boride, silicide, nitride, etc. on Formed by growth. Therefore, the growth rate of the crystal is controlled by the rate at which the substance reaches the surface of the substrate from the gas phase, ie, the transfer rate of the substance in the gas phase, and the rate at which the substance is assembled into a crystal structure, ie, the surface reaction rate. The transfer rate of a substance in the gas phase is mainly determined by the degree of supersaturation of the substance in the gas phase and the flow state of the gas near the surface of the substrate, while the surface reaction rate is mainly influenced by the reaction temperature. If the above-mentioned reaction temperature is set high enough, the surface reaction rate becomes constant, but on the other hand, the flow state of the gas near the surface of the substrate is complicated and poses a problem in forming a stable vapor deposited layer. That is, near the surface of the base material, not only a laminar boundary layer in which the raw material gas flows in a layered manner without turbulence, but also a turbulent boundary layer filled with irregular vortices called turbulence is formed. In this turbulent boundary layer, the amount of substances brought into the substrate surface is larger than in the laminar boundary layer, but at the same time, the amount taken out from the substrate surface is also large, making it difficult to form stable crystals. Furthermore, heat transfer is active, and there is a problem in that thermal stress remains inside the crystals of the coating, which grows while undergoing rapid temperature changes.

上記を第1図に示す従来の化学気相蒸着装置の
場合につき具体的に説明するとチヤンバー2の中
においては噴出口11bからの原料ガス噴出流1
2aおよびこれのチヤンバー2内での自然対流で
ある下降流13、上昇流13a、斜上昇流13b
を生ずるが、原料ガス12の噴出流12aが上昇
流13aや斜上昇流13bなどに衝突し、さらに
斜上昇流13bの一部は基材9の側面9bに直接
衝突して周囲の気流はかく乱状態となる。上記の
流動状態によつて前述の乱流境界層が発生し不均
質な結晶被膜が基材表面9aの大部分あるいは中
央部や側面9bに形成されることになる(尚、反
応後の排ガス14は排気口1eより外部に排出さ
れる)。
To explain the above specifically in the case of the conventional chemical vapor deposition apparatus shown in FIG.
2a and its natural convection within the chamber 2, such as a downward flow 13, an upward flow 13a, and an inclined upward flow 13b.
However, the jet flow 12a of the raw material gas 12 collides with the upward flow 13a, the oblique upward flow 13b, etc., and a part of the oblique upward flow 13b directly collides with the side surface 9b of the base material 9, disturbing the surrounding airflow. state. Due to the above-mentioned flow state, the above-mentioned turbulent boundary layer is generated, and an inhomogeneous crystalline film is formed on most of the substrate surface 9a or on the center and side surfaces 9b (note that the exhaust gas 14 after the reaction is discharged to the outside from the exhaust port 1e).

本発明の目的は上記欠点のない化学気相蒸着装
置を提供することにある。
The object of the invention is to provide a chemical vapor deposition apparatus which does not have the above-mentioned disadvantages.

本発明は化学気相反応を行うための反応室と、
該反応室に原料ガスを供給する原料ガス供給部材
と、上記反応室内に被処理表面が水平となるよう
に配置される基材を加熱する加熱手段とを具備し
かつ上記原料ガス供給部材を上記基材の中央部に
設けた孔部を貫通して立設してなる化学気相蒸着
装置において、上記原料ガス供給部材を、上方に
複数個の原料ガスの噴出口を有する原料ガス噴出
管と該原料ガスの上端に固定され、上記噴出口か
ら噴出する原料ガスをその外面に沿つて導く上方
に拡がるラツパ管状の整流管とから構成し、さら
に基材の周囲に、該周囲に近接し基材の上面と同
じかやや高い水平部および上方に向い湾曲する周
縁部からなる皿形整流板を具備してなる化学気相
蒸着装置に関する。
The present invention includes a reaction chamber for carrying out a chemical vapor phase reaction;
The raw material gas supply member is provided with a raw material gas supply member that supplies raw material gas to the reaction chamber, and a heating means that heats a substrate disposed in the reaction chamber so that the surface to be treated is horizontal, and the raw material gas supply member is In a chemical vapor deposition apparatus that is installed vertically through a hole provided in the center of a base material, the raw material gas supply member is a raw material gas ejection pipe having a plurality of raw material gas ejection ports above. It consists of a rectifying tube in the shape of a lappered tube fixed to the upper end of the raw material gas and expanding upward to guide the raw material gas ejected from the jetting port along its outer surface. This invention relates to a chemical vapor deposition apparatus comprising a dish-shaped rectifying plate consisting of a horizontal part that is at or slightly higher than the upper surface of the material and a peripheral part that curves upward.

以下図面により本発明を説明する。 The present invention will be explained below with reference to the drawings.

第2図は本発明になるチヤンバー径360mmの化
学気相蒸着装置の一実施例を示す断面図であり、
16は外径15mmの原料ガス噴出管であり、上端の
頭部16aの外周に斜め上方に向う原料ガスの噴
出口16c(原料ガス噴出管の軸線となす角が30
゜で径2mm)が2段8個設けられている。17は
上方に最大径70mmに拡がつたラツパ管状の整流管
であり、該整流管17は下方が上記頭部16a上
に設けられた段付部16bに隙間バメで接続され
る。なお原料ガス噴出管16は黒鉛製である。ま
た整流管17は石英製であるがアルミナ磁器ある
いは黒鉛であつてもよい。18は円形の基材9の
周囲に取付けられた外径345mm、内径120mmの皿形
整流板であり、該皿形整流板18は基材9の周囲
に近接する水平部18b、上方に向い湾曲する半
径50mmの周縁部18aからなる。なお18cは皿
形整流板の下方に設けられた円筒形の脚部であ
り、これによつて上記水平部18bが基材9の基
材表面9aと同一高さが、これよりやや高く配置
される。なお上記皿形整流板18は高さ53mmの一
体品であるが、基材9の大きさなどに応じて円周
上複数に分割してもよい。さらに材質は上記整流
管17と同様の材料である。なお第2図の上記以
外の構成は第1図の場合と同じである。
FIG. 2 is a sectional view showing an embodiment of a chemical vapor deposition apparatus with a chamber diameter of 360 mm according to the present invention.
Reference numeral 16 denotes a raw material gas jetting pipe with an outer diameter of 15 mm, and a raw material gas jetting port 16c facing diagonally upward on the outer periphery of the head 16a at the upper end (with an angle of 30 mm with the axis of the raw material gas jetting pipe).
2 mm in diameter) are provided in 2 stages. Reference numeral 17 denotes a rectifier tube in the shape of a flattened tube that expands upward to a maximum diameter of 70 mm, and the lower portion of the rectifier tube 17 is connected to a stepped portion 16b provided on the head 16a with a clearance fit. Note that the raw material gas ejection pipe 16 is made of graphite. Although the rectifier tube 17 is made of quartz, it may also be made of alumina porcelain or graphite. Reference numeral 18 denotes a dish-shaped rectifier plate with an outer diameter of 345 mm and an inner diameter of 120 mm attached around the circular base material 9. It consists of a peripheral edge part 18a with a radius of 50 mm. Note that 18c is a cylindrical leg provided below the dish-shaped rectifying plate, which allows the horizontal portion 18b to be placed at the same height as the base material surface 9a of the base material 9, but slightly higher than this. Ru. Although the dish-shaped rectifier plate 18 is a single piece with a height of 53 mm, it may be divided into a plurality of pieces on the circumference depending on the size of the base material 9 and the like. Furthermore, the material is the same as that of the rectifier tube 17 described above. The configuration of FIG. 2 other than the above is the same as that of FIG. 1.

次に第3図は第2図に示した原料ガス噴出管1
6と異なる他の原料ガス噴出管20の部分のみの
他の実施例であり、上端に設けられた頭部20a
の上面中央部に設けられたザグリ穴20cに整流
管17の下端部が隙間バメで挿入固定されるとと
もに上面の周囲に頭部20aの内部の空間部20
bに連通する複数個の原料ガス噴出口20dが垂
直に設けられる。
Next, Figure 3 shows the raw material gas ejection pipe 1 shown in Figure 2.
This is another embodiment of only a part of the raw material gas ejection pipe 20 that is different from 6, and the head 20a provided at the upper end.
The lower end of the rectifier tube 17 is inserted and fixed into the counterbore hole 20c provided in the center of the upper surface with a clearance fit, and a space 20 inside the head 20a is provided around the upper surface.
A plurality of raw material gas ejection ports 20d communicating with b are vertically provided.

次に上記第2図、第3図に示した構成の化学気
相蒸着装置の場合の原料ガスの流れを第2図によ
り説明すると、噴出口16cまたは20dから噴
出した原料ガス噴出流12aは整流管17の外面
に沿つて上方側方に流れチヤンバー2の天井部内
壁で冷却され下降流19となりチヤンバー2の胴
部内壁に沿つて流下し一部は排気口1eを通り排
ガス14として排出されるが、大部分は皿形整流
板18の周縁部18aにより方向が変り水平部1
8bに到り水平方向に均一に整流された水平流1
9aは基材表面9a上を滑らかに移動し、次いで
基材9の中心部に到り上昇流19bとなる。この
場合、上昇流19bは新たに噴出口16cから噴
出する原料ガス噴出流12aと衝突することがな
いのでチヤンバー2内での気流のみだれがなく原
料ガス12は常に均一の整流状態で基材表面9a
上を流れることになる。
Next, the flow of the raw material gas in the case of the chemical vapor deposition apparatus having the configuration shown in FIGS. 2 and 3 above will be explained with reference to FIG. It flows upward and laterally along the outer surface of the pipe 17, is cooled by the inner wall of the ceiling of the chamber 2, becomes a downward flow 19, flows along the inner wall of the body of the chamber 2, and a portion passes through the exhaust port 1e and is discharged as exhaust gas 14. However, most of the direction changes due to the peripheral edge 18a of the dish-shaped rectifier plate 18, and the horizontal part 1
Horizontal flow 1 that reaches 8b and is rectified uniformly in the horizontal direction
9a moves smoothly on the base material surface 9a, then reaches the center of the base material 9 and becomes an upward flow 19b. In this case, the rising flow 19b does not collide with the raw material gas jet flow 12a newly jetted from the jet port 16c, so there is no sagging of the airflow in the chamber 2, and the raw material gas 12 is always in a uniform rectified state on the substrate surface. 9a
It will flow above.

次に本発明による化学気相蒸着装置を用いた場
合と従来の装置により形成した蒸着層の特性の比
較を示す。
Next, a comparison will be made between the characteristics of deposited layers formed using the chemical vapor deposition apparatus according to the present invention and those formed using a conventional apparatus.

本発明実験例 第2図に示した装置に、中央に孔を有する直径
100mmの円板形の黒鉛基材を配置し、原料ガスと
してSiCl4及びCCl4の各12×10-3mol/分をキヤリ
アーガスH2(15/分)と共にチヤンバー内に
送り込み、反応温度1500℃(±20℃)、反応時間
60分の条件で黒鉛基材の表面にSiC層を形成し
た。
Experimental Example of the Present Invention The device shown in Figure 2 has a diameter hole in the center.
A 100 mm disk-shaped graphite substrate was placed, and SiCl 4 and CCl 4 were fed into the chamber at 12 × 10 -3 mol/min each as source gases together with carrier gas H 2 (15/min), and the reaction temperature was set at 1500 mol/min. °C (±20 °C), reaction time
A SiC layer was formed on the surface of the graphite base material for 60 minutes.

比較実験例 一方第1図に示す従来装置に、中央に孔を有す
る直径100mmの円板形の黒鉛基材を配置し、以下
H2ガスの流量を15/分とした以外は本発明実
験例と同一条件で上記黒鉛基材の表面にSiCの蒸
着膜を形成した。
Comparative Experimental Example On the other hand, a disk-shaped graphite base material with a diameter of 100 mm with a hole in the center was placed in the conventional device shown in Figure 1, and the following
A vapor deposited SiC film was formed on the surface of the graphite base material under the same conditions as in the experimental example of the present invention except that the flow rate of H 2 gas was 15/min.

上記の実験例によれば、蒸着膜の結晶粒の大き
さは従来方式では平均約20μmであるのに対し、
本発明の場合では平均約50μmで約2倍以上の結
晶成長が認められた。次に従来方式の場合には基
材表面の孔部の周囲と基材表面の外周部の角部に
柱状に異常に伸びた結晶が粗の状態で蒸着された
が本発明の場合には上記のような現象は認められ
なかつた。さらに上記蒸着層を形成した基材につ
いてヒートサイクルテストを行なつた。すなわち
上記基材を加熱炉で400℃に加熱した後20℃の水
中に投下する試験を行なつた結果、従来装置の場
合には4回目の水中投下で蒸着層にクラツクが現
れたが、本発明の場合には13回目ではじめてラツ
クが出現した。(いずれも目視観察による)した
がつて本発明の蒸着層の耐熱衝撃性が従来装置の
場合より向上していることが判明できた。
According to the above experimental example, the average size of the crystal grains in the deposited film is about 20 μm in the conventional method, whereas
In the case of the present invention, crystal growth of about twice or more was observed with an average diameter of about 50 μm. Next, in the case of the conventional method, abnormally elongated columnar crystals were deposited in a rough state around the holes on the substrate surface and at the corners of the outer periphery of the substrate surface, but in the case of the present invention, the above No such phenomenon was observed. Furthermore, a heat cycle test was conducted on the base material on which the vapor deposited layer was formed. In other words, as a result of a test in which the above substrate was heated to 400°C in a heating furnace and then dropped into water at 20°C, cracks appeared in the vapor deposited layer on the fourth drop into water using the conventional equipment, but this In the case of invention, luck appeared for the first time at the 13th time. (All results were based on visual observation) Therefore, it was found that the thermal shock resistance of the vapor deposited layer of the present invention was improved compared to that of the conventional apparatus.

このように本発明によると化学気相蒸着装置に
おける反応室内において導入する原料ガスと先に
導入され反応室内を自然対流している原料ガスと
が衝突することがないので基材の上面にこれと平
行に乱れのない原料ガスを均一に流すことができ
るため基材の全表面に均質で安定した蒸着層を形
成しうるなどその効果は極めて大である。
As described above, according to the present invention, there is no collision between the raw material gas introduced into the reaction chamber of the chemical vapor deposition apparatus and the raw material gas introduced earlier and undergoing natural convection within the reaction chamber, so that the upper surface of the substrate is coated with the raw material gas. Since the raw material gas can be uniformly flowed in parallel without turbulence, it is possible to form a homogeneous and stable vapor deposition layer on the entire surface of the base material, which is extremely effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の化学気相蒸着装置の断面図、第
2図は本発明になる化学気相蒸着装置の一実施例
を示す断面図、第3図は第2図における原料ガス
噴出管部分の他の実施例を示す断面図である。 符号の説明、1……チヤンバーベース、1a…
…孔部、1b……孔部、1c……中央部、1d…
…突起部、1e……排気口、2……チヤンバー、
3……水冷ジヤケツト、3a……冷却水入口、3
b……冷却水出口、4……ワークコイルカバー、
4a……外筒、4b……内筒、4c……天井部、
5……ワークコイル、5a,5b……端部、6…
…Oリング、7……下部基材ホルダー、8……上
部基材ホルダー、8a……つば部、9……基材、
9a……基材表面、10……ノズルホルダー、1
1……ノズル、11a……上端封止部、11b…
…噴出口、12……原料ガス、12a……原料ガ
ス噴出流、13……下降流、13a……上昇流、
13b……斜上昇流、14……排ガス、15……
冷却水、16……原料ガス噴出管、16a……頭
部、16b……段付部、16c……噴出口、17
……整流管、18……皿形整流板、18a……周
縁部、18b……水平部、18c……脚部、19
……下降流、19a……水平流、19b……上昇
流、20……原料ガス噴出管、20a……頭部、
20b……空間部、20c……ザクリ穴、20d
……噴出口。
FIG. 1 is a cross-sectional view of a conventional chemical vapor deposition apparatus, FIG. 2 is a cross-sectional view of an embodiment of the chemical vapor deposition apparatus according to the present invention, and FIG. 3 is a portion of the raw material gas ejection pipe in FIG. 2. FIG. 3 is a sectional view showing another embodiment of the invention. Explanation of symbols, 1...Chamber base, 1a...
...hole, 1b...hole, 1c...center, 1d...
...Protrusion, 1e...Exhaust port, 2...Chamber,
3...Water cooling jacket, 3a...Cooling water inlet, 3
b...Cooling water outlet, 4...Work coil cover,
4a...outer cylinder, 4b...inner cylinder, 4c...ceiling part,
5... Work coil, 5a, 5b... End, 6...
...O-ring, 7... Lower base material holder, 8... Upper base material holder, 8a... Brim portion, 9... Base material,
9a...Substrate surface, 10...Nozzle holder, 1
1... Nozzle, 11a... Upper end sealing part, 11b...
...Ejection port, 12... Raw material gas, 12a... Raw material gas jet flow, 13... Downflow, 13a... Upflow,
13b... Oblique upward flow, 14... Exhaust gas, 15...
Cooling water, 16... Raw material gas ejection pipe, 16a... Head, 16b... Stepped part, 16c... Ejection port, 17
... Rectifier tube, 18 ... Dish-shaped rectifier plate, 18a ... Peripheral part, 18b ... Horizontal part, 18c ... Leg part, 19
...downflow, 19a...horizontal flow, 19b...upflow, 20...raw material gas ejection pipe, 20a...head,
20b... Space, 20c... Counterbore hole, 20d
... spout.

Claims (1)

【特許請求の範囲】[Claims] 1 化学気相反応を行うための反応室と、該反応
室に原料ガスを供給する原料ガス供給部材と、上
記反応室内に被処理表面が水平となるように配置
される基材を加熱する加熱手段とを具備し、かつ
上記原料ガス供給部材を上記基材の中央部に設け
た孔部を貫通して立設してなる化学気相蒸着装置
において、上記原料ガス供給部材を、上方に複数
個の原料ガスの噴出口を有する原料ガス噴出管と
該原料ガス噴出管の上端に固定され上記噴出口か
ら噴出する原料ガスをその外面に沿つて導く上方
に拡がるラツパ管状の整流管とから構成し、さら
に基材の周囲に該周囲に近接し基材の上面と同じ
かやや高い水平部および上方に向い湾曲する周縁
部を有する皿形整流板を具備してなる化学気相蒸
着装置。
1. A reaction chamber for carrying out a chemical vapor phase reaction, a raw material gas supply member that supplies raw material gas to the reaction chamber, and heating that heats a base material placed in the reaction chamber so that the surface to be treated is horizontal. In the chemical vapor deposition apparatus, the source gas supply member is provided vertically through a hole provided in the center of the base material. Consisting of a raw material gas ejection pipe having several raw material gas ejection ports, and a rectifier pipe in the shape of a bulrush tube that is fixed to the upper end of the raw material gas ejection pipe and expands upward to guide the raw material gas ejected from the jet ports along its outer surface. The chemical vapor deposition apparatus further comprises a dish-shaped rectifying plate around the base material, which is close to the periphery and has a horizontal part that is the same as or slightly higher than the upper surface of the base material, and a peripheral edge part that curves upward.
JP15529583A 1983-08-25 1983-08-25 Chemical gaseous phase vapor deposition apparatus Granted JPS6046374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15529583A JPS6046374A (en) 1983-08-25 1983-08-25 Chemical gaseous phase vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15529583A JPS6046374A (en) 1983-08-25 1983-08-25 Chemical gaseous phase vapor deposition apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP24856786A Division JPS62149883A (en) 1986-10-20 1986-10-20 Chemical vapor deposition device

Publications (2)

Publication Number Publication Date
JPS6046374A JPS6046374A (en) 1985-03-13
JPS6214222B2 true JPS6214222B2 (en) 1987-04-01

Family

ID=15602767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15529583A Granted JPS6046374A (en) 1983-08-25 1983-08-25 Chemical gaseous phase vapor deposition apparatus

Country Status (1)

Country Link
JP (1) JPS6046374A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2704679B2 (en) * 1991-04-11 1998-01-26 栄研化学株式会社 Composition for measuring ionic strength or specific gravity of liquid sample and test piece using the composition
JP6413925B2 (en) * 2015-05-20 2018-10-31 株式会社デンソー Silicon carbide single crystal manufacturing equipment

Also Published As

Publication number Publication date
JPS6046374A (en) 1985-03-13

Similar Documents

Publication Publication Date Title
EP0461194B1 (en) A high capacity epitaxial reactor
JPH1032173A (en) Manufacture of silicon carbide using chemical vapor precipitation method and device
JP2010232624A (en) Vapor phase growth apparatus for group-iii nitride semiconductor
JP3414475B2 (en) Crystal growth equipment
JP2006069888A (en) Method for manufacturing polycrystal silicon rod and manufacturing apparatus
JP2006527157A (en) System for growing silicon carbide crystals
JPH06247789A (en) Inert gas straightening and blowing device for device for pulling up single crystal
TWI579419B (en) Reactor and process for preparing granular polysilicon
JP2005520932A (en) Thin film deposition equipment on substrate
JP2009071210A (en) Susceptor and epitaxial growth system
JPS6214222B2 (en)
JP2006108312A (en) Vapor phase deposition device
KR20110088440A (en) Vapor phase growth device of group iii nitride semiconductor
JP2018029181A (en) Upper cone body for epitaxy chamber
GB2168080A (en) Vapour deposition apparatus and epitaxial layer growth methods
JPH09245957A (en) High frequency induction heating furnace
KR100626474B1 (en) Cvd reactor and use thereof
AU2005272378A1 (en) Silicon manufacturing apparatus
JPS6249350B2 (en)
JP4542859B2 (en) Vapor growth equipment
JPH07249580A (en) Thin film manufacturing device
JP6078428B2 (en) Wafer support and chemical vapor deposition apparatus using the wafer support
JPS6058613A (en) Epitaxial apparatus
JPS61202424A (en) Chemical vapor deposition equipment
JPH0234909A (en) Compound semiconductor vapor growth method and device