JPS6254081A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPS6254081A
JPS6254081A JP19341985A JP19341985A JPS6254081A JP S6254081 A JPS6254081 A JP S6254081A JP 19341985 A JP19341985 A JP 19341985A JP 19341985 A JP19341985 A JP 19341985A JP S6254081 A JPS6254081 A JP S6254081A
Authority
JP
Japan
Prior art keywords
bell jar
cooling fluid
nozzle
vapor phase
inner bell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19341985A
Other languages
Japanese (ja)
Other versions
JPS6327426B2 (en
Inventor
Nobuo Kashiwagi
伸夫 柏木
Shigeru Suzuki
繁 鈴木
Yoshihiro Miyanomae
宮之前 芳洋
Kotei Iwata
岩田 公弟
Taketoshi Ishikawa
石川 武敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP19341985A priority Critical patent/JPS6254081A/en
Publication of JPS6254081A publication Critical patent/JPS6254081A/en
Publication of JPS6327426B2 publication Critical patent/JPS6327426B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the deposition of the vapor phase reaction product on the inner face of an inner bell jar by spouting a cooling fluid in the specified shapes into a clearance between the inner bell jar and an outer bell jar in the title vapor growth device and increasing the cooling effect on the inner bell jar. CONSTITUTION:A reaction chamber 3 is composed of a stainless steel outer bell jar 4, a quartz inner bell jar 2 and a stainless steel base plate 1. A wafer 10 is placed in the chamber 3, a gaseous semiconductor material such as SiCl4 is supplied from the nozzle 12 of a hollow rotating shaft 11 and an Si semiconductor layer is formed on the surface of the wafer 10 by the thermal decomposition of the SiCl4. In this case, many nozzle holes 28 are provided on the nozzle 20 of a cooling fluid supply device fixed to the outer bell jar 4 to prevent the deposition of the Si semiconductor on the inner face of the inner bell jar 2, a cooling fluid such as air is spouted at high pressure at a small acute angle of alpha to the outer face of the inner bell jar to sufficiently cool the inner bell jar 2 and the thermal decomposition of the SiCl4 on the inner face of the inner bell jar 2 is prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、気相成長装置に係り、特に反応室を形成する
筒状またはベル状の石英部材の外側にこれを覆う外側壁
を設け、内側壁である石英部材と前記外側壁との間に冷
却流体を流して内側壁を冷却するようにした気相成長装
置における内側壁の効果的な冷却に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a vapor phase growth apparatus, and particularly relates to a cylindrical or bell-shaped quartz member forming a reaction chamber. The present invention relates to effective cooling of the inner wall in a vapor phase growth apparatus in which the inner wall is cooled by flowing a cooling fluid between the quartz member that is the wall and the outer wall.

〔従来技術〕[Prior art]

例えば縦型気相成長装置は、第2図に示すように、ステ
ンレス製のベースプレート1と石英製のインナベルジャ
2とによって反応室3を形成し、ベルジャ2の外側をス
テンレス製のアウタベルジャ4で覆うようになっており
、アウタベルジャ4は図示を省略したジャケット内に冷
却水を流して冷却すると共に、アウタベルジャ4の頂部
に設けた冷却流体供給口5からN2ガスや空気などの冷
却流体を供給すると共にアウタベルジャ4の下部寄りに
設けた複数の排気口6から排気することによって、両ベ
ルジャ2.4間の間隙7内に冷却流体を流してインナベ
ルジャ2を冷却していた。
For example, in a vertical vapor phase growth apparatus, as shown in FIG. 2, a reaction chamber 3 is formed by a base plate 1 made of stainless steel and an inner bell jar 2 made of quartz, and the outside of the bell jar 2 is covered with an outer bell jar 4 made of stainless steel. The outer bell jar 4 is cooled by flowing cooling water into a jacket (not shown), and a cooling fluid such as N2 gas or air is supplied from a cooling fluid supply port 5 provided at the top of the outer bell jar 4. By exhausting air from a plurality of exhaust ports 6 provided near the bottom of the belljar 4, a cooling fluid flows into the gap 7 between the two belljars 2 and 4, thereby cooling the inner belljar 2.

なお、第2図において、8はサセプタ、9はワークコイ
ル、10はウェハ、11は中空回転軸、12はノズル、
13は排気口、14は観察窓、15はサセプタ8の温度
コントロール用のホトセンサであり、ワークコイル9に
よりサセプタ8とウェハ10を加熱して、ノズル12か
ら半導体材料ガスを噴出させてウニ/・10の表面に半
導体の結晶を成長させる。
In addition, in FIG. 2, 8 is a susceptor, 9 is a work coil, 10 is a wafer, 11 is a hollow rotating shaft, 12 is a nozzle,
13 is an exhaust port, 14 is an observation window, and 15 is a photosensor for controlling the temperature of the susceptor 8. The work coil 9 heats the susceptor 8 and the wafer 10, and the semiconductor material gas is ejected from the nozzle 12. A semiconductor crystal is grown on the surface of 10.

前記冷却流体供給口5からの冷却流体によるインナベル
ジャ2の冷却は、このインナベルジャ2が高温になると
、ノズル12から反応室3内に供給され九半導体材料ガ
スがインナベルジャ2の内表面で熱分解を起こして付着
することを防止するために行なうものである。
The inner bell jar 2 is cooled by the cooling fluid from the cooling fluid supply port 5. When the inner bell jar 2 reaches a high temperature, the semiconductor material gas is supplied from the nozzle 12 into the reaction chamber 3 and causes thermal decomposition on the inner surface of the inner bell jar 2. This is done to prevent the product from getting stuck.

ところで、前記間隙7は比較的狭いため、従来は、冷却
流体供給口5t−第2図に示すように、間隙7に対して
開口する単なる穴とし1例えば60L/mjn  のよ
うな所定流量の冷却流体を供給して間隙7内に冷却流体
の流れを生じさせ、これによってインチ、ベルジャ2を
冷却するようにしていた。
By the way, since the gap 7 is relatively narrow, conventionally, the cooling fluid supply port 5t is simply a hole that opens to the gap 7, as shown in FIG. The fluid was supplied to create a flow of cooling fluid within the gap 7, thereby cooling the inch bell jar 2.

〔発明が解決しようとする問題点〕 しかしながら、冷却流体供給口5を単なる穴とした場合
には、60t/11i/RのN2ガスを流し、かつ比較
的分解温度が高い半導体材料ガスである四塩化シリコン
(SiC64)であっても、気相成長装置を例えば1時
間のような長時間に゛すると、インナベルジャ2の頂部
内表面にシリコンが付着してしまう。
[Problems to be Solved by the Invention] However, when the cooling fluid supply port 5 is made into a simple hole, 60t/11i/R of N2 gas is allowed to flow and N2 gas, which is a semiconductor material gas with a relatively high decomposition temperature, is used. Even if silicon chloride (SiC64) is used, silicon will adhere to the inner surface of the top of the inner bellger 2 if the vapor phase growth apparatus is used for a long time, such as one hour.

付着したシリコンは、サセプタ8から発する赤外線全吸
収するため、温度が上がってポリシリコ/を生成する。
The attached silicon completely absorbs the infrared rays emitted from the susceptor 8, so its temperature rises and polysilico/ is produced.

このポリシリコンの生成は速く、インナベルジャ2の頂
部−面に拡がり、ホトセンサ15による温度計測を不可
能にしたり、気相成長中にウニ・・10上に落下付着し
て結晶欠陥を誘発したりするなど、種々の問題を生ずる
。前記ポリシリ・コンは、塩化水素によるガスエツチン
グや沸酸と硝酸の混合液による洗浄によって除去してい
るが、この除去のため生産性が落ち、また前記混合液に
よる洗浄ではその濃度管理を適確に行なわないと石英が
失透してしまうなどの問題を生ずるtめ、インナベルジ
ャ2への半導体材料の付着をより少なく押える必要があ
る。このためには、前記間隙7への冷却流体の供給流量
を増加させ、インナベルジャ2をより低温に保つように
すればよいが、ランニングコストが上昇すると共に、間
隙7が反応室3に通じている構造の気相成長装置では1
反応室3内の半導体材料ガスの流れに悪影響を及ぼすた
め、供給流量の増加には限界がある等の問題があった。
This polysilicon is generated quickly and spreads over the top surface of the inner bellger 2, making it impossible to measure the temperature with the photosensor 15, or falling and adhering to the sea urchin 10 during vapor phase growth, inducing crystal defects. This causes various problems. The polysilicon is removed by gas etching with hydrogen chloride or cleaning with a mixture of boiling acid and nitric acid, but productivity decreases due to this removal, and cleaning with the mixture requires proper concentration control. If this is not done, problems such as devitrification of the quartz will occur, so it is necessary to suppress the adhesion of the semiconductor material to the inner belljar 2 as much as possible. For this purpose, the flow rate of the cooling fluid supplied to the gap 7 may be increased to keep the inner bellger 2 at a lower temperature, but this increases running costs and also causes the gap 7 to communicate with the reaction chamber 3. In a vapor phase growth apparatus with a structure of 1
This has a negative effect on the flow of the semiconductor material gas in the reaction chamber 3, so there is a problem that there is a limit to the increase in the supply flow rate.

〔問題点を解決する定めの手段〕[Defined means of solving problems]

本発明は1反応室の少なくとも一部を前述したインナベ
ルジャとアウタベルジャのようなベル状または筒状など
の部材からなる二重壁構造とし。
In the present invention, at least a part of one reaction chamber has a double wall structure consisting of bell-shaped or cylindrical members such as the above-mentioned inner bell jar and outer bell jar.

この二重壁間に冷1iIθ1こ体を流して内側壁を冷却
するようにした気相成長装置において、二重壁間への冷
却流体供給口をノズル状とし、冷却流体を噴射するよう
にしたものである。
In a vapor phase growth apparatus in which a cold 1iIθ1 body is flowed between the double walls to cool the inner wall, the cooling fluid supply port between the double walls is formed into a nozzle shape, and the cooling fluid is injected. It is something.

〔作用〕[Effect]

本発明は、ノズル状の冷却流体供給口から二重壁間へ冷
却流体を噴射するようにしたため、冷却流体の流量を増
加させなくても、冷却流体がより広い範囲まで比較的高
速で流れ、内側壁の冷却が効果的に行なわれる。
In the present invention, since the cooling fluid is injected between the double walls from the nozzle-shaped cooling fluid supply port, the cooling fluid can flow over a wider area at a relatively high speed without increasing the flow rate of the cooling fluid. The inner wall is effectively cooled.

〔実施例〕〔Example〕

以下本発明の一実施例を示す第1図について説明する。 FIG. 1 showing one embodiment of the present invention will be described below.

2は第2図に示したインナベルジャ2と同じ石英製のイ
ンナベルジャであり、4は後述する冷却流体ノズル2o
の取付部が異なるほかは第2図に示したアウタベルジャ
4と同じものである。
2 is an inner bell jar made of quartz, which is the same as the inner bell jar 2 shown in FIG. 2, and 4 is a cooling fluid nozzle 2o, which will be described later.
The outer belljar 4 is the same as the outer belljar 4 shown in FIG. 2, except that the attachment part is different.

アウタベルジャ4の頂部には、穴21を有するフランジ
22が設けられている。フランジ22には、冷却流体ノ
ズル20が押え板23.ボルト24により取付けられて
いる。冷却流体ノズル2oとフランジ22との間は0リ
ンダ25によりンールされている。冷却流体ノズル20
は、流路26を有し、その元端にはホース27により図
示しない冷却流体供給源が接続されている。冷却流体ノ
ズル20の先端は円錐状に形成され、前記流路26から
先端の円錐面に開口するノズル孔28が放射状に複数個
明けられている。これらのノズル孔28は、流路断面積
の合計が流路26の流路断面積より小さくなるように設
定され、冷却流体供給源に圧力を持たせることにより、
ノズル孔28から冷却流体を比較的高速で噴射するよう
になっている。
A flange 22 having a hole 21 is provided at the top of the outer bell jar 4 . The cooling fluid nozzle 20 is mounted on the flange 22 with a presser plate 23. It is attached with bolts 24. An O cylinder 25 is provided between the cooling fluid nozzle 2o and the flange 22. Cooling fluid nozzle 20
has a flow path 26, the base end of which is connected to a cooling fluid supply source (not shown) via a hose 27. The tip of the cooling fluid nozzle 20 is formed into a conical shape, and a plurality of nozzle holes 28 are radially opened from the flow path 26 to the conical surface of the tip. These nozzle holes 28 are set so that the total cross-sectional area of the flow passages is smaller than the cross-sectional area of the flow passages 26, and by applying pressure to the cooling fluid supply source,
Cooling fluid is injected from the nozzle hole 28 at a relatively high speed.

前記ノズル孔28は、インナベルジャ2の外表面に対し
比較的小さな鋭角αをなすように向けられ、冷却流体を
インナベルジャ2の外表面に積極的に接触させ、かつこ
の外表面に滑って流れるようにしである。
Said nozzle holes 28 are oriented at a relatively small acute angle α with respect to the outer surface of the inner bell jar 2 to bring the cooling fluid into positive contact with the outer surface of the inner bell jar 2 and to allow it to slide over this outer surface. It is.

本装置は以上述べたように構成したので、冷却流体は符
号Fで示すようにノズル孔28から勢いよく噴射され、
間隙7内をより遠く゛まで高速で流れ、インナベルジャ
2に対する接触度が高まり、熱交換効率が高まる。ま几
、冷却流体が高速で流れる範囲が広がるため、効果的に
熱交換が行なわれる範囲が拡大する。ノズル孔28の数
は、それぞれのノズル孔28からの冷却流体が互いにあ
まり強く接触しないようにするため、噴射の開き角を考
慮して定めることが好ましく、本実施例のようにベルジ
ャ2,4の項部から全周に流す場合にも4個程度で足り
る。
Since this device is configured as described above, the cooling fluid is vigorously injected from the nozzle hole 28 as shown by the symbol F.
It flows further within the gap 7 at high speed, increasing the degree of contact with the inner bellger 2 and increasing heat exchange efficiency. Because the range in which the cooling fluid flows at high speed is expanded, the range in which heat exchange can take place effectively is expanded. In order to prevent the cooling fluid from each nozzle hole 28 from coming into too strong contact with each other, it is preferable to determine the number of nozzle holes 28 in consideration of the opening angle of the injection. Even when flowing from the nape to the entire circumference, about 4 pieces are sufficient.

次いで本発明の効果を明確にするため、従来装置と本発
明による装置について行なった冷却流体の流れに関する
実験結果を示す。
Next, in order to clarify the effects of the present invention, experimental results regarding the flow of cooling fluid conducted using a conventional device and a device according to the present invention will be shown.

従来装置としては、第2図に示す冷却流体供給口5の直
径が10mm で単にインナベルジャ2の外表面に向っ
て開いているものを用い、冷却流体にはN2ガスを使用
し、流量を60・L /mMとじ之。
In the conventional device, the diameter of the cooling fluid supply port 5 shown in FIG. L/mM.

他方、本発明の装置としては、ノズル孔28の直径14
mmとして4つ等配に設け、角度αに約37゜とし、冷
却流体には同じN2ガスを使用し、流量を50 L/1
ritsとした。なお、上記の条件以外は両者とも全く
同じである。
On the other hand, in the device of the present invention, the diameter 14 of the nozzle hole 28
mm, four are equally spaced, the angle α is approximately 37°, the same N2 gas is used as the cooling fluid, and the flow rate is 50 L/1.
rits. Note that both conditions are exactly the same except for the above conditions.

インナベルジャ2の外表面に、第3図に示すように、風
によってなびくタクト30をインナベルジ・ヤ2の頂点
を中心にして適宜な間隔で多数取付け、これらのタフト
30の挙動から間隙7内における冷却流体の流れの状態
を調べたところ、従来装置においてタフト30の倒れが
認められた範囲は、第4図に示すへの範囲内であったの
に対し、本発明の装置ではBの範囲まで大巾に拡大され
、インナベルジャ2の上方のほぼ全体にわたることが確
認された。
On the outer surface of the inner bell jar 2, as shown in FIG. When the state of fluid flow was investigated, the range in which the tuft 30 was observed to fall in the conventional device was within the range shown in Fig. 4, whereas in the device of the present invention, the range where the tuft 30 was observed to fall was as large as the range B. It was confirmed that the area had been expanded to a wide area, and that it covered almost the entire area above Inner Belljar 2.

まfc%半導体材料ガスを四塩化ンリコン、気相成長時
間を08μm/ln;ts、  1回の気相成長時間f
60mとし、上記の従来装置と本発明の装置により、実
際に気相成長を行なったところ、従来装置ではインナベ
ルジャ2の頂部内表面にポリシリコンが堆積し、20チ
ヤージくらいで使用限界がきたのに対し、本発明の装置
では40チャージ続けても失透原因となるポリノリコン
の発生がほとんど見られなかった。
The semiconductor material gas was chlorine tetrachloride, the vapor phase growth time was 08 μm/ln; ts, and the time for one vapor phase growth was f.
60 m, and when vapor phase growth was actually carried out using the conventional apparatus described above and the apparatus of the present invention, polysilicon was deposited on the inner surface of the top of the inner bellger 2 with the conventional apparatus, and the usability limit was reached at about 20 charges. On the other hand, in the apparatus of the present invention, almost no generation of polynoricone, which causes devitrification, was observed even after 40 charges were continued.

前述した実施例は、本発明を縦型気相成長装置に適用し
た例を示したが、本発明はこれに限らず反応室を二重の
筒状部材で形成する横型およびバレル型など他の気相成
長装置にも適用でき、また冷却流体ノズル20の設置位
置や個数も二重壁構造部分の形状と強い冷却を必要とす
る箇所との関係から適宜に設定することが好ましい。
Although the above-mentioned embodiment shows an example in which the present invention is applied to a vertical vapor phase growth apparatus, the present invention is not limited to this, and can be applied to other types such as a horizontal type and a barrel type in which the reaction chamber is formed of a double cylindrical member. The present invention can also be applied to a vapor phase growth apparatus, and it is preferable that the installation position and number of cooling fluid nozzles 20 are appropriately set based on the relationship between the shape of the double-walled structure and the location that requires strong cooling.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、比較的少ない流量の
冷却流体により反応室の内側壁を広範囲にわたって効果
的に冷却することができ、これにより反応室内表面への
半導体材料の付着を大巾に減少させることができ、より
品質の高い気相成長ができると共に生産性を向上させる
ことができ、ま之分解温度が低いモノ7ラン(SiH4
)のような半導体材料ガスの使用を容易にするなどの効
果が得られる。
As described above, according to the present invention, the inner wall of the reaction chamber can be effectively cooled over a wide range with a relatively small flow rate of cooling fluid, thereby greatly reducing the adhesion of semiconductor material to the surface of the reaction chamber. This makes it possible to achieve higher quality vapor phase growth and improve productivity.
), it is possible to obtain effects such as facilitating the use of semiconductor material gases such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の要部を示す部分拡大断面図
、第2図は従来装置の一例を示す概要断面図、第3は冷
却流体の流れの観察に用いたタフトを示すための部分拡
大断面図、第4図は従来装置と本発明の装置による冷却
流体の流れの強さを示す図である。 2・・・内側壁(インナベルジャ)、 3・・・反応室。 4・・・外側壁(アウタベルジャ)、 20・・・冷却流体ノズル、 28・・・ノズル孔、 30・・・タフト。
Fig. 1 is a partially enlarged sectional view showing the main parts of an embodiment of the present invention, Fig. 2 is a schematic sectional view showing an example of a conventional device, and Fig. 3 is a tuft used to observe the flow of cooling fluid. FIG. 4 is a partially enlarged cross-sectional view showing the strength of the flow of cooling fluid in the conventional device and the device of the present invention. 2...Inner wall (inner bell jar), 3...Reaction chamber. 4... Outer wall (outer bell jar), 20... Cooling fluid nozzle, 28... Nozzle hole, 30... Tuft.

Claims (1)

【特許請求の範囲】 1、反応室の少なくとも一部を二重壁構造とし、二重壁
間に冷却流体を流して内側壁を冷却するようにした気相
成長装置において、二重壁間への冷却流体供給口をノズ
ル状とし、冷却流体を噴射するようにしたことを特徴と
する気相成長装置。 2、ノズル状の冷却流体供給口が、内側壁表面に対し鋭
角をなすように向けられていることを特徴とする特許請
求の範囲第1項記載の気相成長装置。 3、ノズル状の冷却流体供給口が、放射状に複数設けら
れていることを特徴とする特許請求の範囲第1または2
項記載の気相成長装置。
[Claims] 1. In a vapor phase growth apparatus in which at least a part of the reaction chamber has a double wall structure, and a cooling fluid is flowed between the double walls to cool the inner wall. A vapor phase growth apparatus characterized in that the cooling fluid supply port is shaped like a nozzle and the cooling fluid is injected. 2. The vapor phase growth apparatus according to claim 1, wherein the nozzle-shaped cooling fluid supply port is oriented at an acute angle with respect to the inner wall surface. 3. Claim 1 or 2, characterized in that a plurality of nozzle-shaped cooling fluid supply ports are provided radially.
Vapor phase growth apparatus described in Section 1.
JP19341985A 1985-09-02 1985-09-02 Vapor growth device Granted JPS6254081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19341985A JPS6254081A (en) 1985-09-02 1985-09-02 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19341985A JPS6254081A (en) 1985-09-02 1985-09-02 Vapor growth device

Publications (2)

Publication Number Publication Date
JPS6254081A true JPS6254081A (en) 1987-03-09
JPS6327426B2 JPS6327426B2 (en) 1988-06-02

Family

ID=16307650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19341985A Granted JPS6254081A (en) 1985-09-02 1985-09-02 Vapor growth device

Country Status (1)

Country Link
JP (1) JPS6254081A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270468A (en) * 1987-04-27 1988-11-08 Hitachi Electronics Eng Co Ltd Cvd thin film forming device
US5030476A (en) * 1988-07-22 1991-07-09 Canon Kabushiki Kaisha Process and apparatus for the formation of a functional deposited film on a cylindrical substrate by means of microwave plasma chemical vapor deposition
WO2007091784A1 (en) * 2006-02-10 2007-08-16 Poongsan Microtec Co., Ltd. Methods and apparatuses for high pressure gas annealing
US20110180001A1 (en) * 2010-01-26 2011-07-28 Japan Pionics Co., Ltd. Vapor phase epitaxy apparatus of group iii nitride semiconductor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067364U (en) * 1983-10-13 1985-05-13 富士通株式会社 Reaction tube cleaning adapter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067364U (en) * 1983-10-13 1985-05-13 富士通株式会社 Reaction tube cleaning adapter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270468A (en) * 1987-04-27 1988-11-08 Hitachi Electronics Eng Co Ltd Cvd thin film forming device
US5030476A (en) * 1988-07-22 1991-07-09 Canon Kabushiki Kaisha Process and apparatus for the formation of a functional deposited film on a cylindrical substrate by means of microwave plasma chemical vapor deposition
US5439715A (en) * 1988-07-22 1995-08-08 Canon Kabushiki Kaisha Process and apparatus for microwave plasma chemical vapor deposition
WO2007091784A1 (en) * 2006-02-10 2007-08-16 Poongsan Microtec Co., Ltd. Methods and apparatuses for high pressure gas annealing
US20110180001A1 (en) * 2010-01-26 2011-07-28 Japan Pionics Co., Ltd. Vapor phase epitaxy apparatus of group iii nitride semiconductor
US8679254B2 (en) * 2010-01-26 2014-03-25 Japan Pionics Co., Ltd. Vapor phase epitaxy apparatus of group III nitride semiconductor

Also Published As

Publication number Publication date
JPS6327426B2 (en) 1988-06-02

Similar Documents

Publication Publication Date Title
US4989540A (en) Apparatus for reaction treatment
JP3040212B2 (en) Vapor phase growth equipment
JPH021116A (en) Heat treatment apparatus
RU2006101147A (en) DEVICE FOR GROWING SILICON CARBIDE CRYSTALS
JPH06247789A (en) Inert gas straightening and blowing device for device for pulling up single crystal
JPS6254081A (en) Vapor growth device
JPS63144513A (en) Barrel type epitaxial growth device
TWI302947B (en) Apparatus for chemical vapor deposition
JPS62263629A (en) Vapor growth device
JPH07249580A (en) Thin film manufacturing device
JP3611780B2 (en) Semiconductor manufacturing equipment
JPH09232275A (en) Apparatus and method for cleaning susceptor of epitaxial growth apparatus
JP3093716B2 (en) Vertical vacuum deposition equipment
JPS6343315A (en) Reduced pressure cvd equipment
JPS62158867A (en) Cvd thin film forming device
JP3613099B2 (en) Vapor growth equipment
KR0157365B1 (en) Method and apparatus for smoothing the gas flow of growing furnace
JPH07221022A (en) Barrel-type vapor-phase growth system
JPH02255594A (en) Vapor growth device
JPS62257720A (en) Vapor growth device
JPH0354193A (en) Organic metal gaseous phase growth device
KR0133677B1 (en) Heat traeting apparatus
JPH06103668B2 (en) Vapor phase growth equipment
JPS63202016A (en) Vapor growth apparatus
JPH0897154A (en) Vacuum film formation system