JPS621331B2 - - Google Patents

Info

Publication number
JPS621331B2
JPS621331B2 JP55149830A JP14983080A JPS621331B2 JP S621331 B2 JPS621331 B2 JP S621331B2 JP 55149830 A JP55149830 A JP 55149830A JP 14983080 A JP14983080 A JP 14983080A JP S621331 B2 JPS621331 B2 JP S621331B2
Authority
JP
Japan
Prior art keywords
optical
silicate glass
optical fiber
glass tube
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55149830A
Other languages
Japanese (ja)
Other versions
JPS5773703A (en
Inventor
Junjiro Goto
Koji Okamura
Takashi Tatsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP55149830A priority Critical patent/JPS5773703A/en
Publication of JPS5773703A publication Critical patent/JPS5773703A/en
Publication of JPS621331B2 publication Critical patent/JPS621331B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • C03B37/14Re-forming fibres or filaments, i.e. changing their shape
    • C03B37/15Re-forming fibres or filaments, i.e. changing their shape with heat application, e.g. for making optical fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明は光学細棒を多数本束ねて一体化した光
学繊維束の製造方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for manufacturing an optical fiber bundle in which a large number of thin optical rods are bundled and integrated.

一般にコアとクラツドからなる光学細棒を多数
本規則正しく整列して外装管内に密接状態に挿設
して加熱一体化し、該光学細棒束を更に加熱延伸
して形成されその一端より他端へ像を忠実に伝送
する画像伝送用の光学繊維束、即ちマルチフイバ
は周知である。また前記光学繊維束における伝送
像の分解能を向上させるために、上記光学繊維束
を更に複数本整列し、束ねて一体化した構成のイ
メージガイドあるいはフアイバスコープ等の画像
伝送用光学繊維束も知られている。
In general, a large number of thin optical rods consisting of a core and a cladding are arranged in a regular order, inserted into an armored tube in close contact, heated and integrated, and the bundle of optical thin rods is further heated and stretched to form an image from one end to the other. Optical fiber bundles, ie, multifibers, for image transmission that faithfully transmit images are well known. In addition, in order to improve the resolution of the transmitted image in the optical fiber bundle, an optical fiber bundle for image transmission such as an image guide or a fiberscope is also known, in which a plurality of the optical fiber bundles are further aligned and bundled into an integrated structure. ing.

ところで上記のごとき光学繊維束を構成するマ
ルチフアイバの母材、即ちマルチコンジツトを形
成する一方法として、従来においては、石英ガラ
スを主材料とするコアとクラツドからなる光学細
棒を多数本整列して石英ガラス管内に密に挿設
し、しかる後該ガラス管を加熱し、中実化して一
体化していた。
By the way, as one method for forming the base material of the multi-fibers constituting the above-mentioned optical fiber bundle, that is, the multi-conduit, conventionally, a large number of thin optical rods each consisting of a core and a cladding mainly made of quartz glass are arranged. The glass tube was then tightly inserted into a quartz glass tube, and then the glass tube was heated to form a solid body and be integrated.

しかし上記工程において、多数本の光学細棒を
挿設せる石英ガラス管を加熱し中実化する際、各
光学細棒及びガラス管が石英製であるため、その
軟化点及び溶融時の粘性が高く、また前記ガラス
管挿設する時に生じた光学細棒表面の損傷を加熱
によつて充分消失せしめることができない等に起
因して、均質な中実化を困難にしている。また、
中実一体化された各光学細棒間あるいは該光学細
棒と石英ガラス管等の間隙部分に多数の気泡が生
じ易く、かかる状態のマルチコンジツトを用いて
製作されたマルチフアイバにあつては、上記欠陥
によつて伝送像を歪ませて像の伝送特性を悪化さ
せるばかりでなく、フアイバ強度も低下するとい
つた欠点があつた。
However, in the above process, when heating and solidifying a quartz glass tube into which many thin optical rods are inserted, since each thin optical rod and glass tube are made of quartz, their softening point and viscosity when melted are Moreover, it is difficult to form a homogeneous solid material because the damage to the surface of the optical thin rod that occurs when inserting the glass tube cannot be sufficiently removed by heating. Also,
A large number of air bubbles are likely to form between each solid integrated thin optical rod or in the gap between the thin optical rod and a quartz glass tube, etc., and in the case of a multi-fiber manufactured using a multi-conduit in such a state, However, the defects not only distort the transmitted image and deteriorate the image transmission characteristics, but also reduce the fiber strength.

本発明は、上記した従来の欠点を除去し、良質
な光学繊維束母材、則ちマルチコンジツトを容易
に製造することができ、かつそれによつて像伝送
特性のよい光学繊維束(マルチフアイバ)が得ら
れる製造方法を提供することを目的とするもので
ある。即ち本発明の製造方法は石英ガラスよりも
軟化点が低く、加工性のよい高珪酸ガラス管内に
該管の同質の高珪酸ガラスからなる外被層を有す
るコアガラス層とクラツドガラス層からなる光学
細棒を複数本整列して密に挿入した状態で該高珪
酸ガラス管を外部から加熱しかつ延伸して光学繊
維束とすることを特徴とするものである。
The present invention eliminates the above-mentioned conventional drawbacks, makes it possible to easily produce a high-quality optical fiber bundle base material, that is, a multi-conductor, and thereby makes it possible to easily produce an optical fiber bundle (multi-fiber bundle) with good image transmission characteristics. ) is aimed at providing a manufacturing method that yields. That is, the manufacturing method of the present invention provides an optical fiber comprising a core glass layer and a cladding glass layer, which has an outer covering layer made of high silicate glass of the same quality as the tube, in a high silicate glass tube which has a softening point lower than that of quartz glass and has good workability. The method is characterized in that the high silicate glass tube is externally heated and stretched to form an optical fiber bundle with a plurality of rods lined up and tightly inserted.

以下図面を用いて本発明の実施例について詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図〜第3図は本発明に係る光学繊維束の製
造方法の一実施例を工程順に、要部断面図及び斜
視図で示したものである。
FIGS. 1 to 3 are sectional views and perspective views of essential parts of an embodiment of the method for manufacturing an optical fiber bundle according to the present invention, in the order of steps.

まず第1図に示すように、上下動自在な支持部
6に連結した保持アーム7によつて石英ガラスよ
りも軟化点が低く加工性のよい高珪酸ガラス(た
とえばバイコールガラスと呼ばれているもの)か
ら成る管1を保持しておく。
First, as shown in FIG. 1, a holding arm 7 connected to a vertically movable support part 6 is made of high silicate glass (for example, Vycor glass), which has a lower softening point and better workability than quartz glass. ) is held.

次に、あらかじめ気相化学堆積法によつて製作
されたコアとクラツドからなる石英系のプリフオ
ームロツド2を、前記高珪酸ガラス管1内にもう
一方の可動支持部4に連結された保持アーム5に
よつて同軸状に固定し、しかる後各可動支部4,
6を可動ねじ8,9の回転駆動により同時に垂直
移動させて前記高珪酸ガラス管1とプリフオーム
ロツド2を加熱炉芯管11内部に送り込み、加熱
溶融しながら所望径の細棒状に引き出して、第2
図に示すように前記高珪酸ガラスの外被層1′の
内部にコア21とクラツド22を有する光学細棒
3を製作する。次いで第3図に示すように上記光
学細棒3を複数本整列して、前記高珪酸ガラス管
1と同質の集束用高珪酸ガラス管31内に密に挿
設し、該ガラス管31を図示しないガラス旋盤等
に取りつけた後、該ガラス管31の一端側の外部
から、その長手方向に移動する酸水素バーナ等の
加熱手段32によつて加熱し、中実化して一体と
する。こうすれば前記高珪酸ガラスからなる光学
細棒3の外被層11及び集束用ガラス管31の軟
化温度が同程度に石英ガラスよりも低く、また溶
融時の粘性が小さいので、中実一体化された各光
学細棒3間及び各光学細棒3と集束用ガラス管3
1との加熱溶着部分に気泡のない良質な光学細棒
束を容易に得ることができる。
Next, a quartz-based preform rod 2 consisting of a core and a cladding prefabricated by a vapor phase chemical deposition method is placed inside the high silicate glass tube 1 and held in a position connected to the other movable support 4. It is fixed coaxially by the arm 5, and then each movable branch 4,
The high silicate glass tube 1 and the preform rod 2 are fed into the furnace core tube 11 by vertically moving them simultaneously by the rotary drive of movable screws 8 and 9, and are pulled out into a thin rod shape of a desired diameter while being heated and melted. , second
As shown in the figure, an optical thin rod 3 having a core 21 and a cladding 22 inside the outer covering layer 1' of the high silicate glass is manufactured. Next, as shown in FIG. 3, a plurality of the optical thin rods 3 are arranged and closely inserted into a focusing high silicate glass tube 31 of the same quality as the high silicate glass tube 1. After the glass tube 31 is mounted on a glass lathe or the like, one end of the glass tube 31 is heated from the outside by a heating means 32 such as an oxyhydrogen burner that moves in the longitudinal direction of the glass tube 31 to form a solid body. In this way, the softening temperature of the outer covering layer 11 of the thin optical rod 3 and the focusing glass tube 31 made of high silicate glass is lower than that of quartz glass by the same degree, and the viscosity when melted is small, so that they can be integrated into a solid piece. between each thin optical rod 3 and between each thin optical rod 3 and the focusing glass tube 3
It is possible to easily obtain a high-quality optical thin rod bundle without air bubbles in the heat-welded portion with 1.

上述のようにして形成された光学細棒束、すな
わち光学繊維束母材を加熱して所望径に延伸すれ
ば像伝送特性の良好な光学繊維束、いわゆるイメ
ージガイドを得ることが可能となる。
By heating the optical thin rod bundle formed as described above, that is, the optical fiber bundle base material and stretching it to a desired diameter, it becomes possible to obtain an optical fiber bundle with good image transmission characteristics, a so-called image guide.

なお以上の実施例では単一のコア部を有する光
学細棒を用いた場合の例について説明したが、本
発明はこれに限定されるものでなく、多芯コア部
を有する光学細棒を用いて光学細棒束を製作する
場合等にも適用可能なことはいうまでもない。ま
た光学細棒用母材の外周に高珪酸ガラスの外被層
を施す方法としては、本実施例の他に、例えば高
珪酸ガラスからなる反応管を用い、該反応管内に
気相化学推積法によつてクラツド層及びコア層を
形成し、これを加熱中実化して、高珪酸ガラス外
被層を有する光学細棒母材を得るようにしてもよ
い。
Note that in the above embodiments, an example was explained in which an optical thin rod having a single core portion was used, but the present invention is not limited to this, and it is possible to use an optical thin rod having a multi-core portion. Needless to say, this method can also be applied to the production of optical thin rod bundles. In addition to this example, as a method for applying a high silicate glass outer coating layer to the outer periphery of the base material for an optical thin rod, for example, a reaction tube made of high silicate glass is used, and a vapor phase chemical estimation layer is placed inside the reaction tube. A cladding layer and a core layer may be formed by a method and then heated to form a solid material to obtain an optical thin rod base material having a high silicate glass outer coating layer.

以上の説明から明らかなように本発明に係る製
造方法によれば、光学細棒束を構成する光学細棒
の外被層及び集束用ガラス管に、バイコールガラ
ス等の石英ガラスよりも軟化点温度が低く、溶融
時の粘性が小さい加工性のよい高珪酸ガラスを用
いることにより、気泡を含むことのない良品質の
光学細棒束を容易に得ることが可能となり、該光
学細棒束から像伝送特性のすぐれた光学繊維束を
製作することができる利点を有し、イメージガイ
ドあるいはフアイバスコープ等の製造に適用して
極めて有利である。その他、前記光学細棒の外被
層となる高珪酸ガラス管にあらかじめ例えば酸化
第二鉄(Fe2O3)あるいは四塩化チタニウム
(Ticl4)等を微量添加しておくことにより前記外
被層を光吸収層として兼用することができ、かか
る構成の光学細棒束によつて分解能のよい像伝送
用光学繊維束を得ることができる。
As is clear from the above explanation, according to the manufacturing method of the present invention, the outer coating layer of the optical thin rods and the focusing glass tube constituting the optical thin rod bundle have a softening point temperature higher than that of quartz glass such as Vycor glass. By using high-silicate glass with low viscosity and good workability when melted, it is possible to easily obtain a high-quality bundle of optical thin rods that does not contain air bubbles. This method has the advantage of being able to manufacture optical fiber bundles with excellent transmission characteristics, and is extremely advantageous when applied to the manufacture of image guides, fiberscopes, etc. In addition, the outer coating layer can be formed by adding a small amount of ferric oxide (Fe 2 O 3 ) or titanium tetrachloride (Ticl 4 ), etc., in advance to the high silicate glass tube that becomes the outer coating layer of the optical thin rod. can also be used as a light absorption layer, and an optical fiber bundle for image transmission with good resolution can be obtained by the bundle of optical thin rods having such a structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明に係る光学繊維束の製
造方法の一実施例を工程順に示した説明図であ
る。 図において1は高珪酸ガラス管、2はプリフオ
ームロツド、3は光学細棒、4,6は可動支持
部、5,7は保持アーム、8,9は可動ねじ、1
0は加熱炉、11は炉芯管、1′は外被層、21
はコア、22はクラツド、31は集束用高珪酸ガ
ラス管、32は加熱手段を示す。
FIGS. 1 to 3 are explanatory diagrams showing one embodiment of the method for manufacturing an optical fiber bundle according to the present invention in the order of steps. In the figure, 1 is a high silicate glass tube, 2 is a preform rod, 3 is an optical thin rod, 4 and 6 are movable supports, 5 and 7 are holding arms, 8 and 9 are movable screws, 1
0 is a heating furnace, 11 is a furnace core tube, 1' is an outer covering layer, 21
22 is a core, 31 is a high silicate glass tube for focusing, and 32 is a heating means.

Claims (1)

【特許請求の範囲】[Claims] 1 石英ガラスから成るコア及びクラツドを有
し、該クラツドの外周に石英よりも低い軟化温度
及び粘度を有する高珪酸ガラスからなる外被層を
有する光学細棒を複数本、該外被層を構成するガ
ラスと同程度の軟化温度及び粘度を有する高珪酸
ガラスから成る管内に整列状態で密に挿入した状
態で該高珪酸ガラス管を外部から加熱して前記複
数本の光学細棒を一体化し、かつ延伸して光学繊
維束とすることを特徴とする光学繊維束の製造方
法。
1. A plurality of thin optical rods each having a core and a cladding made of quartz glass, and a covering layer made of high silicate glass having a softening temperature and viscosity lower than that of quartz around the outer periphery of the cladding, the outer covering layer being constituted by a plurality of thin optical rods. integrating the plurality of thin optical rods by heating the high silicate glass tube from the outside while closely inserted in an aligned state into a tube made of high silicate glass having a softening temperature and viscosity comparable to that of the glass; A method for producing an optical fiber bundle, which comprises stretching the bundle to form an optical fiber bundle.
JP55149830A 1980-10-24 1980-10-24 Manufacture of optical fiber bundle Granted JPS5773703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55149830A JPS5773703A (en) 1980-10-24 1980-10-24 Manufacture of optical fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55149830A JPS5773703A (en) 1980-10-24 1980-10-24 Manufacture of optical fiber bundle

Publications (2)

Publication Number Publication Date
JPS5773703A JPS5773703A (en) 1982-05-08
JPS621331B2 true JPS621331B2 (en) 1987-01-13

Family

ID=15483597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55149830A Granted JPS5773703A (en) 1980-10-24 1980-10-24 Manufacture of optical fiber bundle

Country Status (1)

Country Link
JP (1) JPS5773703A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58149007A (en) * 1982-03-01 1983-09-05 Dainichi Nippon Cables Ltd Multiple fibers
JPS60221705A (en) * 1984-04-18 1985-11-06 Dainichi Nippon Cables Ltd Manufacture of image guide of double-layer structure
JPS6188206A (en) * 1984-10-08 1986-05-06 Sumitomo Electric Ind Ltd Image fiber and its manufacture
JPS6256331A (en) * 1985-09-03 1987-03-12 Mitsubishi Cable Ind Ltd Production of image guide
JPS6256330A (en) * 1985-09-03 1987-03-12 Mitsubishi Cable Ind Ltd Detection of void
US4759604A (en) * 1985-12-20 1988-07-26 Mitsubishi Cable Industries Ltd. Optical multiconductor of silica glass type

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194242A (en) * 1975-02-17 1976-08-18 Katoseio jusuru kogakusenisokuno seizohoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194242A (en) * 1975-02-17 1976-08-18 Katoseio jusuru kogakusenisokuno seizohoho

Also Published As

Publication number Publication date
JPS5773703A (en) 1982-05-08

Similar Documents

Publication Publication Date Title
EP1129999A2 (en) Method for making multiple overclad optical fiber preforms
US4389089A (en) Flexible fiber optical conduit and method of making
JPS6138134B2 (en)
JPS621331B2 (en)
JPS627130B2 (en)
JPH0310580B2 (en)
JPS5992940A (en) Production of optical fiber having pore
JPH0548445B2 (en)
JPS5828706A (en) Production of optical fiber bundle having flexibility
JPS60122744A (en) Manufacture of simple-mode fiber
JPS6146415B2 (en)
JPS6146414B2 (en)
JPH0769665A (en) Optical fiber preform, optical fiber and production thereof
JPS60218607A (en) Image guide of two-layer structure
JP2745415B2 (en) Image fiber manufacturing method
JPS6136134A (en) Method and apparatus for producing preform for stress-imparted polarization-keeping optical fiber
JPH02118502A (en) Image fiber and production thereof
JPH0642008B2 (en) Image fiber manufacturing method
JPH0210093B2 (en)
JPS60232507A (en) Manufacture of image guide
JPS60155543A (en) Production of base material for optical fiber clad
JPS60233604A (en) Method for arranging optical fiber into jacket pipe
JPS60142302A (en) Manufacture of image guide
JPS6153608A (en) Manufacture of image guide
KR830000714B1 (en) Method for manufacturing bend fiber