JPS6146415B2 - - Google Patents

Info

Publication number
JPS6146415B2
JPS6146415B2 JP54144890A JP14489079A JPS6146415B2 JP S6146415 B2 JPS6146415 B2 JP S6146415B2 JP 54144890 A JP54144890 A JP 54144890A JP 14489079 A JP14489079 A JP 14489079A JP S6146415 B2 JPS6146415 B2 JP S6146415B2
Authority
JP
Japan
Prior art keywords
optical fiber
bundle
fiber bundle
image transmission
optical fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54144890A
Other languages
Japanese (ja)
Other versions
JPS5667806A (en
Inventor
Atsushi Uchiumi
Masaharu Noguchi
Michio Nishioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichi Nippon Cables Ltd
Original Assignee
Dainichi Nippon Cables Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichi Nippon Cables Ltd filed Critical Dainichi Nippon Cables Ltd
Priority to JP14489079A priority Critical patent/JPS5667806A/en
Publication of JPS5667806A publication Critical patent/JPS5667806A/en
Publication of JPS6146415B2 publication Critical patent/JPS6146415B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2552Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】 この発明は像伝送用光学繊維束の製造方法に関
し、特に画素の占積率が大きく、しかも長尺の像
伝送用光学繊維束を製造しうる像伝送用光学繊維
束の製造方法に関する。
Detailed Description of the Invention The present invention relates to a method for manufacturing an optical fiber bundle for image transmission, and in particular to an optical fiber bundle for image transmission that has a large pixel space factor and can manufacture a long optical fiber bundle for image transmission. Relating to a manufacturing method.

像伝送用光学繊維束は多数(例えば1〜2万
本)の光学繊維を集束又は溶着もしくは融着一体
化したものであり、各光学繊維は光を伝送するコ
ア部とこれを囲むクラツド部より成る。各光学繊
維のコア部は画素とも呼び、画素の数が多い程、
像が明瞭になり、また光学繊維束の単位断面積中
に占める画素の割合(即ち画素の占積率)が大き
い程、像が明瞭になる。また、光学繊維束の両端
部において、それを構成する各光学繊維の間に空
隙、異物が介在していることも、像を不明瞭にす
る。更に像伝送において重要なことは、光学繊維
束の両端部において、これを構成する各光学繊維
の配列、従つて画素の配列が正確に一致している
ことが必要である。
An optical fiber bundle for image transmission is a bundle of optical fibers (for example, 10,000 to 20,000 fibers) that are bundled, welded, or fused together, and each optical fiber has a core that transmits light and a cladding that surrounds it. Become. The core part of each optical fiber is also called a pixel, and the more pixels there are, the more
The image becomes clearer, and the larger the proportion of pixels in the unit cross-sectional area of the optical fiber bundle (that is, the pixel space factor), the clearer the image becomes. Furthermore, the presence of voids and foreign matter between the optical fibers constituting the bundle at both ends of the bundle also makes the image unclear. Furthermore, what is important for image transmission is that the arrangement of the optical fibers constituting the optical fiber bundle, and therefore the arrangement of the pixels, must be exactly the same at both ends of the optical fiber bundle.

ところで、一般に像伝送用光学繊維束の材料と
して安価で加工温度が低く加工が容易な多成分系
ガラスが用いられているが、多成分系ガラスの光
学繊維束では伝送損失が大きいため、通常2〜
3m程度の長さのものしか実用できないが、低伝
送損失の石英系光学繊維で構成した光学繊維束が
実現されると長尺の像伝送が可能となる。
Incidentally, multi-component glass, which is inexpensive, has a low processing temperature, and is easy to process, is generally used as a material for optical fiber bundles for image transmission, but optical fiber bundles made of multi-component glass usually have a ~
Although only a length of about 3 m is practical, if an optical fiber bundle made of quartz-based optical fibers with low transmission loss is realized, long image transmission will become possible.

従来、光学繊維束の製造方法として種々の方法
があるが、長尺の光学繊維束を得るに適した方
法、また石英系光学繊維の製造にも適用可能と考
えられる光学繊維束の製造方法としては下記の方
法が唯一のものと考えられる。
Conventionally, there are various methods for producing optical fiber bundles, but there is a method suitable for obtaining long optical fiber bundles, and a method for producing optical fiber bundles that is considered to be applicable to the production of quartz-based optical fibers. The following method is considered to be the only one.

すなわち、複数本の光学繊維をガラスパイプ内
に収納し、この光学繊維とガラスパイプとの複合
体をその一端から順次溶融線引する方法である。
通常は、画素数の多い光学繊維束を得るために、
この溶融線引した複合体の複数本を、再びガラス
パイプ内に収納し、複合体とガラスパイプとの新
たな複合体として溶融線引するという工程を繰り
返す。
That is, this is a method in which a plurality of optical fibers are housed in a glass pipe, and a composite body of the optical fibers and the glass pipe is sequentially melt-drawn from one end.
Usually, in order to obtain an optical fiber bundle with a large number of pixels,
A plurality of the melt-drawn composites are placed in a glass pipe again, and the process of melt-drawing them as a new composite of the composite and the glass pipe is repeated.

しかしながら、この方法では、像伝送に全く寄
与しないガラスパイプ部分が存在し、無駄である
だけでなく、画素数を多くするために、複合体の
溶融線引を繰り返せば、像伝送に寄与しないガラ
スパイプ部分が光学繊維束の断面積中に占める割
合がそれだけ大きくなり、従つて画素の占積率が
低下するという憾みがある。
However, in this method, there is a part of the glass pipe that does not contribute to image transmission at all, which is not only wasteful, but also requires repeating melt-drawing of the composite in order to increase the number of pixels. There is a problem that the pipe portion occupies a larger proportion of the cross-sectional area of the optical fiber bundle, and as a result, the space factor of the pixel decreases.

本願発明は従来公知の製造方法における上記欠
点を改善し、画素の占積率が大で、しかも長尺の
光学繊維束を得ることができる光学繊維束の製造
方法を提供するものである。
The present invention improves the above-mentioned drawbacks of conventionally known manufacturing methods, and provides a method for manufacturing an optical fiber bundle that has a large pixel space factor and can produce a long optical fiber bundle.

この発明の要旨は光学繊維の複数本を束ね、該
束の一端において各光学繊維を固着し、光学繊維
の束を固着された端部側から加熱線引きすること
を特徴とする像伝送用光学繊維束の製造方法であ
る。
The gist of this invention is to provide an optical fiber for image transmission, characterized in that a plurality of optical fibers are bundled, each optical fiber is fixed at one end of the bundle, and the bundle of optical fibers is heated and drawn from the fixed end side. This is a method for manufacturing bundles.

以下本発明の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図a,bは本発明の像伝送用光学繊維束の
製造方法の一例を示す図解図、第2図は、本発明
の光学繊維の母材の製造工程を示す図解図、第3
図は本発明による像伝送用光学繊維束の断面を示
す図解図である。
FIGS. 1a and 1b are illustrative views showing an example of the manufacturing method of the optical fiber bundle for image transmission of the present invention, FIG. 2 is an illustrative view showing the manufacturing process of the optical fiber base material of the present invention, and FIG.
The figure is an illustrative view showing a cross section of an optical fiber bundle for image transmission according to the present invention.

第1図a,bにおいて、10は複数本の光学繊
維20を、例えば第3図aに示すように19本の光
学繊維20を中心に1本、1層目に6本、2層目
に12本と同心状に配列し束にしたものである。第
1図aに示すように束10の一端にガラスロツド
11を溶着あるいは接着させて、束10の該端部
にて全光学繊維20を一体に固着する。束10の
他方端における光学繊維20は前記端部における
光学繊維20の配列と対応させて、束10の外周
をガラスパイプ12等の挾持部材にて挾持する。
次に、第1図bに示すようにガラスロツド11で
光学繊維20を一体に固着した端部から電気炉1
3で加熱しながらガラスロツド11の先端を引取
ロール14で挾み、該引取ロール14を定速回転
させることにより定速度で引張り加熱線引きし、
19心の光学繊維20からなる光学繊維束10a
を得る。線引後の光学繊維束10aの径は引取ロ
ール14の引取速度により定まる。束10のガラ
スロツド11により固着された端部側からの加熱
線引により、束10を構成する全光学繊維20が
その端部から順次溶融されて溶着一体化し、線引
後の光学繊維束10aの両端面における各光学繊
維20の配列は正確に一致したものとなる。ま
た、各光学繊維20間が全長に亘つて予じめ接着
されておらず溶着一体化が一端から順次行なわ
れ、かつ、束10の他端部はガラスパイプ12で
その外周のみが挾持されているため、電気炉13
で束10の一方端側から順次加熱溶着される際、
光学繊維20相互間の気泡および異物は溶着とと
もに徐々に上方へ抜けパイプ12の上部開口から
抜け、光学繊維束10aの中に気泡および異物が
残るのを防止でき、その断面形状が略六角形の光
学繊維束10aとなる。なお、溶着一体化に先だ
つて光学繊維を超音波洗浄しておくことにより気
泡および異物の残留を更に少なくすることができ
る。このようにして得られた光学繊維束10aは
両端面における各光学繊維20の配列は正確に一
致しており、しかも各光学繊維20相互間に気泡
および異物が残存することなく、画素の占積率が
大きな解像度の優れた光学繊維束となる。更に、
上述のように本発明の製造方法による溶融線引に
より溶着一体化された略六角形断面形状の光学繊
維束10aを新たな光学繊維として第3図bに示
すように1本の光学繊維束10aを中心として6
の倍数ずつ増加した本数で放射円状に集合し束
ね、たとえば37心とした状態で本発明の方法によ
り溶融線引により溶着一体化し略六角形の光学繊
維束10bとする。光学繊維束10bは37×19心
の光学繊維素線からなり、各素線は完全に相互に
溶着されて一体化された状態となる。このように
して得られた光学繊維束10bを更に19心集合し
て束ね上述したと同様の方法により溶融線引して
溶着一体化することにより第3図cに示すような
像伝送用光学繊維束10cが製造される。この像
伝送用光学繊維束は19×37×19=13,357心から
なり、画素数13,357となる。
In FIGS. 1a and 1b, 10 has a plurality of optical fibers 20, for example, as shown in FIG. It is a bundle of 12 pieces arranged concentrically. As shown in FIG. 1a, a glass rod 11 is welded or glued to one end of the bundle 10 to secure all optical fibers 20 together at that end of the bundle 10. The optical fibers 20 at the other end of the bundle 10 are matched with the arrangement of the optical fibers 20 at the end, and the outer periphery of the bundle 10 is clamped by a clamping member such as a glass pipe 12.
Next, as shown in FIG.
While heating at step 3, the tip of the glass rod 11 is sandwiched between take-up rolls 14, and the take-up rolls 14 are rotated at a constant speed to perform heating and wire drawing.
Optical fiber bundle 10a consisting of 19 optical fibers 20
get. The diameter of the optical fiber bundle 10a after being drawn is determined by the take-up speed of the take-up roll 14. By heating and drawing from the end of the bundle 10 fixed by the glass rod 11, all the optical fibers 20 constituting the bundle 10 are sequentially melted and welded together from the end, and the optical fiber bundle 10a after drawing is The arrangement of each optical fiber 20 on both end faces is exactly the same. Further, the optical fibers 20 are not bonded in advance over their entire length, but are welded and integrated sequentially from one end, and only the outer periphery of the other end of the bundle 10 is held between the glass pipes 12. Electric furnace 13
When the bundle 10 is heated and welded sequentially from one end side,
Air bubbles and foreign matter between the optical fibers 20 are welded and gradually escape upward through the upper opening of the pipe 12, thereby preventing air bubbles and foreign matter from remaining in the optical fiber bundle 10a. This becomes an optical fiber bundle 10a. Note that by ultrasonically cleaning the optical fibers prior to welding and integrating them, it is possible to further reduce the amount of air bubbles and foreign matter remaining. In the optical fiber bundle 10a obtained in this way, the arrangement of the optical fibers 20 on both end faces is exactly the same, and there are no air bubbles or foreign substances remaining between the optical fibers 20, and the pixel occupancy is This results in an excellent optical fiber bundle with a high resolution. Furthermore,
As described above, the optical fiber bundle 10a having a substantially hexagonal cross-sectional shape, which has been welded and integrated by melt drawing according to the manufacturing method of the present invention, is used as a new optical fiber to form one optical fiber bundle 10a as shown in FIG. 3b. 6 centered around
The fibers are assembled in a radial circle in increasing numbers by multiples of , for example, 37 fibers, and are welded and integrated by melt drawing according to the method of the present invention to form a substantially hexagonal optical fiber bundle 10b. The optical fiber bundle 10b consists of 37×19 optical fiber strands, and each strand is completely welded to each other to form an integrated state. The thus obtained optical fiber bundle 10b is further assembled into 19 fibers, bundled, melted and drawn in the same manner as described above, and welded and integrated to form an optical fiber for image transmission as shown in FIG. 3c. A bundle 10c is produced. This optical fiber bundle for image transmission consists of 19×37×19=13,357 cores, resulting in a pixel count of 13,357.

第3図では画素数13,357の像伝送用光学繊維
束を製造する場合を図解したが、溶融線引時の束
ねられた光学繊維の本数と溶融線引の回数によつ
て適宜の画素数を有する像伝送用光学繊維束が得
られる。
Figure 3 illustrates the case of manufacturing an optical fiber bundle for image transmission with a pixel count of 13,357. An optical fiber bundle for image transmission having the following properties is obtained.

なお、従来行なわれていた複数本の光学繊維を
一度にガラスパイプ内に収納し、これを線引する
製造方法によれば、画素数を多くするために本願
発明で行つたように数回の線引を線り返すと像伝
送に寄与しないガラスパイプの部分が増大するこ
とになり、相対的に光伝送部(コア部)の占積率
が低くなり良好な像伝送が行なえなくなる。
Note that, according to the conventional manufacturing method in which a plurality of optical fibers are housed in a glass pipe at once and then drawn, the fibers are drawn several times as in the present invention in order to increase the number of pixels. If the drawing is reversed, the portion of the glass pipe that does not contribute to image transmission will increase, and the space factor of the light transmission section (core section) will become relatively low, making it impossible to perform good image transmission.

以上のように、この発明によれば、複数回の溶
融線引によつても、光学繊維の束の端部から順次
光学繊維相互間の溶着一体化が行なわれるので、
配列が乱れることがなく、気泡および異物を残存
させることがなく、また線引きする長さを適当に
選ぶことにより長尺の像伝送用光学繊維が得られ
る。しかも、両端部において画素すなわち1本1
本の光学繊維が正確に対応配列されたものが得ら
れ、また、光学繊維素線径の小さな、光学繊維束
の単位断面積当りの情報量の大きいすなわち、単
位面積当りに占める画素のコアの割合の大きな良
好な像伝送が行なえる像伝送用光学繊維束が得ら
れる。
As described above, according to the present invention, the optical fibers are sequentially welded and integrated from the ends of the bundle of optical fibers even by multiple melt-drawing operations.
By appropriately selecting the drawing length, a long image transmission optical fiber can be obtained without disrupting the arrangement and leaving no bubbles or foreign matter behind. Moreover, each pixel, one pixel, is
It is possible to obtain a product in which the optical fibers of the book are accurately aligned, and the optical fiber bundle has a small diameter and a large amount of information per unit cross-sectional area of the optical fiber bundle. An optical fiber bundle for image transmission which can perform good image transmission with a large ratio is obtained.

ところで、光学繊維20は光を伝送するコア部
とこれを囲むクラツド部からなるが、この光学繊
維20の母材製造方法を第2図により説明する。
第2図において21はコアとなる石英系ガラスの
ロツドで、該ロツド21をロツド21より低屈折
率のクラツドとなる石英系ガラスチユーブ22に
同心状に挿入し支持する。そしてチユーブ22の
両端をガラス旋盤等の固定部材で固定した状態で
固定させ、チユーブ22の一方側から他方側へ移
動する酸水素バーナなどでチユーブ22を加熱縮
径してロツド21に密着させて光学繊維20の母
材23を得る。このようにして作られた母材は通
常直径10〜30mmであり、これを直径1〜6mmにな
るように適宜線引して光学繊維20を作る。上述
したロツドインチユーブ法はコア径の大きな光学
繊維20を製造するのに好ましい。また材料とし
て石英系ガラスまたは純石英を用いた光学繊維を
本願発明の像伝送用光学繊維束の製造方法に用い
れば光の透過率が高く、低損失で長尺のすぐれた
可撓性、機械的強度、化学的安定性、耐放射線性
を有する解像度の優れた像伝送用光学繊維束を製
造することができる。
Incidentally, the optical fiber 20 consists of a core portion for transmitting light and a cladding portion surrounding the core portion, and a method for manufacturing the base material of this optical fiber 20 will be explained with reference to FIG.
In FIG. 2, reference numeral 21 denotes a quartz glass rod serving as a core, and the rod 21 is concentrically inserted and supported in a quartz glass tube 22, which is a cladding having a lower refractive index than the rod 21. Then, both ends of the tube 22 are fixed with a fixing member such as a glass lathe, and the tube 22 is heated and reduced in diameter with an oxyhydrogen burner or the like that moves from one side of the tube 22 to the other side, so that it is brought into close contact with the rod 21. A base material 23 of the optical fiber 20 is obtained. The base material thus produced usually has a diameter of 10 to 30 mm, and the optical fiber 20 is produced by appropriately drawing the base material to a diameter of 1 to 6 mm. The rod inch tube method described above is preferable for manufacturing the optical fiber 20 with a large core diameter. Furthermore, if optical fibers made of quartz glass or pure quartz are used in the method of manufacturing optical fiber bundles for image transmission of the present invention, they will have high light transmittance, low loss, excellent flexibility in long lengths, and mechanical properties. It is possible to produce an optical fiber bundle for image transmission with excellent resolution and optical strength, chemical stability, and radiation resistance.

なお、本願発明は石英系ガラス材料からなる光
学繊維20を用いることに限定されるものではな
く、従来から使用されていた多成分系ガラス材料
からなる光学繊維であつても極めて簡単かつ安価
に、両端面の配列の対応した像伝送用光学繊維束
を製造することができる。
Note that the present invention is not limited to the use of optical fibers 20 made of quartz-based glass materials, but can be applied extremely simply and inexpensively even with optical fibers made of conventionally used multi-component glass materials. It is possible to manufacture an optical fiber bundle for image transmission in which both end faces are arranged in correspondence with each other.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の像伝送用光学繊維束の製造方
法の一例を示す図解図、第2図は本発明の光学繊
維の母材の製造工程を示す図解図、第3図は本発
明による像伝送用光学繊維束の断面を示す図解図
である。
FIG. 1 is an illustrative diagram showing an example of a method for manufacturing an optical fiber bundle for image transmission according to the present invention, FIG. FIG. 2 is an illustrative view showing a cross section of an optical fiber bundle for image transmission.

Claims (1)

【特許請求の範囲】 1 光学繊維の複数本を束ね、該束の一端におい
て各光学繊維を固着し、光学繊維の束を固着され
た端部側から加熱線引きすることを特徴とする像
伝送用光学繊維束の製造方法。 2 前記光学繊維が石英系ガラスよりなる特許請
求の範囲第1項記載の像伝送用光学繊維束の製造
方法。 3 前記加熱線引きに先だつて光学繊維を超音波
洗浄しておくことを特徴とする特許請求の範囲第
1項または第2項記載の像伝送用光学繊維束の製
造方法。
[Claims] 1. An image transmission device characterized by bundling a plurality of optical fibers, fixing each optical fiber at one end of the bundle, and heating and drawing the bundle of optical fibers from the fixed end side. A method for manufacturing an optical fiber bundle. 2. The method of manufacturing an optical fiber bundle for image transmission according to claim 1, wherein the optical fibers are made of quartz glass. 3. The method of manufacturing an optical fiber bundle for image transmission according to claim 1 or 2, characterized in that the optical fibers are subjected to ultrasonic cleaning prior to the heating drawing.
JP14489079A 1979-11-07 1979-11-07 Manufacture for optical fiber bundle for image transmission Granted JPS5667806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14489079A JPS5667806A (en) 1979-11-07 1979-11-07 Manufacture for optical fiber bundle for image transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14489079A JPS5667806A (en) 1979-11-07 1979-11-07 Manufacture for optical fiber bundle for image transmission

Publications (2)

Publication Number Publication Date
JPS5667806A JPS5667806A (en) 1981-06-08
JPS6146415B2 true JPS6146415B2 (en) 1986-10-14

Family

ID=15372727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14489079A Granted JPS5667806A (en) 1979-11-07 1979-11-07 Manufacture for optical fiber bundle for image transmission

Country Status (1)

Country Link
JP (1) JPS5667806A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792302A (en) * 1980-11-28 1982-06-08 Nippon Telegr & Teleph Corp <Ntt> Manufacture of multioptical fiber
JPS6033227A (en) * 1983-07-29 1985-02-20 Furukawa Electric Co Ltd:The Preparation of multifiber
JP2745415B2 (en) * 1988-10-26 1998-04-28 株式会社フジクラ Image fiber manufacturing method
JP2010139483A (en) * 2008-12-15 2010-06-24 Synergy Optosystems Co Ltd Inspection system and inspection method of optical waveguide

Also Published As

Publication number Publication date
JPS5667806A (en) 1981-06-08

Similar Documents

Publication Publication Date Title
JP2882573B2 (en) Manufacturing method of passive fiber optic element
US4652288A (en) Method of producing infrared image guide
JPH0447285B2 (en)
CA1160085A (en) Gradient index optical components
US3690853A (en) Method of making high resolution image transmitting fiber optics bundles
JPS6146415B2 (en)
JP4116479B2 (en) Tapered photonic crystal fiber, manufacturing method thereof, and connection method of photonic crystal fiber
US3830640A (en) Production of light-conducting glass structures with index gradient
JPS6126005A (en) Production for image fiber
JPS621331B2 (en)
JP2519699B2 (en) Optical fiber bundle manufacturing method
CN112327406A (en) High-filling-rate flexible optical fiber image transmission bundle, mold and image transmission bundle preparation method
JPS61232242A (en) Production of bundle fiber for simultaneous transmission of visible and ultraviolet light
JPS6146414B2 (en)
JPS6256332A (en) Production of image guide
JPS6243932B2 (en)
JPS622283B2 (en)
JPS63167305A (en) Taper-like optical transmission body and its production
JPS60138503A (en) Manufacture of multicore optical fiber
JPH02118502A (en) Image fiber and production thereof
JP3260162B2 (en) Star coupler manufacturing method
JPS5833525B2 (en) Twisted multi-core optical fiber and its manufacturing method
JPH0159982B2 (en)
JPH06279043A (en) Production of image fiber
JPS58213643A (en) Preparation of parent material for optical fiber