JPS60221705A - Manufacture of image guide of double-layer structure - Google Patents

Manufacture of image guide of double-layer structure

Info

Publication number
JPS60221705A
JPS60221705A JP59078113A JP7811384A JPS60221705A JP S60221705 A JPS60221705 A JP S60221705A JP 59078113 A JP59078113 A JP 59078113A JP 7811384 A JP7811384 A JP 7811384A JP S60221705 A JPS60221705 A JP S60221705A
Authority
JP
Japan
Prior art keywords
layer structure
image guide
layer
base material
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59078113A
Other languages
Japanese (ja)
Other versions
JPH0366261B2 (en
Inventor
Atsushi Uchiumi
内海 厚
Hiroyuki Hayamizu
速水 弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichi Nippon Cables Ltd
Original Assignee
Dainichi Nippon Cables Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichi Nippon Cables Ltd filed Critical Dainichi Nippon Cables Ltd
Priority to JP59078113A priority Critical patent/JPS60221705A/en
Publication of JPS60221705A publication Critical patent/JPS60221705A/en
Publication of JPH0366261B2 publication Critical patent/JPH0366261B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01214Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of multifibres, fibre bundles other than multiple core preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/028Drawing fibre bundles, e.g. for making fibre bundles of multifibres, image fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/40Multifibres or fibre bundles, e.g. for making image fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain the flexible image guide with a small external diameter by removing a port layer from an optical fiber base material of three-layer structure obtained by a rod-in tube method and forming two-layer structure, and forming the quartz glass image guide of two-layer structure by using said two- layer structure. CONSTITUTION:A core, clad, and support are laminated concentrically by the rod-in tube method successively from inside to manufacture the base material. Then, the supporting layer is removed and the resulting material is drawn to form a preform of two-layer structure consisting of the core and clad. Then numbers of preforms are bundles and drawn. The supporting layer is removed by using fluoric acid.

Description

【発明の詳細な説明】 イドの製法に関する0さらに詳しくは、四ツドインチュ
ーブ法によ・りえられる3層構造の光7アイパ母材から
サポート層を除去して2層構造とし、これを用いて2層
構造の石英ガラス系イメージガイドを製造する方法に関
する0光ファイバ母材の製法の1つであるpツドインチ
ューブ法は、石英ガラス製のパイプを外側から加熱しつ
つパイプ内にたとえばSiO/4とB?3と02との混
合ガスを通してパイプの内表面にフッ素がドープされた
クラツドを形成し、ついで石英ガラス棒をパイプ中に挿
入してコラプスする方法であり、石英ガラス棒(コア)
とフッ素ドープ石英ガラス(クラッド)と石英ガラスノ
々イプ(サポート)と3層からなる光フアイバ母材しか
えられない。
[Detailed Description of the Invention] In more detail, the support layer is removed from the Hikari 7 IPA base material, which has a three-layer structure produced by the four-in-tube method, to obtain a two-layer structure, and this is used. The p-tud-in-tube method, which is one of the methods for manufacturing an optical fiber base material, is a method for manufacturing a two-layer structure quartz glass image guide. /4 and B? This method involves passing a mixed gas of 3 and 02 to form a fluorine-doped clad on the inner surface of the pipe, and then inserting a quartz glass rod into the pipe and collapsing it.The quartz glass rod (core)
The only optical fiber base material that can be obtained is a three-layer optical fiber base material: fluorine-doped quartz glass (cladding) and quartz glass pipe (support).

かかるロッドインチューブ法でえられる3層構造の母材
から製造される光ファイバでは、最外層に存在するサポ
ートはとくに使用上同一とならない。しかしながら、多
数本の光ファイバを融着して製造されるイメージガイド
では、サポートの材質がコアとほぼ同じであるため、サ
ポートがコアと同様に光伝送路となり、そのため迷光が
生じ、伝送された画像の鮮明度が低下してしまう。さら
にサポートが存在するため、その分だけイメージガイド
の外径が大きくなり、可撓性を低下せしめている。
In an optical fiber manufactured from a three-layer base material obtained by such a rod-in-tube method, the supports present in the outermost layer are not the same in use. However, in image guides manufactured by fusing multiple optical fibers, the material of the support is almost the same as that of the core, so the support becomes an optical transmission path just like the core, resulting in stray light that is transmitted. The clarity of the image decreases. Furthermore, the presence of the support increases the outer diameter of the image guide accordingly, reducing its flexibility.

本発明者らはロンドインチューブ法でえられる3層構造
の光フアイバ母材から2層構造のイメージガイドを製造
する方法を開発するべく鋭意研究を重ねた結果、3層構
造の母材からサポートをフッ酸で溶解除去するかまたは
ファイヤポリッシュ法により除去して2層構造の母材と
し、これを用いてイメージガイドを製造するときは、サ
ポートを含まない2層構造のイメージガイドかえられる
ことを見出し、本発明を完成した。
The present inventors have conducted intensive research to develop a method for manufacturing a two-layered image guide from a three-layered optical fiber base material obtained by the Rondo-in-tube method. When manufacturing an image guide using a base material with a two-layer structure by dissolving it with hydrofluoric acid or removing it by fire polishing, it is important to note that the image guide can be replaced with a two-layer structure without a support. The present invention has been completed.

本発明においてサポートの除去を7アイヤボリツシユ法
で行なうには、02−H!炎による高熱状態でサポート
層を飛散させる方法が採用されるO 吹きつける火炎の温度は約2000〜2200°01好
ましくは2050〜2150°aである0除夫に要する
時間はサポートの材質、厚さ、火炎温度などにより大き
く異なるが、通常4〜5時間で完了する〇サポートの除
去は7ツ酸を用いて行なうこともできる。フッ酸を用い
るばあいは、アクリル容器中に満たしたフッ酸溶液中に
プリフォームを適当時間浸漬させることにより最外層の
サポート層を溶解除去する方法が一般に採用される0用
いるフッ酸の濃度は10〜30%のものが好ましく、ま
た浸漬時間は1〜10時間、温度は10〜40°0の範
囲であり、とくに狭い範囲に限定されるものではない。
In the present invention, in order to remove the support using the 7-year boring method, 02-H! A method is adopted in which the support layer is scattered under the high heat of the flame.The temperature of the sprayed flame is approximately 2000-2200°a, preferably 2050-2150°a.The time required for removal depends on the material and thickness of the support. The removal of the support can also be carried out using hetamine, which usually takes 4 to 5 hours, although it varies greatly depending on the flame temperature and other factors. When using hydrofluoric acid, a method is generally adopted in which the outermost support layer is dissolved and removed by immersing the preform in a hydrofluoric acid solution filled in an acrylic container for an appropriate time.The concentration of the hydrofluoric acid used is It is preferably 10 to 30%, and the immersion time is 1 to 10 hours, and the temperature is 10 to 40°C, but is not particularly limited to a narrow range.

かくしてえられた2層構造の光フアイバ母材からイメー
ジガイド製造用の2層構造のプリフォームを作製し、こ
のプリフォームを多数本、たとえば5,000〜50.
000本束ね、約1900〜2100°aで線引きする
ことによって2層構造のイメージガイドかえられる0プ
リフオームの作製法、プリフォームの東の線引き法など
はとくに限定されず、従来公知の方法が採用できる。ま
た、プリフォームの束を−Hクラッドのみを相互に加熱
融着したのち線引きしてもよい。
A two-layer preform for manufacturing an image guide is produced from the two-layer optical fiber base material thus obtained, and a large number of preforms, for example 5,000 to 50.
There are no particular limitations on the manufacturing method of the 0 preform, in which a two-layer structure image guide can be changed by bundling 000 pieces and drawing at about 1900 to 2100° a, and the method of drawing the preform on the east side, and conventionally known methods can be adopted. . Alternatively, a bundle of preforms may be wire-drawn after only the -H cladding is heat-fused to each other.

本発明の製法によりえられた2層構造の石英ガラス系イ
メージガイドは、サポートがないので迷光が生ずること
もなく、また外径が小さく可撓性に富んだものである。
The quartz glass image guide having a two-layer structure obtained by the manufacturing method of the present invention has no support, so it does not generate stray light, and has a small outer diameter and is highly flexible.

つぎに本発明の製法を実施例に基づいて説明するが、本
発明はかかる実施例のみに限定されるものではない。
Next, the manufacturing method of the present invention will be explained based on Examples, but the present invention is not limited to these Examples.

実施例1 〔pツドインチューブ法による5層構造の母材の作製〕 表面が清浄された内径23mm、外径26mmの石英ガ
ラスパイプを2mm/秒で1往復300秒の速度で往復
動させながら、外部より酸水素バーナで1600〜18
00°0に加熱した。この加熱されているパイプ中に8
1074とBIF3と酸素との混合ガベSin!4:B
73 : 07l=1 : 1.3 : S、 O、モ
ル比)を流速7oo/分で300分間導入し、パイプの
内表面にフッ素とホウ素がドープされた5102のスー
トを形成したのち1600〜180rJoOにて該スー
トをガラス化してクラッドを形成した。
Example 1 [Preparation of a base material with a five-layer structure using the p-tud-in-tube method] A quartz glass pipe with an inner diameter of 23 mm and an outer diameter of 26 mm, whose surface was cleaned, was moved back and forth at a speed of 2 mm/sec for 300 seconds per round trip. , 1600~18 with an oxyhydrogen burner from the outside.
Heated to 00°0. 8 in this heated pipe
Mixed Gabe Sin of 1074, BIF3 and oxygen! 4:B
73:07l=1:1.3:S, O, molar ratio) was introduced for 300 minutes at a flow rate of 7oo/min to form 5102 soot doped with fluorine and boron on the inner surface of the pipe, and then 1600 to 180rJoO The soot was vitrified to form a cladding.

ついでコアとなる外径12mmの純石英ガラス棒ヲハイ
プ中に挿入し、2050〜2150°0に加熱してコラ
プスし、サポートとクラッドとコアの3層からなる光フ
アイバ母材を作製した〇 えられた母材は、コア外径21mm5クラッド厚3−5
mm %サポート厚7.5’mmのものであった。
Next, a pure silica glass rod with an outer diameter of 12 mm, which will serve as the core, was inserted into Hype and heated to 2050 to 2150°0 to collapse, producing an optical fiber base material consisting of three layers: support, cladding, and core. The base material was core outer diameter 21mm, cladding thickness 3-5mm.
The support thickness was 7.5'mm.

〔ファイヤポリッシュ法によるサポートの除去〕7アイ
ヤポリツシユ法によりサポート層を除去するばあいは、
プリフォームをガラス旋盤にセットし、分速10〜60
rpmで回転させ−これを分速5〜50mm/winで
移動する酸水素バーナで2000〜2300°0に加熱
し最外層の石英ガラスを蒸発させることによって除去し
た。
[Removal of support by fire polishing method] 7 When removing the support layer by fire polishing method,
Set the preform on a glass lathe and turn it at a speed of 10 to 60 minutes per minute.
rpm and heated to 2000-2300°0 with an oxyhydrogen burner moving at a speed of 5-50 mm/win to evaporate and remove the outermost layer of quartz glass.

〔2層構造のイメージガイドの製造〕 えられた2層構造の母材から常法により、コア径240
μm、クラッド厚60μmのイメージガイド前駆ファイ
バーを作製した。
[Manufacture of two-layer structure image guide] From the obtained two-layer structure base material, a core diameter of 240
An image guide precursor fiber with a thickness of 60 μm and a cladding thickness of 60 μm was fabricated.

ついでこのイメージガイド前駆ファイバー10000本
を長さ320mm 、外形39mm5内径38mmの純
石英ガラス製のスキンパイプ内に隙間なく配列充填し、
ついでスキンパイプの両端にタミーパイプを接続してバ
ンドルアセンブリを作製した。このアセンブリを高温線
引き装置に縦方向にセットし、下端をシリコーンゴム栓
で密封し、上端を真空ポンプに接続してアセンブリ内を
0.2気圧に減圧した。ついで電気炉を1450°Cに
昇温し、5mm/minの速度でアセンブリを降下させ
、すべてのバンドル部分が加熱ゾーンを通過すると、逆
にアセンブリを同じ温度にて上昇させた。この操作を3
回繰り返したのちバンドルアセンブリを観察すると、バ
ンドルアセンブリの前駆ファイバー間の空間はすべて消
失しており、泡のない真円柱状の前駆ファイバー束とな
っていた〇 この前駆ファイバー束を通常のカーボンヒータ高温線引
き装置にセットし、炉内温度約2000%、前駆ファイ
バー束の送り温度2mJlnin sイメージガイドの
σ1き取り速度1.8m/winの条件で線引きして、
外径1.25m111の2層構造のイメージガイドを製
造した。コア外径は8μmでありコア占有率は44%で
あった。
Next, 10,000 of these image guide precursor fibers were arranged and filled in a pure silica glass skin pipe with a length of 320 mm, an outer diameter of 39 mm, and an inner diameter of 38 mm without any gaps.
Tummy pipes were then connected to both ends of the skin pipe to create a bundle assembly. This assembly was set vertically in a high-temperature drawing device, the lower end was sealed with a silicone rubber stopper, and the upper end was connected to a vacuum pump to reduce the pressure inside the assembly to 0.2 atmospheres. The electric furnace was then heated to 1450° C., the assembly was lowered at a rate of 5 mm/min, and once all the bundle portions had passed through the heating zone, the assembly was raised at the same temperature. Perform this operation 3
When the bundle assembly was observed after repeating the process several times, it was found that all the spaces between the precursor fibers in the bundle assembly had disappeared, resulting in a perfectly cylindrical precursor fiber bundle without any bubbles. Set it in a drawing device and draw it under the conditions of a furnace temperature of about 2000%, a precursor fiber bundle feed temperature of 2 mJlnin s, and a σ1 scraping speed of 1.8 m/win of the image guide.
A two-layer image guide with an outer diameter of 1.25 m111 was manufactured. The core outer diameter was 8 μm and the core occupancy was 44%.

実施例2 実施例1で作製した3層構造の光フアイバ母材をアクリ
ル容器中に満たした濃度30〜50%のフッ酸溶液中に
十数時間浸漬し最外層のサポート層を溶解除去した◇ えられた2層構造の母材から実施例1と同様にして2層
構造のイメージガイドを製造した。
Example 2 The three-layered optical fiber base material prepared in Example 1 was immersed in a 30-50% hydrofluoric acid solution filled in an acrylic container for more than ten hours to dissolve and remove the outermost support layer◇ A two-layer image guide was manufactured in the same manner as in Example 1 from the obtained two-layer base material.

えられたイメージガイドは、外径1.25mm5コア外
径8μm1コア占有率44%のものであった。
The obtained image guide had an outer diameter of 1.25 mm, 5 cores with an outer diameter of 8 μm, and 1 core occupancy rate of 44%.

比較例 実施例1で作製した3層構造の光フアイバ母材から、コ
ア本数およびコア外径が実施例1でえられたイメージガ
イドと同じ比較用の3層構造のイメージガイドを常法に
より製造した。えられたイメージガイドは、外径が1.
40mm、コア占有率36%のものであった。
Comparative Example A three-layer image guide for comparison with the same number of cores and core outer diameter as the image guide obtained in Example 1 was manufactured by a conventional method from the three-layer optical fiber base material produced in Example 1. did. The obtained image guide has an outer diameter of 1.
It was 40 mm and had a core occupation rate of 36%.

つぎに実施例1および比較例でそれぞれ製造された2層
構造のイメージガイドと3層構造のイメージガイドとの
鮮明度および可撓性を調べた。
Next, the clarity and flexibility of the two-layer structure image guide and the three-layer structure image guide manufactured in Example 1 and Comparative Example were examined.

(解像度テスト) 長さ5mのイメージガイドの一端に接眼レンズ、他方に
視野角20度(焦点距離4mm )の対物レンズを配置
し一対物レンズから560mmの位置に日本電子機械工
業会制定のE工A、TテストチャートAを置き、そのチ
ャートの後方にカラービューア(DNPmolel−V
、 (使用ランプI’l+−100WX4 ))を配置
し、目視で識別できるラインを調べた。
(Resolution test) An eyepiece lens is placed at one end of a 5 m long image guide, and an objective lens with a viewing angle of 20 degrees (focal length 4 mm) is placed at the other end. A, T Test chart A is placed and a color viewer (DNPmolel-V
, (lamp used I'l+-100WX4)) were arranged and lines that could be visually identified were examined.

その結果、実施例1および2でえられる本発明のイメー
ジガイドの解像度はそれぞれ600ライン/ 560m
m55soライン/ 560mmであったが、比較例イ
メージガイドの解像度は400ライン/360mmでし
かなかった。
As a result, the resolution of the image guide of the present invention obtained in Examples 1 and 2 was 600 lines/560 m, respectively.
m55so lines/560 mm, but the resolution of the comparative example image guide was only 400 lines/360 mm.

(可撓性) 実施例1および比較例でそれぞれえられたイメージガイ
ドをループ状に曲げ、ループの径を漸次縮径していき、
イメージガイドが折れるに至ったときのループの直径を
調べた◎ その結果、比較例でえられたイメージガイドは30mm
の直径のときに折れたが、実施例1でえられたイメージ
ガイドは25mmの直径になるまで折れることはなかっ
た。
(Flexibility) The image guides obtained in Example 1 and Comparative Example were bent into a loop shape, and the diameter of the loop was gradually reduced.
We investigated the diameter of the loop when the image guide broke.◎ As a result, the image guide obtained in the comparative example was 30 mm.
However, the image guide obtained in Example 1 did not break until it reached a diameter of 25 mm.

特許出願人 大日日本電線株式金社Patent applicant: Dainichi Nippon Electric Cable Co., Ltd.

Claims (1)

【特許請求の範囲】 1 ロッドインチューブ法に工す内側から順にコア、ク
ラッドおよびサポートが同心円状に積層されてなる母材
を作製し、ついでサポート層を除去し、これを線!1き
してコアとクラッドとからなる2層構造のプリフォーム
2作製し、このプリフォームを多数本束ねてl!1きす
ることを特徴とする2層構造の石英ガラス系イメージガ
イドの製法。 2 サポート層の除去をフッ酸を用いて行なう特許請求
の範囲第1項記載の製法。 3 サポート層の除去を7アイヤボリツシユ法により行
なう特許請求の範囲第1項記載の製法0
[Claims] 1. Produced using the rod-in-tube method. A base material is prepared in which the core, cladding, and support are laminated concentrically from the inside. Then, the support layer is removed, and this is made into a wire! A preform 2 with a two-layer structure consisting of a core and a cladding is prepared by stirring, and a large number of these preforms are bundled together. A method for manufacturing a quartz glass image guide with a two-layer structure characterized by a single layer. 2. The manufacturing method according to claim 1, wherein the support layer is removed using hydrofluoric acid. 3. Manufacturing method 0 according to claim 1, in which the support layer is removed by a 7-eye boring method.
JP59078113A 1984-04-18 1984-04-18 Manufacture of image guide of double-layer structure Granted JPS60221705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59078113A JPS60221705A (en) 1984-04-18 1984-04-18 Manufacture of image guide of double-layer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59078113A JPS60221705A (en) 1984-04-18 1984-04-18 Manufacture of image guide of double-layer structure

Publications (2)

Publication Number Publication Date
JPS60221705A true JPS60221705A (en) 1985-11-06
JPH0366261B2 JPH0366261B2 (en) 1991-10-16

Family

ID=13652827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59078113A Granted JPS60221705A (en) 1984-04-18 1984-04-18 Manufacture of image guide of double-layer structure

Country Status (1)

Country Link
JP (1) JPS60221705A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773703A (en) * 1980-10-24 1982-05-08 Fujitsu Ltd Manufacture of optical fiber bundle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773703A (en) * 1980-10-24 1982-05-08 Fujitsu Ltd Manufacture of optical fiber bundle

Also Published As

Publication number Publication date
JPH0366261B2 (en) 1991-10-16

Similar Documents

Publication Publication Date Title
TW552437B (en) Method of manufacture of an optical waveguide article including a fluorine-containing zone
FI77217C (en) Process for producing a polarization preserving optical fiber
US4082420A (en) An optical transmission fiber containing fluorine
TW523614B (en) Optical waveguide article including a fluorine-containing zone
EP0193921A1 (en) Method for producing multi-core optical fiber
EP2933239A1 (en) Apparatus for manufacturing depressed cladding ultra-low water peak optical fiber core rod and method thereof
US4161505A (en) Process for producing optical transmission fiber
JPH0684254B2 (en) Radiation resistant multiple fibers
US4242375A (en) Process for producing optical transmission fiber
US4229197A (en) Method for making multiple optical core fiber
US4165152A (en) Process for producing optical transmission fiber
WO1983003145A1 (en) Process for manufacturing optical multiple fiber
KR890003438B1 (en) Process for the preparation of image fiber
JPS60221705A (en) Manufacture of image guide of double-layer structure
JPS5992940A (en) Production of optical fiber having pore
JPS6275604A (en) Light transmitting line having resistance to radiant rays
JPS5816161B2 (en) Optical transmission line and its manufacturing method
JPS60142302A (en) Manufacture of image guide
JP2002047031A (en) Preform coated with alumina and/or silica and optical fiber
JP2699231B2 (en) Radiation-resistant optical fiber, image fiber, and method of manufacturing the same
JP2657726B2 (en) Radiation-resistant optical fiber and image fiber
JPH01148725A (en) Production of optical fiber preform
JPS6183639A (en) Production of quartz pipe of high purity
KR20070058846A (en) The method of optical fiber
JPH0254285B2 (en)