JPS5992940A - Production of optical fiber having pore - Google Patents

Production of optical fiber having pore

Info

Publication number
JPS5992940A
JPS5992940A JP57201421A JP20142182A JPS5992940A JP S5992940 A JPS5992940 A JP S5992940A JP 57201421 A JP57201421 A JP 57201421A JP 20142182 A JP20142182 A JP 20142182A JP S5992940 A JPS5992940 A JP S5992940A
Authority
JP
Japan
Prior art keywords
preform
pores
quartz tube
optical fiber
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57201421A
Other languages
Japanese (ja)
Inventor
Kazuaki Yoshida
和昭 吉田
Seiji Shibuya
渋谷 晟二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP57201421A priority Critical patent/JPS5992940A/en
Publication of JPS5992940A publication Critical patent/JPS5992940A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02781Hollow fibres, e.g. holey fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02709Polarisation maintaining fibres, e.g. PM, PANDA, bi-refringent optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/10Fibre drawing or extruding details pressurised

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain desired optical fibers without collapsed pores in spinning, by melt spinning a preform under heating while pressurizing the interiors of the pores formed in the long direction of the preform. CONSTITUTION:A glass rod 25 consisting of a core part 23 and clad part 24 is placed in the center of a quartz tube 22, and quartz tubes (26a) and (26b) and quartz rods 27, 27,... are placed on both sides thereof to form a composite, which is then mounted on a glass lathe to heat the outer periphery of the quartz tube 22 with an oxyhydrogen flame while pressurizing the pores (26a) and (26b) with nitrogen. Thus, the gaps in the quartz tube 22 are collapsed to produce a preform 1. A gas (G), e.g. nitrogen, is then fed through a quartz tube 4 into the pores (26a) and (26b) in the preform 1, and the tip part of the preform 1 is charged into a heating furnace 3 while pressurizing the interiors of the pores (26a) and (26b) under a given pressure and melt spun to give the aimed optical fiber 9. Thus, the collapsing of the pores is eliminated in spinning.

Description

【発明の詳細な説明】 本発明は空孔を有する光ファイバの製造方法に関する〇 この種の空孔を有する光ファイバ(こは、定偏波光ファ
イバ、イメージガイドファイバ或いはマルチコア光ファ
イバ等がある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical fiber having holes (this type of optical fiber includes a polarization constant optical fiber, an image guide fiber, a multi-core optical fiber, etc.).

これらは一般に通信用、計測用或いは画像伝送用に使用
されている。
These are generally used for communication, measurement, or image transmission.

これらの光ファイバは空孔を有する母材を溶融紡糸する
ことζこよって製造されるが、しばしば紡糸時に空孔が
つぶれるという問題があった。
These optical fibers are manufactured by melt spinning a base material having holes, but there is often a problem that the holes are crushed during spinning.

本発明は溶融紡糸時に空孔内を加圧すること(こよって
上記問題点を解決しようというもので、これを図面(こ
示す実施例を参照しながら説明すると、第1図(仁示す
ようGこ、空孔を有するプリフォーム1を母材供給装置
2【こ取り伺け、その元噛部を加熱炉3内昏こ装入する
The present invention aims to solve the above problem by pressurizing the inside of the pores during melt spinning. The preform 1 having holes is removed from the base material supplying device 2, and its original part is charged into the heating furnace 3.

プリフォーム10基端部には石英管4を接続し、さら〔
ここの石英管4【こパイプ5を接続する。
A quartz tube 4 is connected to the base end of the preform 10, and
Connect the quartz tube 4 here and the pipe 5 here.

そしてこのパイプ5【こ窒素等の気体Gを導入し、プリ
フォーム1の空孔内を加圧する。
Then, a gas G such as nitrogen is introduced into the pipe 5 to pressurize the inside of the pores of the preform 1.

加圧の程度は5〜50+n+nH2Oの範囲が好ましく
、最適値はプリフォームの材質及び寸法、得られる光フ
ァイバの寸法、線引条件等から決定される。
The degree of pressurization is preferably in the range of 5 to 50+n+nH2O, and the optimum value is determined from the material and dimensions of the preform, the dimensions of the optical fiber to be obtained, the drawing conditions, etc.

尚同図(こおいて、6は圧力計、7はリークバルブ、8
は紡糸後の光フアイバ90線径を測足するための線径測
定器、10は同ファイバ(こ被覆を施す塗布装置、11
は塗布後の被覆層を硬化させる硬化炉、12は被覆後の
光ファイバ9aの線径を測定する第2線径測定器、13
は同ファイバ9 a ft引き取るためのキャプスタン
、14は同ファイバ9aを巻取るためのドラムである。
In this figure, 6 is a pressure gauge, 7 is a leak valve, and 8 is a pressure gauge.
10 is a wire diameter measuring device for measuring the diameter of the optical fiber 90 after spinning; 10 is a coating device for coating the fiber;
12 is a curing furnace for curing the coated coating layer; 12 is a second wire diameter measuring device for measuring the diameter of the coated optical fiber 9a; 13 is a curing furnace for curing the coated coating layer;
14 is a capstan for taking up the same fiber 9 a ft, and 14 is a drum for winding up the same fiber 9a.

ここでより具体的な例について述べると、第2図に示す
ようなコア15、クラッド16及びクラッド16(こ形
成された空孔17を有する外径20 mnのプリフォー
ムを第1図(こ示す装置fこ取り付け、空孔17内を約
20 ranlI20の窒素で加圧しながら毎分30?
?+の速さで外径125伽 の光ファイバを引取り、同
コアイノ箇こシリコンゴムを被覆して外径350ん と
し、ドラム14で巻き取った。
To describe a more specific example, a preform having an outer diameter of 20 mm and having a core 15, a cladding 16, and holes 17 formed therein as shown in FIG. Attach the device and pressurize the inside of the hole 17 with nitrogen at a rate of about 20 m2/min.
? An optical fiber with an outer diameter of 125 mm was taken up at a speed of +, the core of the optical fiber was covered with silicone rubber to make an outer diameter of 350 mm, and the drum 14 was used to wind it up.

こうして得られた光ファイバの断面形状は第2図(こ示
すプリフォームと相似形であった。
The cross-sectional shape of the optical fiber thus obtained was similar to the preform shown in FIG.

第3図に示すように多数のコア16・二・・・を備えた
プリフォーム【こつき同様にして線引を行なったところ
、やはりプリフォームと相似形の光ファイバが得られた
0 尚第2図及び第3図をこおいては空孔が1つであるが、
2つ以上の空孔を有するプリフォーム(こついても同様
fこ処理することがてきる。
As shown in Fig. 3, a preform with a large number of cores 16, 2, etc. [When drawing was performed in the same manner, an optical fiber having a similar shape to the preform was obtained. In Figures 2 and 3, there is only one hole, but
Preforms with two or more holes can also be treated in the same way.

ところで空孔の形成は、通常プリフォームを機械加工す
ること(こよって行なわれてV)るが、かかる手段では
深い空孔を穿つことが不可能であるためプリフォームは
小型となり、従って元ファイバも短いものとならざるを
得ない0そこで本発明においては、機械加工(こよらな
いて空孔を育するプリフォームを作製し、これを第1図
(こ示す装置を用いて線引する。
By the way, holes are usually formed by machining the preform (V), but since it is impossible to drill deep holes with this method, the preform is small, and therefore the original fiber is Therefore, in the present invention, a preform in which holes are grown is prepared by machining, and this is drawn using the apparatus shown in FIG.

第4図はかかるプリフォームの1例を示すもので、コア
18、クラッド19iこ形成されかつコア18iこ関し
て対称な空孔20及びクラ゛ンド19の外周に設けられ
たジャケット21とを備えている0 ここでクラッド19とジャケット21とは必ずしも異質
の材料である必要はないが、クラッド19としてコア1
8径の5倍以上番こ相当する部分(こ極めて純度の高い
材質を用いれば損失が小さくなる。
FIG. 4 shows an example of such a preform, which has a core 18, a clad 19i formed therein, and has holes 20 symmetrical with respect to the core 18i, and a jacket 21 provided around the outer periphery of the clad 19. Here, the clad 19 and the jacket 21 do not necessarily have to be made of different materials, but the core 1
A portion corresponding to a diameter of 5 times or more of the diameter of 8 (if a material with extremely high purity is used in this area, the loss will be reduced).

またコア18、クラッド19反びジャケット21の屈折
率は、コア18が最も高く、クラッド19とジャケット
21とは同じか或いはクラッド19がジャケット21よ
りやや低くなっている。
Further, the refractive index of the core 18, the cladding 19, and the jacket 21 is the highest, and the cladding 19 and the jacket 21 are the same, or the cladding 19 is slightly lower than the jacket 21.

ところでかがろ空孔を有する光ファイバは次のよう1こ
して製造される。
By the way, an optical fiber having Kagaro holes is manufactured by straining as follows.

l1lIち第5図に示すようにジャケット石英管22の
中央部にコア部23及びクラッド部24かうなるガラス
棒25を配置し、さら]こその両側【こ石英管26a、
26bを配置すると共【こ残余の間隙【こ石英棒27.
27・・・・・を配置し、これらをガラス棒25に外接
させると共【こジャケット石英管22の内周壁に内接さ
せる。
As shown in FIG. 5, a glass rod 25 consisting of a core portion 23 and a cladding portion 24 is placed in the center of the jacketed quartz tube 22, and furthermore, a glass rod 25 consisting of a core portion 23 and a cladding portion 24 is placed in the center of the jacketed quartz tube 22, and a glass rod 25 is placed on both sides.
26b and the remaining gap [this quartz rod 27.
27... are arranged, and these are circumscribed to the glass rod 25 and inscribed to the inner circumferential wall of the jacketed quartz tube 22.

これらの材質としては、コア部231こGeO2−8i
n2ガラスを、クラッド部24(こ5i02ガラスを用
い、また石英管26 a 、 26 b iこ市販の高
純度合成石英管を用い、石英棒27.27・・・・・は
VAD法により製作したものを用い、ジャケット石英管
221こは市販の天然石英管を用いた。
These materials include GeO2-8i for the core part 231.
The cladding part 24 (5i02 glass) was used, the quartz tubes 26a and 26b were commercially available high-purity synthetic quartz tubes, and the quartz rods 27, 27... were manufactured by the VAD method. The jacketed quartz tube 221 was a commercially available natural quartz tube.

こうして組み合わされた複合物を第6図に示すよう(こ
ガラス旋盤に取り付け、石英管2(3a、26bの空孔
内を窒素で加圧しながらジャケット石英管22の外周を
酸水素火炎28で加熱して同石英管22内の間隙をつぶ
す。
The composite thus assembled is mounted on a glass lathe as shown in FIG. Then, the gap inside the quartz tube 22 is closed.

このとき空孔内の加圧度は、空孔がつぶれたり、ふくら
んだりしないよ)+C調節される。
At this time, the degree of pressurization inside the hole is adjusted by +C so that the hole does not collapse or swell.

こうして作製されたプリフォームは第1図に示す装置(
こ取り付けられて線引される。
The preform produced in this way is manufactured using the apparatus shown in Fig. 1 (
This is attached and wired.

尚第2図(こ示す複合物をコラプスする際、石英管26
a、26bの空孔内にアルミナ製、炭素製等の俸を挿入
し、加熱してつぶした後、棒を抜き去るようGこしても
よい。
Note that when collapsing the composite shown in Figure 2, the quartz tube 26
A bar made of alumina, carbon, etc. may be inserted into the holes a and 26b, heated and crushed, and then strained to remove the bar.

以上のように本発明【こおいては、空孔内を加圧しなが
らプリフォームを溶融紡糸するので、紡糸時に空孔がつ
ぶれるということがない。
As described above, in the present invention, since the preform is melt-spun while pressurizing the inside of the pores, the pores are not crushed during spinning.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不発明(こ使用される装置の略示図、第2図及
び第3図は空孔を有するプリフォーム、;J:可面図、
第4図は本発明によって得られたプリフォームの断面図
、第5図は第4図のプリフォームの前身たる複合物、第
6図は複合物のコラブス工程孕示す説明図であるQ 1・・・・・プリフォーム 17.20・・・・・空孔 第1図 第 2 因 第 3 図
Figure 1 is a schematic diagram of the device used; Figures 2 and 3 are preforms with holes; J: surface view;
FIG. 4 is a cross-sectional view of a preform obtained by the present invention, FIG. 5 is a composite that is a predecessor of the preform in FIG. 4, and FIG. 6 is an explanatory diagram showing the collabs process of the composite. ...Preform 17.20...Void Figure 1 Figure 2 Cause Figure 3

Claims (1)

【特許請求の範囲】[Claims] 長手方向沿いに空孔が形成されたプリフォームを加熱し
て紡糸する光ファイバの製造方法において、上記空孔内
を力U圧しながらプリフォームを溶融紡糸することを特
徴とする空孔を有する光ファイバの製造方法。
A method for producing an optical fiber in which a preform in which holes are formed along the longitudinal direction is heated and spun, characterized in that the preform is melt-spun while applying force U inside the holes. Fiber manufacturing method.
JP57201421A 1982-11-17 1982-11-17 Production of optical fiber having pore Pending JPS5992940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57201421A JPS5992940A (en) 1982-11-17 1982-11-17 Production of optical fiber having pore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57201421A JPS5992940A (en) 1982-11-17 1982-11-17 Production of optical fiber having pore

Publications (1)

Publication Number Publication Date
JPS5992940A true JPS5992940A (en) 1984-05-29

Family

ID=16440796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57201421A Pending JPS5992940A (en) 1982-11-17 1982-11-17 Production of optical fiber having pore

Country Status (1)

Country Link
JP (1) JPS5992940A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2655326A1 (en) * 1989-12-01 1991-06-07 Thomson Csf METHOD FOR PRODUCING A HOLLOW OPTICAL FIBER AND DEVICE FOR REALIZING A HOLLOW OPTICAL FIBER
EP0810453A1 (en) * 1996-05-31 1997-12-03 Lucent Technologies Inc. Article comprising a micro-structured optical fiber, and method of making such fiber
US5802236A (en) * 1997-02-14 1998-09-01 Lucent Technologies Inc. Article comprising a micro-structured optical fiber, and method of making such fiber
WO2001084198A1 (en) * 2000-05-01 2001-11-08 Sumitomo Electric Industries, Ltd. Optical fiber and method for manufacturing the same
EP1153325B1 (en) * 1999-02-19 2003-09-24 Blazephotonics Limited Photonic crystal fibresand methods of manufacturing
US6766088B2 (en) 2000-05-01 2004-07-20 Sumitomo Electric Industries, Ltd. Optical fiber and method for making the same
US7155097B2 (en) 2001-03-09 2006-12-26 Crystal Fibre A/S Fabrication of microstructured fibres
US8215129B2 (en) 2002-03-20 2012-07-10 Nkt Photonics A/S Method of drawing microstructured glass optical fibers from a preform, and a preform combined with a connector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008253457A (en) * 2007-04-03 2008-10-23 Sankyo Co Ltd Game machine
JP2014104056A (en) * 2012-11-26 2014-06-09 Kyoraku Sangyo Co Ltd Game machine
JP2015051114A (en) * 2013-09-06 2015-03-19 京楽産業.株式会社 Game machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008253457A (en) * 2007-04-03 2008-10-23 Sankyo Co Ltd Game machine
JP2014104056A (en) * 2012-11-26 2014-06-09 Kyoraku Sangyo Co Ltd Game machine
JP2015051114A (en) * 2013-09-06 2015-03-19 京楽産業.株式会社 Game machine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5167684A (en) * 1989-12-01 1992-12-01 Thomson-Csf Process and device for producing a hollow optical fiber
FR2655326A1 (en) * 1989-12-01 1991-06-07 Thomson Csf METHOD FOR PRODUCING A HOLLOW OPTICAL FIBER AND DEVICE FOR REALIZING A HOLLOW OPTICAL FIBER
EP0810453A1 (en) * 1996-05-31 1997-12-03 Lucent Technologies Inc. Article comprising a micro-structured optical fiber, and method of making such fiber
US5802236A (en) * 1997-02-14 1998-09-01 Lucent Technologies Inc. Article comprising a micro-structured optical fiber, and method of making such fiber
US6954574B1 (en) 1999-02-19 2005-10-11 Crystal Fibre A/S Photonic crystal fibres
JP4761624B2 (en) * 1999-02-19 2011-08-31 クリスタル ファイバー アクティーゼルスカブ Photonic crystal fiber and improvements related thereto
EP1153325B1 (en) * 1999-02-19 2003-09-24 Blazephotonics Limited Photonic crystal fibresand methods of manufacturing
US6888992B2 (en) 1999-02-19 2005-05-03 Crystal Fibre A/S Photonic crystal fibres
US6766088B2 (en) 2000-05-01 2004-07-20 Sumitomo Electric Industries, Ltd. Optical fiber and method for making the same
US7484387B2 (en) 2000-05-01 2009-02-03 Sumitomo Electric Industries, Ltd. Method of making a microstructured optical fiber
JP4539006B2 (en) * 2000-05-01 2010-09-08 住友電気工業株式会社 Optical fiber and manufacturing method thereof
WO2001084198A1 (en) * 2000-05-01 2001-11-08 Sumitomo Electric Industries, Ltd. Optical fiber and method for manufacturing the same
US7155097B2 (en) 2001-03-09 2006-12-26 Crystal Fibre A/S Fabrication of microstructured fibres
US8215129B2 (en) 2002-03-20 2012-07-10 Nkt Photonics A/S Method of drawing microstructured glass optical fibers from a preform, and a preform combined with a connector

Similar Documents

Publication Publication Date Title
FI77217C (en) Process for producing a polarization preserving optical fiber
US6460378B1 (en) Collapsing a multitube assembly and subsequent optical fiber drawing in the same furnace
US4915467A (en) Method of making fiber coupler having integral precision connection wells
JPS61201633A (en) Production of multicore optical fiber
US4286978A (en) Method for substantially continuously drying, consolidating and drawing an optical waveguide preform
US4602926A (en) Optical fibre fabrication
JPS5992940A (en) Production of optical fiber having pore
CN105866880A (en) Preparation method of polarization-maintaining optical fibers
ATE6492T1 (en) PROCESS FOR THE MANUFACTURE OF OPTICAL GLASS FIBERS.
JP5941430B2 (en) Method for producing porous glass preform for optical fiber
JPH0323241A (en) Optical fiber cable and preparation thereof and optical fiber coupler
JPH04213409A (en) Highly accurate manufacture of connecting device for capillary, connecting terminal and optical fiber
JPH0548445B2 (en)
JPS6218492B2 (en)
EP0716047A2 (en) Method and apparatus for producing optical fiber preform
JPH11199260A (en) Production of preform of constant polarization optical fiber
JP3466251B2 (en) Method of manufacturing optical fiber for optical component
JPS61168549A (en) Production of optical fiber keeping plane of polarization
US11130702B2 (en) Optical fiber manufacturing method
JP2004091304A (en) Aligning method for optical fiber preform
JPS6140832A (en) Process for forming hollow hole for parent material for fixed polarization optical fiber and preparation of fixed polarization optical fiber
JPS6350291B2 (en)
JP3485673B2 (en) Dehydration and sintering device for porous preform for optical fiber
JPH0781960A (en) Apparatus for production glass jacket pipe and production of optical fiber
JPH01148725A (en) Production of optical fiber preform