JPS6350291B2 - - Google Patents

Info

Publication number
JPS6350291B2
JPS6350291B2 JP55028149A JP2814980A JPS6350291B2 JP S6350291 B2 JPS6350291 B2 JP S6350291B2 JP 55028149 A JP55028149 A JP 55028149A JP 2814980 A JP2814980 A JP 2814980A JP S6350291 B2 JPS6350291 B2 JP S6350291B2
Authority
JP
Japan
Prior art keywords
optical fiber
glass
glass tube
manufacturing
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55028149A
Other languages
Japanese (ja)
Other versions
JPS56125233A (en
Inventor
Hiroyoshi Matsumura
Toshio Katsuyama
Yasuo Suganuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2814980A priority Critical patent/JPS56125233A/en
Priority to US06/223,747 priority patent/US4426129A/en
Priority to DE8383111109T priority patent/DE3177109D1/en
Priority to EP81100130A priority patent/EP0032390B1/en
Priority to EP83111109A priority patent/EP0109604B1/en
Priority to DE8181100130T priority patent/DE3176131D1/en
Publication of JPS56125233A publication Critical patent/JPS56125233A/en
Publication of JPS6350291B2 publication Critical patent/JPS6350291B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光フアイバの製造方法、更に詳しく言
えば、断面が複数の層から構成され、上記複数の
層の一部の外周形状が他の層の外周形状と異なる
光フアイバの製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an optical fiber, and more specifically, the present invention relates to a method of manufacturing an optical fiber, and more specifically, the cross section is composed of a plurality of layers, and the outer peripheral shape of some of the plurality of layers is different from that of the other. The present invention relates to a method of manufacturing an optical fiber having a different peripheral shape of the layers.

〔従来技術〕[Prior art]

光集積回路の発展にともない、光の強度という
考えと共に、光の偏波という概念が重要になつて
くる。
With the development of optical integrated circuits, the concept of light polarization has become important as well as the concept of light intensity.

これは例えば光スイツチが偏波面のある方向に
関してのみ動作するため必要になつてくる。この
ような光集積回路と結合する光フアイバは光集積
回路の動作する偏波方向の成分のみを伝送させえ
るものでなければならない。このようなフアイバ
は偏波面保存フアイバと呼ばれ、光通信伝送路と
共に計測用としても重要となつてくる。
This is necessary because, for example, an optical switch operates only in a certain direction of the polarization plane. The optical fiber coupled to such an optical integrated circuit must be capable of transmitting only the component in the polarization direction in which the optical integrated circuit operates. Such fibers are called polarization preserving fibers, and they are becoming important not only for optical communication transmission lines but also for measurement purposes.

このような偏波面保存フアイバの製造方法とし
て、光フアイバのコアあるいはクラツドを楕円に
し、コアとクラツド材料の熱膨張の差を利用し
て、歪を付加する方法が知られている。(文献
エレクトロニクスレターズ1979年10月号677ペー
ジ“Strain birefringlnce in single polarisation
germanosilicate optical fibres”I.P.Kaminow)
この方法は真円のプレホームロツドを作成した
後、一部側面を研磨して高温で線引きし、楕円コ
アの光フアイバを作成するものである。
As a method of manufacturing such a polarization-maintaining fiber, a method is known in which the core or cladding of the optical fiber is made into an ellipse and strain is applied by utilizing the difference in thermal expansion between the core and cladding materials. (Literature
Electronics Letters October 1979 issue, page 677 “Strain birefringlance in single polarization
germanosilicate optical fibers”IPKaminow)
This method involves creating a perfectly circular preform rod, then polishing some of the sides and drawing it at high temperature to create an optical fiber with an elliptical core.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この従来知られている製造方法では、製造工程
の途中で、ガラス管、あるいはガラスロツトを研
磨するという作業を必要とし、大量生産を行う場
合には時間および費用を浪し実用化の大きな障害
となる。
This conventionally known manufacturing method requires the work of polishing the glass tube or glass rod during the manufacturing process, which wastes time and money in mass production and is a major obstacle to practical application. .

〔問題点を解決するための手段〕[Means for solving problems]

したがつて、本発明の目的はコアあるいはクラ
ツドの少なくとも一部が所望の楕円率となる光フ
アイバを簡単な工程で実現することである。すな
わち、研磨等の工程を必要とせず、かつ、光フア
イバの外周は円形となり、芯部のコアあるいは被
覆部クラツドの一方が所望の楕円となる光フアイ
バの製造方法を実現することである。
Therefore, an object of the present invention is to realize an optical fiber in which at least a portion of the core or cladding has a desired ellipticity through a simple process. That is, it is an object of the present invention to realize a method of manufacturing an optical fiber, which does not require a process such as polishing, and in which the outer circumference of the optical fiber is circular, and either the core or the cladding is a desired ellipse.

本発明は上記目的を達成するため、石英管等の
基材管の内壁に光伝送の要部をなすコア又はコア
およびクラツド材となるガラス薄膜を形成し、こ
れを加熱溶融し中実のガラスロツド(プレホー
ム)を作り、その後光フアイバとするため加熱線
引する方法において、上記プレホームを作る工程
において、上記ガラス薄膜が形成されたガラス管
の一部を加熱して滑し中実とし、他の開口端より
一定の減圧度で減圧しながら、上記中実部の加熱
点を漸時移動させてプレホームを作るようにした
ことを特徴とするものである。
In order to achieve the above-mentioned object, the present invention forms a core, or a core and a glass thin film serving as a clad material, on the inner wall of a base material tube such as a quartz tube, and then heats and melts this to form a solid glass rod. In the method of making a preform and then heating and drawing it to make an optical fiber, in the step of making the preform, a part of the glass tube on which the glass thin film is formed is heated and smoothed to make it solid; The preform is made by gradually moving the heating point of the solid part while reducing the pressure at a constant degree from the other opening end.

〔作用〕[Effect]

本発明の光フアイバの製造方法によれば、ガラ
ス管の内側に他のガラス薄膜を形成したものを溶
融し、中実のロツドにする過程において、加熱し
た軟化した状態で内部が減圧されるので管は偏平
になろうとする力が働くと共に、回転による遠心
力、表面張力等によつて円形となろうとする力、
さらに、ガラス管ならびにガラス薄膜を材料の軟
化点の温度の相異に基づき、最外周は円形である
に係らず内部に楕円形状の芯部(コア)、あるい
は、芯部が円形、中間の層が楕円、そして最外層
が、円形という、従来複雑な工程を必要とした、
構造の光フアイバが実現される。
According to the method of manufacturing an optical fiber of the present invention, in the process of melting a glass tube with another glass thin film formed on the inside and making it into a solid rod, the inside of the glass tube is depressurized in a heated and softened state. There is a force acting on the tube that tries to make it flat, and a force that tries to make it circular due to centrifugal force due to rotation, surface tension, etc.
Furthermore, based on the differences in the softening point temperatures of the materials used for glass tubes and glass thin films, we have found that although the outermost periphery is circular, there is an elliptical core inside, or a core with a circular core and an intermediate layer. The outer layer is elliptical and the outermost layer is circular, which previously required a complicated process.
An optical fiber structure is realized.

〔実施例〕〔Example〕

以下実施例によつて本発明を詳細に説明する。
第1図は本発明による光フアイバの製造方法にお
いて、プレホームを作る工程の動作説明図であ
る。このプレホームを作る工程に入る前には従来
の光フアイバの製造方法と同様に石英管(厚さ
1.5mm内径17mm)を加熱して厚さ約3.2mm、半径12
mmの石英管にする。
The present invention will be explained in detail below with reference to Examples.
FIG. 1 is an explanatory diagram of the process of making a preform in the optical fiber manufacturing method according to the present invention. Before starting the process of making this preform, a quartz tube (thickness
1.5mm (inner diameter 17mm) to a thickness of approximately 3.2mm and a radius of 12
Make it into a mm quartz tube.

このように石英管の径を小さくし、厚みを増す
のは、薄く、かつ径の大きいままプレホームを作
ると楕円の軸が変動するため、これを防止するた
めである。
The purpose of reducing the diameter and increasing the thickness of the quartz tube is to prevent the axis of the ellipse from fluctuating if the preform is made thin and with a large diameter.

上記径が小さくされた石英管に従来知られてい
る化学的沈積法によつて、管内壁にコアとなる
30mol%GeO2と70mol%SiO2からなるガラス薄膜
を10μmを形成する。
A core is formed on the inner wall of the quartz tube by the conventionally known chemical deposition method on the quartz tube whose diameter has been reduced.
Form a glass thin film of 10 μm consisting of 30 mol% GeO 2 and 70 mol% SiO 2 .

このようにして形成されたガラス管の両端をガ
ラス施盤台に取りつける。第1図は上記取付台は
示されていないが、上記取付けた管1の一部(ガ
ラス管の端部)を酸水素バーナ2で加熱し潰す。
そしてガラス管の一端の開口部に排気タンク4を
設け、排気管3より排気調整弁6を調整しながら
中の空気を抜き、内圧を一定とする。減圧量は一
方の端が石英管内部5に挿入されたU字管でもつ
て、液8の液面の違いで測定される。なお、最初
ガラス管の一部をつぶすときに減圧を行なつても
良い。
Both ends of the glass tube thus formed are attached to a glass lathe. Although the mounting base is not shown in FIG. 1, a part of the mounted tube 1 (the end of the glass tube) is heated and crushed with an oxyhydrogen burner 2.
An exhaust tank 4 is provided at the opening at one end of the glass tube, and the air inside is removed from the exhaust pipe 3 while adjusting the exhaust adjustment valve 6 to keep the internal pressure constant. The amount of pressure reduction is measured by the difference in the liquid level of the liquid 8 using a U-shaped tube with one end inserted into the quartz tube interior 5. Note that the pressure may be reduced when initially crushing a portion of the glass tube.

上述のようにして、石英管を一定の速度毎分50
回転で回転しながら、酸水素バーナ2を漸時0.17
mm/secの速さで移動すると中実のプレホームが
形成される。
The quartz tube was moved at a constant speed of 50 per minute as described above.
While rotating, gradually turn the oxyhydrogen burner 2 to 0.17
A solid preform is formed when moving at a speed of mm/sec.

第2図a,b,cおよびdは本発明によつて作
つたプレホームの断面の写真をトレースして示し
たもので、各々の製造条件は次の通りである。
Figures 2a, b, c and d are traced photographs of cross sections of preforms made according to the present invention, and the manufacturing conditions for each are as follows.

最初の石英管の外径は20mm、厚さ1.5mmで全て
同じである。
The initial quartz tubes have the same outer diameter of 20 mm and thickness of 1.5 mm.

aはコアとしてゲルマをドープしたシリカガラ
スよりなり減圧量は水の高さで9mmのものであり
約50%の楕円率が得られる。b図は管の減圧量を
27mmと大きくしたもので中空のプレホームのコア
にドープされたゲルマ層の厚みは約15μmと厚い
ものである。cとdは、コアにシリカガラスを、
クラツデイングに硼素をドープしたシリカガラス
に関するものでコアを円形に、クラツデイングを
楕円にした図cと逆にコアを楕円にクラツデイン
グを円形にした図dを示したものである。これら
の作製法は前記したように出発石英管を楕円軸が
回転しないようにある程度収縮させるが、この収
縮量とコア層、クラツデイング層の厚みを最適に
選ぶ事で成しとげられる。
A is made of silica glass doped with germa as a core, the amount of pressure reduction is 9 mm at the height of water, and an ellipticity of about 50% is obtained. Figure b shows the amount of pressure reduction in the pipe.
The thickness of the germanium layer doped into the core of the hollow preform is approximately 15 μm. c and d have silica glass in the core,
This relates to silica glass with a boron-doped cladding, and is shown in figure c, in which the core is circular and the cladding is oval, and in contrast, figure d, in which the core is elliptical and the cladding is circular. These manufacturing methods involve shrinking the starting quartz tube to some extent to prevent rotation of the ellipse axis, as described above, and can be accomplished by optimally selecting the amount of shrinkage and the thicknesses of the core layer and cladding layer.

これらのプレホームは加熱線引して光フアイバ
とする場合中心部はほとんど相似形を維持し、外
周のみ円形に近づくように若干変動し、外周の楕
円率は高々1〜2%以内となり、実質的に円形と
なる。
When these preforms are heated and drawn to form optical fibers, the central part maintains almost a similar shape, but only the outer periphery changes slightly, approaching a circular shape, and the ellipticity of the outer periphery is within 1 to 2% at most, making it virtually invisible. It becomes circular.

第3図は、石英管の厚さと、減圧度を変えたと
きの楕円率の測定結果を示すもので、各曲線の実
施条件は次の通りである。曲線9,10,11に
おいてはコアにゲルマをドープしたシリカガラス
を用い第2図a,bに示すように2層構造であ
る。ゲルマの濃度は約15mol%である。各曲線共
に出発石英管の外径は20mm、内径17mmのもので共
通であり、中空プレホームのゲルマ層の厚みは約
10μmである。この中実プレホームを減圧量を変
えてコラツプスする前に13.5mm、12.8mm、9.7mmの
外径まで収縮させた後減圧を行つて得られた中実
のプレホームのコアの楕円率を示したもので、曲
線9,10,11はそれぞれ13.5mm、12.8mm、9.7
mmの実験例である。曲線12はコアにシリカをク
ラツデイングに硼素をドープしたシリカガラスを
用いてフアイバで第2図c,dのように3層構造
となつている。硼素は約12mol%ドープされてお
り中空プレホームにおいては18μmの厚みを有し
ていた。コアとなるシリカ層は約8μm厚みをもつ
ているもので、出発石英管は前記と同じ外径20
mm、内径17mmのものである。この管にクラツデイ
ング層とコア層を作製した後約13.1mmに収縮させ
た。その後減圧量を変えてコラツプスし、得られ
たクラツデイングの楕円率を減圧量の関数として
示したのが12の曲線である。この時コアの形状は
少し楕円で平均4.2%の楕円率を有していた。
FIG. 3 shows the measurement results of the ellipticity when the thickness of the quartz tube and the degree of vacuum were changed, and the operating conditions for each curve are as follows. In curves 9, 10, and 11, the core is made of silica glass doped with germa and has a two-layer structure as shown in FIGS. 2a and 2b. The concentration of germa is approximately 15 mol%. For each curve, the outer diameter of the starting quartz tube is 20 mm and the inner diameter is 17 mm, and the thickness of the germanium layer on the hollow preform is approximately
It is 10μm. This shows the ellipticity of the core of the solid preform obtained by shrinking this solid preform to an outer diameter of 13.5 mm, 12.8 mm, and 9.7 mm before collapsing by changing the amount of decompression. curves 9, 10, and 11 are 13.5 mm, 12.8 mm, and 9.7 mm, respectively.
This is an experimental example of mm. Curve 12 is a fiber made of silica glass doped with boron and silica as the core, and has a three-layer structure as shown in FIGS. 2c and d. Boron was doped at approximately 12 mol % and the hollow preform had a thickness of 18 μm. The core silica layer has a thickness of approximately 8 μm, and the starting quartz tube has the same outer diameter of 20 μm as described above.
mm, with an inner diameter of 17 mm. After forming a cladding layer and a core layer on this tube, it was shrunk to about 13.1 mm. After that, the collapse was performed by changing the amount of pressure reduction, and curve 12 shows the ellipticity of the resulting cradle as a function of the amount of pressure reduction. At this time, the shape of the core was slightly elliptical, with an average ellipticity of 4.2%.

〔発明の効果〕〔Effect of the invention〕

上述の実施例の説明から明らかなように、本発
明は従来の光フアイバの製造方法に減圧という手
段を加えることによつて、他に特別な工程を必要
とせず、容易に任意の楕円率のコアあるいはクラ
ツトを持つ光フアイバを実現できる。
As is clear from the above description of the embodiments, the present invention adds depressurization to the conventional optical fiber manufacturing method, thereby easily producing optical fibers of any desired ellipticity without requiring any other special steps. Optical fibers with cores or cruts can be realized.

なお、楕円率(長軸の長さをa、短軸の長さを
bとしたときγ=a-b a+bを楕円率とする)を決定す
る要因としては、管内の減圧度、表面張力、管の
回転による遠心力、熱膨張による力、又ガラス
管、ガラス薄膜の材質半径等が相互に関係して理
論的に解析することは困難を伴うが、材質、減圧
度、半径方向の寸法を特定すれば同一条件の楕円
率のコア又はクラツドを持つ光フアイバが確実に
再現できる。
The factors that determine the ellipticity (when the length of the major axis is a and the length of the minor axis is b, the ellipticity is γ = ab a + b ) are the degree of reduced pressure in the pipe, surface tension, Although it is difficult to theoretically analyze the centrifugal force due to the rotation of the tube, the force due to thermal expansion, and the material radius of the glass tube and glass thin film, etc., it is difficult to analyze the material, degree of vacuum, and radial dimension. Once specified, an optical fiber having a core or cladding with the same ellipticity can be reliably reproduced.

特に注目すべきことは、第2図のcに示す例の
如く、石英管の内壁に、まず、B2O3を含んだよ
うな、石英管の材質より低い材質の第1層を作
り、更にその第1層の上に、上記第1層の材質よ
り軟化点の高い材質の第2の薄膜層をCVD法で
作つたものを本発明のように外部圧力より低い内
圧としてカラツプスすると、中心が円形、中間が
楕円最外層が円形という、特殊の断面構造の光フ
アイバを実現できる。
What is particularly noteworthy is that, as shown in the example shown in Fig. 2c, a first layer of a material containing B 2 O 3 , which is lower than the material of the quartz tube, is first formed on the inner wall of the quartz tube. Furthermore, if a second thin film layer made of a material with a higher softening point than the material of the first layer is made by the CVD method on top of the first layer, and the inner pressure is lower than the external pressure as in the present invention, the center It is possible to create an optical fiber with a special cross-sectional structure in which the layer is circular, the middle layer is elliptical, and the outermost layer is circular.

又、減圧の程度は、上記実施例は20(水mm)以
上の場合を示しているが、減圧の程度が極端に大
きい場合は、真交する二軸に対して対称な楕円形
とならず、実際上実用にならないことが多い。し
かしながら、20(水mm)以下の場合はすべて、二
軸に対して対称な形状の楕円が形成される。
In addition, the above example shows the case where the degree of depressurization is 20 (water mm) or more, but if the degree of depressurization is extremely large, it will not form an ellipse that is symmetrical with respect to the two orthogonal axes. , is often impractical in practice. However, in all cases below 20 (water mm), an ellipse with a shape symmetrical about two axes is formed.

従来、プレホームを作る工程でなく、直接ガラ
ス管から光フアイバーに線引する工程において、
減圧することを記載するものはあるが、それは単
に早く中実の光フアイバを実現するものであり、
コアあるいはクラツドを楕円にするためのものは
知られておらず、むしろプレホームを作る場合に
コア又はクラツドを円形にするため加圧する手段
が提案されているものである。
Conventionally, in the process of directly drawing optical fiber from a glass tube, rather than the process of making a preform,
There are some documents that describe reducing the pressure, but this is simply to quickly realize a solid optical fiber.
There is no known method for making the core or cladding elliptical; rather, means have been proposed for applying pressure to the core or cladding to make it circular when making the preform.

本発明は楕円のコア又はクラツドがプレホーム
を作る工程において、減圧することによつてフア
イバの外周は円形で、コアあるいはクラツドのみ
を任意の楕円率でかつ再現性よく実現にできるこ
とを実験によつて見いだしてなされたもので、偏
波面を保存できる光フアイバの実現に有効な手段
を提供するものである。
The present invention is based on experiments that show that in the process of making a preform with an elliptical core or cladding, by reducing the pressure, the outer periphery of the fiber can be circular, and only the core or cladding can be made with any desired ellipticity and with good reproducibility. This method was discovered in 1995 and provides an effective means for realizing an optical fiber that can preserve the plane of polarization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造工程の一部を説明する
図、第2図は本発明の工程の途中でできるプレホ
ームの断面図、第3図はプレホームの減圧量と楕
円率の関係の測定結果を示すグラフである。
Fig. 1 is a diagram explaining a part of the manufacturing process of the present invention, Fig. 2 is a cross-sectional view of a preform formed during the process of the present invention, and Fig. 3 is a diagram showing the relationship between the amount of pressure reduction and the ellipticity of the preform. It is a graph showing measurement results.

Claims (1)

【特許請求の範囲】 1 円形のガラス管の内壁に上記ガラス管の材質
と異なる材質のガラス層を形成する第1工程と、
上記ガラス層の形成された円形のガラス管の内部
圧力を外部圧力より低くなるように減圧しながら
かつ上記ガラス層の形成された円形のガラス管を
回転しながら加熱し、その加熱部を上記円形のガ
ラス管に対して相対的に移動し、中実のガラスロ
ツトを作る第2工程と、上記ガラスロツトを加熱
線引して光フアイバとする第3工程とを有してな
る中心部又は中心部と最外層の中間の少なくとも
一部を楕円とする光フアイバの製造方法。 2 第1項記載の光フアイバの製造方法におい
て、上記第2工程が、上記第1工程で得られた円
形のガラス管の一部を加熱して潰す工程と上記一
部が潰されたガラス管の開口部から減圧する工程
を含む光フアイバの製造方法。 3 第1項又は第2項記載の光フアイバの製造方
法において、上記減圧は水柱高さで、外気圧に対
し4〜20mm低い光フアイバの製造方法。 4 第1項、又は第2項記載の光フアイバの製造
方法において、上記第1工程において形成される
ガラス層は円形のガラス管の内壁に形成される第
1の薄膜層と、上記第1の薄膜層の上に形成され
る第2の薄膜層とからなり、上記第1の薄膜層の
軟化温度は上記ガラス管のそれより低く、上記第
2の薄膜層の軟化温度は、上記第1薄膜層のそれ
より高い、光フアイバの製造方法。
[Claims] 1. A first step of forming a glass layer of a material different from the material of the glass tube on the inner wall of a circular glass tube;
The internal pressure of the circular glass tube on which the glass layer is formed is reduced to be lower than the external pressure, and the circular glass tube on which the glass layer is formed is heated while rotating. a second step of moving the glass rod relative to the glass tube to form a solid glass rod; and a third step of heating and drawing the glass rod to form an optical fiber. A method for manufacturing an optical fiber in which at least a portion of the middle of the outermost layer is elliptical. 2. In the method for manufacturing an optical fiber according to item 1, the second step includes a step of heating and crushing a part of the circular glass tube obtained in the first step, and a glass tube with the part crushed. A method for manufacturing an optical fiber, comprising the step of reducing pressure from an opening of the fiber. 3. The method for manufacturing an optical fiber according to item 1 or 2, wherein the reduced pressure is 4 to 20 mm lower in water column height than the external pressure. 4. In the method for manufacturing an optical fiber according to item 1 or 2, the glass layer formed in the first step includes a first thin film layer formed on the inner wall of the circular glass tube, and a first thin film layer formed on the inner wall of the circular glass tube. a second thin film layer formed on the thin film layer, the softening temperature of the first thin film layer is lower than that of the glass tube, and the softening temperature of the second thin film layer is lower than that of the first thin film layer. A method of manufacturing optical fiber that is higher than that of layers.
JP2814980A 1980-01-11 1980-03-07 Manufacture of optical fiber Granted JPS56125233A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2814980A JPS56125233A (en) 1980-03-07 1980-03-07 Manufacture of optical fiber
US06/223,747 US4426129A (en) 1980-01-11 1981-01-09 Optical fiber and method of producing the same
DE8383111109T DE3177109D1 (en) 1980-01-11 1981-01-09 Polarised plane-maintaining optical fiber
EP81100130A EP0032390B1 (en) 1980-01-11 1981-01-09 Method of producing a preform rod for an optical fiber
EP83111109A EP0109604B1 (en) 1980-01-11 1981-01-09 Polarised plane-maintaining optical fiber
DE8181100130T DE3176131D1 (en) 1980-01-11 1981-01-09 Method of producing a preform rod for an optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2814980A JPS56125233A (en) 1980-03-07 1980-03-07 Manufacture of optical fiber

Publications (2)

Publication Number Publication Date
JPS56125233A JPS56125233A (en) 1981-10-01
JPS6350291B2 true JPS6350291B2 (en) 1988-10-07

Family

ID=12240700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2814980A Granted JPS56125233A (en) 1980-01-11 1980-03-07 Manufacture of optical fiber

Country Status (1)

Country Link
JP (1) JPS56125233A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815041A (en) * 1981-07-20 1983-01-28 Hitachi Ltd Production of base material for optical fiber
JPH02239129A (en) * 1981-07-20 1990-09-21 Hitachi Ltd Production of optical fiber base material
JPS6212628A (en) * 1985-07-05 1987-01-21 Furukawa Electric Co Ltd:The Production of optical fiber
JP5545236B2 (en) * 2011-02-03 2014-07-09 住友電気工業株式会社 Optical fiber preform manufacturing method

Also Published As

Publication number Publication date
JPS56125233A (en) 1981-10-01

Similar Documents

Publication Publication Date Title
US4426129A (en) Optical fiber and method of producing the same
US4184859A (en) Method of fabricating an elliptical core single mode fiber
US4529426A (en) Method of fabricating high birefringence fibers
CA1090134A (en) Fabrication of optical fibers with improved cross sectional circularity
US4948217A (en) Optic coupler
US4906068A (en) Polarization-maintaining optical fibers for coupler fabrication
US4229070A (en) High bandwidth optical waveguide having B2 O3 free core and method of fabrication
US4230396A (en) High bandwidth optical waveguides and method of fabrication
US4935045A (en) Method of manufacturing a preform for asymmetrical optical fiber
JPS61155225A (en) Manufacture of optical wave guide tube
US4283213A (en) Method of fabrication of single mode optical fibers or waveguides
US4505729A (en) Method of producing optical fiber preform
KR920002481A (en) Method of manufacturing polarized optical fiber
CA1263807A (en) Optical waveguide manufacture
JPS5957925A (en) Preform for high multiple refraction optical fiber and manu-facture
JPS6350291B2 (en)
JP3745895B2 (en) Manufacturing method of base material for polarization optical fiber
US5429653A (en) Method of partially introverting a multiple layer tube to form an optical fiber preform
JP2762571B2 (en) Manufacturing method of polarization maintaining optical fiber
JPH03218938A (en) Production of elliptic core-type polarization plane maintaining optical fiber
JPS6150887B2 (en)
JPH0243690B2 (en)
JPS63222031A (en) Production of preform for optical fiber
JPH0577618B2 (en)
JPS61168549A (en) Production of optical fiber keeping plane of polarization