JPS6212628A - Production of optical fiber - Google Patents

Production of optical fiber

Info

Publication number
JPS6212628A
JPS6212628A JP60148067A JP14806785A JPS6212628A JP S6212628 A JPS6212628 A JP S6212628A JP 60148067 A JP60148067 A JP 60148067A JP 14806785 A JP14806785 A JP 14806785A JP S6212628 A JPS6212628 A JP S6212628A
Authority
JP
Japan
Prior art keywords
quartz tube
optical fiber
quartz pipe
sealed
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60148067A
Other languages
Japanese (ja)
Inventor
Tamotsu Kamiya
保 神谷
Yasuhiro Shibayama
芝山 康弘
Yoshihito Uchiyama
内山 順仁
Noboru Sato
昇 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP60148067A priority Critical patent/JPS6212628A/en
Priority to CN86104197A priority patent/CN1011227B/en
Priority to CA000512329A priority patent/CA1271919A/en
Priority to US06/877,854 priority patent/US4772303A/en
Priority to KR1019860005098A priority patent/KR900007333B1/en
Priority to GB8615513A priority patent/GB2178737B/en
Publication of JPS6212628A publication Critical patent/JPS6212628A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02754Solid fibres drawn from hollow preforms

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To simultaneously, surely and stably, carry out drawing and collapsing and to obtain optical fiber in high production efficiency, by drawing a quartz tube which has piled specific synthetic glass on the inner face and sealed at one end, from the sealed end, while keeping the quartz pipe at given inner pressure. CONSTITUTION:The inner part of the quartz pipe 31 is piled with the synthetic glass layer 30 having higher refractive index than the quartz pipe by MVC method, et., in such a way that a ratio of the inner diameter/the outer diameter of the quartz pipe 31 becomes <=0.85 (the inner diameter is the inner diameter of the synthetic glass layer 30) and one end of the quartz pipe is sealed to form the sealed end 42 and the quartz pipe 31 is supported by the bearer 32 in the drawing furnace 33. Then, as a fixed amount of air inhalation is carried out by the suction pump 35 of the air inhalation system 50 connected through the joint part 40 to the open end 43 of the quartz pipe 31, an introduced amount of a gas consisting of Cl2, an inert gas, etc., is regulated by the the flow rate regulator 36 and pressure in the quartz pipe 31 is kept at 0--22mmH2O while detecting the inner pressure of the quartz pipe 31 by the differential pressure gauge 38, the optical fiber 41 is drawn from the above- mentioned sealed end 42, coated by the applicator 45 and taken up through the capstan 39.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、主として内付けCVD法による光ファイバの
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention mainly relates to a method of manufacturing an optical fiber using an internal CVD method.

〔従来技術〕[Prior art]

従来より、石英管の内部に該石英管より屈折率の高い合
成ガラスを内付けせしめ通称コアと呼ばれる部分を形成
し、これを線引炉により線引と同時にコラプスして光フ
ァイバを得る方法が知られている。これは線引時に石英
管が高温に加熱されると軟化し、その結果表面張力によ
り収縮することを利用したもので、線引とコラプスを同
時に行うため生産効率が高いという利点がある。
Conventionally, there has been a method in which a synthetic glass with a higher refractive index than the quartz tube is placed inside the quartz tube to form a part commonly called a core, and this is collapsed at the same time as drawing in a drawing furnace to obtain an optical fiber. Are known. This method takes advantage of the fact that when the quartz tube is heated to a high temperature during wire drawing, it softens and as a result contracts due to surface tension, and has the advantage of high production efficiency since wire drawing and collapse are performed simultaneously.

ところがこの方法にあっては、コラプスに要する加熱条
件と、線引に必要な加熱条件とが必ずしも一致しない場
合が多い、その結果光ファイバの中心部に中実化しない
、いわゆるつぶれ残りが出たり、中実化に際し真円度が
悪くなる等の変形が生じコラプスが不安定になるという
問題が発生する。さらにコラプスの加熱条件を優先する
と線引条件が制約されるという問題もある。
However, in this method, the heating conditions required for collapse and the heating conditions required for drawing often do not necessarily match, and as a result, the center of the optical fiber does not solidify, leaving so-called crushed remains. , when solidifying, deformation such as deterioration of roundness occurs, resulting in a problem that collapse becomes unstable. Furthermore, if priority is given to heating conditions for collapse, there is also the problem that drawing conditions are restricted.

〔発明の目的〕[Purpose of the invention]

前記問題に鑑み本発明の目的は、線引とコラプスを同時
に行う光ファイバの製造方法において、両者を確実かつ
安定的に行い得る光ファイバの製造方法を提供すること
にある。
In view of the above-mentioned problems, an object of the present invention is to provide an optical fiber manufacturing method that simultaneously performs drawing and collapse, in which both can be performed reliably and stably.

〔発明の構成〕     ・ 前記目的を達成すべく本発明は、石英管の内側に該石英
管よりも屈折率の高い合成ガラスを内付けせしめ、これ
を線引炉により線引しながらコラプスして光ファイバを
得る光ファイバの製造方法において、前記石英管内に前
記合成ガラスを石英管の内径/外径値が0.85以下に
なるように内付は後前記石英管の一端を封止して封止端
を形成し、続いて前記石英管を線引炉中に保持し、かつ
この石英管の内圧を0〜−22mmHgOに保ちながら
前記封止端から光ファイバを線引することを特徴とする
ものである。
[Structure of the Invention] - In order to achieve the above object, the present invention includes a synthetic glass having a higher refractive index than that of the quartz tube attached inside the quartz tube, and collapses it while drawing it in a drawing furnace. In the method for manufacturing an optical fiber to obtain an optical fiber, the synthetic glass is inserted into the quartz tube so that the inner diameter/outer diameter value of the quartz tube is 0.85 or less, and then one end of the quartz tube is sealed. A sealed end is formed, and then the optical fiber is drawn from the sealed end while holding the quartz tube in a drawing furnace and maintaining the internal pressure of the quartz tube at 0 to -22 mmHgO. It is something to do.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を図を参照して詳細に説明する。 Embodiments of the present invention will be described in detail with reference to the drawings.

第1図が示すように本発明にあっては、まず、石英管3
1の内部に該石英管31よりも屈折率の高い合成ガラス
層30を、例えば?lCV[l法により、石英管31の
内径/外径値を0.85以下に押さえるように内付けせ
しめる(ここで前記内径とは合成ガラス層30の内径を
いう)、シかる後その一端を封止して封止端42を形成
する。続いて前記石英管31を線引炉33中に支持具3
2により保持し、かつ該石英管31の他端の開放端43
に吸気系50を接続部40を介して接続せしめる。ここ
で前記吸気系50は第1図に示す如く、配管34と37
とこれに各々接続されてなる吸引ポンプ35とガス導入
用の流量調整器36とを有し、さらに前記吸引ポンプ3
5と石英管31の間の配管に装着されてなる差圧計38
と、該差圧計38の圧力指示値により、例えば塩素ガス
、不活性ガス等からなるガスの導入量を設定し前記流量
調整器36を制御Tjする設定器44からなる。尚、前
記配管34と37とはシラインド部45で接続されてい
る。このように石英管31と吸気系50とを接続したら
、前記吸引ポンプ35で一定量の吸気を行いつつ、前記
差圧計38により石英管31の内圧を検知しながら前記
ガス導入用の流量調整器36によりガス導入量を調整し
、前記石英管31内の圧力を0〜−22mmH,Oに保
つ。
As shown in FIG. 1, in the present invention, first, the quartz tube 3
For example, a synthetic glass layer 30 having a higher refractive index than the quartz tube 31 is placed inside the quartz tube 31. Using the lCV method, the quartz tube 31 is fitted inside so that the inner diameter/outer diameter value is kept to 0.85 or less (herein, the inner diameter refers to the inner diameter of the synthetic glass layer 30). Sealing is performed to form a sealed end 42 . Subsequently, the quartz tube 31 is placed in the support 3 in the drawing furnace 33.
2 and the other open end 43 of the quartz tube 31
The intake system 50 is connected to the intake system 50 via the connecting portion 40. Here, the intake system 50 includes piping 34 and 37 as shown in FIG.
and a suction pump 35 and a flow rate regulator 36 for introducing gas, which are respectively connected to the suction pump 3.
5 and the quartz tube 31.
and a setting device 44 that controls the flow rate regulator 36 by setting the amount of gas to be introduced, such as chlorine gas, inert gas, etc., based on the pressure indication value of the differential pressure gauge 38. Note that the pipes 34 and 37 are connected through a shield section 45. After connecting the quartz tube 31 and the intake system 50 in this way, the suction pump 35 takes in a certain amount of air, and the differential pressure gauge 38 detects the internal pressure of the quartz tube 31. 36 to adjust the amount of gas introduced, and maintain the pressure inside the quartz tube 31 at 0 to -22 mmH,O.

この状態が安定したところで石英管31の前記封止端4
2から光ファイバ41を線引する。ここで符号45は前
記光ファイバ41へ被覆を施すための塗布装置、符号3
9はこれを引き取るために使用するキャプスタンである
When this state becomes stable, the sealed end 4 of the quartz tube 31
An optical fiber 41 is drawn from 2. Here, reference numeral 45 denotes a coating device for coating the optical fiber 41, and reference numeral 3
9 is a capstan used to take it out.

尚、第1図においては流tm整器36により塩素ガス、
ヘリウムガス、アルゴンガスあるいは酸素ガス等を乾燥
せしめたものを導入して石英管31内の圧力を調整して
いるが、吸引ポンプ35だけで内圧調整してもよいこと
はいうまでもない、しかし、吸引ポンプ35に脈動等不
安定要因がある場合は、本図の如く吸引ポンプ35には
常に一定量の吸引を行わせ、石英管31の内圧を差圧計
38で常時検知しながら、微調整を流量調整器36によ
るガス導入量で調整すると0〜−22m@1ltOとい
う微小圧力の調整が確実に行えるので都合がよい。
In addition, in FIG. 1, chlorine gas,
Although the pressure inside the quartz tube 31 is adjusted by introducing dry helium gas, argon gas, oxygen gas, etc., it goes without saying that the internal pressure may also be adjusted using the suction pump 35 alone. If there is an unstable factor such as pulsation in the suction pump 35, the suction pump 35 should always perform a certain amount of suction as shown in this figure, and the internal pressure of the quartz tube 31 should be constantly detected by the differential pressure gauge 38 to make fine adjustments. It is convenient to adjust the pressure by adjusting the amount of gas introduced by the flow rate regulator 36 because the minute pressure of 0 to -22 m@1ltO can be surely adjusted.

ここで前述の如く石英管31の内径/外径値を0゜85
以下、内圧を0〜−22mmHxOにする理由について
以下に説明する。
Here, as mentioned above, the inner diameter/outer diameter value of the quartz tube 31 is set to 0°85.
The reason why the internal pressure is set to 0 to -22 mmHxO will be explained below.

一般に石英管31内を負圧にすると、管の外部と内部の
差圧により管にはつぶされる方向に力が作用する1通常
コラプスの原動力は溶融したガラスの表面張力であるが
、さらに前述の如く管外部と内部に差圧を発生せしめる
とより容易に石英管31をコラプスすることができる。
Generally, when the inside of the quartz tube 31 is made negative pressure, a force is applied to the tube in the direction of collapse due to the pressure difference between the outside and inside of the tube.1 Normally, the driving force for collapse is the surface tension of the molten glass, but in addition to the above-mentioned By generating a pressure difference between the outside and inside of the tube, the quartz tube 31 can be more easily collapsed.

しかしながらこの差圧が大き過ぎると石英管31のコラ
プス工程そのものがかなり不安定なため非円化したりす
る。そこでこの差圧には当然適当な範囲が存在するが、
この値は石英管310寸法、特に内径/外径値と、石英
管31の粘性の影響を受ける。当然のことながら内径/
外径値が小さい程管内の中空部が小さいからコラプスの
際の石英管31の収縮率は小さく、よって変形の少ない
ものを容易に得ることができる。従って前記差圧が小さ
くてもコラプスできるし、逆に大き過ぎてもそれ程度形
は生じない。すなわち、差圧の範囲を広くとれる。逆に
前記内径/外径値が大きい場合は収縮率が大きいため、
差圧が小さ過ぎるとつぶれにり<、大き過ぎると変形し
易くなる。すなわち適切な差圧の範囲は狭くなる。一方
粘性に関しては、石英管31と合成ガラス層30の両者
の粘性が各々影響する0石英管31について述べると、
通常の石英製ガラス管の場合その粘性はOH基の含有量
に依存し、この含有量が少なくなる程粘性は大きくなる
。一方向層の合成ガラス層30は、Stowに各種ドー
パントを添加するとその粘性は小さくなり、その度合は
前記ドーパントの量に比例する。そして粘性が小さい管
では容易につぶれるが変形もしやすい、よって前記内径
/外径値が同一ならば差圧は小さいほうで規定される。
However, if this differential pressure is too large, the collapse process of the quartz tube 31 itself is quite unstable, resulting in non-circularization. Therefore, of course there is an appropriate range for this differential pressure, but
This value is influenced by the dimensions of the quartz tube 310, particularly the inner diameter/outer diameter values, and the viscosity of the quartz tube 31. Naturally, the inner diameter/
The smaller the outer diameter value is, the smaller the hollow part inside the tube is, so the shrinkage rate of the quartz tube 31 during collapse is smaller, and therefore a tube with less deformation can be easily obtained. Therefore, even if the differential pressure is small, collapse is possible, and conversely, even if the differential pressure is too large, the shape does not occur to that extent. In other words, the range of differential pressure can be widened. Conversely, if the inner diameter/outer diameter value is large, the shrinkage rate is large, so
If the differential pressure is too small, it will collapse, and if it is too large, it will easily deform. In other words, the range of appropriate differential pressure becomes narrower. On the other hand, regarding viscosity, the 0 quartz tube 31 is affected by the viscosity of both the quartz tube 31 and the synthetic glass layer 30.
In the case of an ordinary quartz glass tube, its viscosity depends on the content of OH groups, and the lower the content, the higher the viscosity. The viscosity of the unidirectional synthetic glass layer 30 decreases when various dopants are added to the Stow, and the degree of viscosity is proportional to the amount of the dopant. A pipe with low viscosity is easily crushed but also easily deformed. Therefore, if the inner diameter/outer diameter values are the same, the differential pressure is determined by the smaller one.

他方粘性が大きくなると変形はしにくくなるがつぶれに
くくなり、内径/外径値が同一の管ならば、差圧は大き
いほうで規定してよいことになる。このような前提にた
って前記内径/外径値と差圧範囲を決定するため以下の
ような実験を行つた・ 実験1 粘性の小さい管としてOH基の含有率(含水率)約20
0ppmの天然石英管31の内面にP2O,を1mol
 %添加したSl島を合成ガラス1i30として断面積
比が3.3  :1.oになるように内付けし、かつ内
径/外径値の異なるものを数種類作製した。これらを線
引炉33で約2100℃に加熱し線引し、外径125μ
−の光ファイバ41を得た。このとき石英管31の内圧
を〜OmaHzOにし、徐々に負圧にしていきその都度
サンプリングして形状を測定した。尚線引速度は約80
−7分、線引張力は約10gであった。その結果第2図
の実線A−B−Cのようになった。ここで、A−Bの外
側(11)部は石英管31内につぶれ残りがあった部分
、A−Cの外側(13)部は変形が大きく使用に耐えら
れない部分、A−B−Cの内側(12)部はつぶれ残り
や変形のない、すなわち良好な部分である。
On the other hand, when the viscosity increases, it becomes difficult to deform, but it also becomes difficult to collapse.If the inner diameter/outer diameter values are the same, the differential pressure can be specified as the larger one. Based on this premise, the following experiment was conducted to determine the above-mentioned inner diameter/outer diameter value and differential pressure range. Experiment 1 As a pipe with low viscosity, the content of OH groups (water content) was approximately 20.
1 mol of P2O is placed on the inner surface of the 0ppm natural quartz tube 31.
% doped Sl islands as synthetic glass 1i30, the cross-sectional area ratio is 3.3:1. Several types were manufactured with different inner diameter/outer diameter values. These are heated to approximately 2100°C in a drawing furnace 33 and drawn into wire, with an outer diameter of 125 μm.
- optical fiber 41 was obtained. At this time, the internal pressure of the quartz tube 31 was set to ~OmaHzO, and the pressure was gradually reduced to negative pressure, and samples were taken each time to measure the shape. The drawing speed is approximately 80
−7 minutes, the drawing tension was approximately 10 g. The result was as shown by the solid line ABC in FIG. Here, the outside (11) part of A-B is the part where there was a crushed residue inside the quartz tube 31, the outside (13) part of A-C is the part that is so deformed that it cannot withstand use, and the part A-B-C The inside (12) part is a good part with no remaining crushing or deformation.

実験2 粘性の大きい管としてOH基の含有率(含水率)約1 
pp+mの無水石英管31の内面に純5iftを合成ガ
ラス層30として断面積比が3.3  :t、oになる
ように内付けし、かつ内径/外径値の異なるものを数種
類作製した。以下前記実験lと同様にして外径125μ
−の光ファイバ41を得た。このとき石英管31の内圧
を〜OmmHzOにし、徐々に負圧にしていきその都度
サンプリングして形状を測定した。その結果第2図の点
線D−E−Fのようになった。ここで、D−Hの外側(
11)部は石英管31内につぶれが残った部分、E−F
の外側(13)部は変形が大きく使用に耐えられない部
分、D−E−Fの内側(12)部はつぶれ残りや変形の
ない、すなわち良好な部分である。
Experiment 2 As a highly viscous tube, the content of OH groups (water content) is approximately 1
A synthetic glass layer 30 of pure 5ift was attached to the inner surface of a pp+m anhydrous quartz tube 31 so that the cross-sectional area ratio was 3.3:t,o, and several types with different inner diameter/outer diameter values were manufactured. Hereafter, in the same manner as in Experiment 1 above, the outer diameter was 125 μm.
- optical fiber 41 was obtained. At this time, the internal pressure of the quartz tube 31 was set to ~OmmHzO, and the pressure was gradually reduced to negative pressure, and samples were taken each time to measure the shape. The result was as shown by the dotted line D-E-F in FIG. Here, outside of D-H (
11) Part is the part where the crush remains in the quartz tube 31, E-F
The outer (13) portion of D-E-F is a portion that is severely deformed and cannot be used, and the inner (12) portion of D-E-F is a good portion with no remaining crushing or deformation.

前記第2図が示すように石英管31の内径/外径値が0
.85以下、かつ内圧を0〜−22mmH*Oにすると
安定して線引とコラプスを同時にかつ良好に行うことが
できる。尚、前記石英管31の内径/外径値が0.1以
下の場合は実質的には石英管31の中空部がごく僅かで
あるため、本発明の効果はこの0゜1以下の範囲ではご
く僅かである。
As shown in FIG. 2, the inner diameter/outer diameter value of the quartz tube 31 is 0.
.. When the internal pressure is 85 or less and the internal pressure is 0 to -22 mmH*O, drawing and collapse can be stably performed simultaneously and satisfactorily. Note that when the inner diameter/outer diameter value of the quartz tube 31 is 0.1 or less, the hollow portion of the quartz tube 31 is substantially small, so the effect of the present invention is not great in this range of 0.1 or less. Very little.

(発明の効果〕 このように、本発明の如く石英管の内径/外径値と内圧
を所定の範囲に規定することにより線引とコラプスを同
時にしかも良好に行うことができる。
(Effects of the Invention) As described above, by defining the inner diameter/outer diameter value and the inner pressure of the quartz tube within a predetermined range as in the present invention, drawing and collapse can be performed simultaneously and efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法を示す概略図、第2図は本発
明の製造条件を示すグラフである。 30〜合成ガラス層 31〜石英管 33〜線引炉35
〜吸引ポンプ 36〜流量調整器 42〜封止端43〜
開放端 50〜吸気系 第1図 第2図 内圧(mm H201
FIG. 1 is a schematic diagram showing the manufacturing method of the present invention, and FIG. 2 is a graph showing the manufacturing conditions of the present invention. 30 - Synthetic glass layer 31 - Quartz tube 33 - Drawing furnace 35
~ Suction pump 36 ~ Flow rate regulator 42 ~ Sealing end 43 ~
Open end 50 ~ Intake system Fig. 1 Fig. 2 Internal pressure (mm H201

Claims (3)

【特許請求の範囲】[Claims] (1)石英管の内側に該石英管よりも屈折率の高い合成
ガラスを内付けせしめ、これを線引炉により線引しなが
らコラプスして光ファイバを得る光ファイバの製造方法
において、前記石英管内に前記合成ガラスを石英管の内
径/外径値が0.85以下になるように内付け後前記石
英管の一端を封止して封止端を形成し、続いて前記石英
管を線引炉中に保持し、かつこの石英管の内圧を0〜−
22mmH_2Oに保ちながら前記封止端から光ファイ
バを線引することを特徴とする光ファイバの製造方法。
(1) A method for manufacturing an optical fiber in which a synthetic glass having a refractive index higher than that of the quartz tube is attached inside the quartz tube, and the synthetic glass is collapsed while being drawn in a drawing furnace to obtain an optical fiber. After installing the synthetic glass inside the tube so that the inner diameter/outer diameter value of the quartz tube is 0.85 or less, one end of the quartz tube is sealed to form a sealed end, and then the quartz tube is wired. The quartz tube is kept in a furnace, and the internal pressure of this quartz tube is kept at 0 to -.
A method for manufacturing an optical fiber, comprising drawing the optical fiber from the sealed end while maintaining the temperature at 22 mmH_2O.
(2)前記石英管の開放端から吸引ポンプにて前記石英
管内部の気体を吸引し石英管内圧を0〜−22mmH_
2Oに制御することを特徴とする特許請求の範囲第1項
記載の光ファイバの製造方法。
(2) Suction the gas inside the quartz tube from the open end of the quartz tube using a suction pump to reduce the internal pressure of the quartz tube to 0 to -22 mmH_
2. The method for manufacturing an optical fiber according to claim 1, wherein the optical fiber is controlled to 2O.
(3)前記石英管の開放端と吸引ポンプとを結ぶ配管の
中間にガス導入用の流量調整器を設け該流量調整器によ
りガス導入量を調整して前記石英管内圧を0〜−22m
mH_2Oに制御することを特徴とする特許請求の範囲
第1項または第2項記載の光ファイバの製造方法。
(3) A flow rate regulator for gas introduction is provided in the middle of the pipe connecting the open end of the quartz tube and the suction pump, and the flow rate regulator adjusts the amount of gas introduced to maintain the internal pressure of the quartz tube from 0 to -22 m.
3. The method for manufacturing an optical fiber according to claim 1 or 2, wherein the optical fiber is controlled to mH_2O.
JP60148067A 1985-06-25 1985-07-05 Production of optical fiber Pending JPS6212628A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60148067A JPS6212628A (en) 1985-07-05 1985-07-05 Production of optical fiber
CN86104197A CN1011227B (en) 1985-06-25 1986-06-17 Mfg. method for optics fibre
CA000512329A CA1271919A (en) 1985-06-25 1986-06-24 Process for fabricating optical fiber
US06/877,854 US4772303A (en) 1985-06-25 1986-06-24 Process for fabricating optical fiber
KR1019860005098A KR900007333B1 (en) 1985-06-25 1986-06-25 Mfg.method for optics fibre
GB8615513A GB2178737B (en) 1985-06-25 1986-06-25 Process for fabricating optical fibre

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60148067A JPS6212628A (en) 1985-07-05 1985-07-05 Production of optical fiber

Publications (1)

Publication Number Publication Date
JPS6212628A true JPS6212628A (en) 1987-01-21

Family

ID=15444462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60148067A Pending JPS6212628A (en) 1985-06-25 1985-07-05 Production of optical fiber

Country Status (1)

Country Link
JP (1) JPS6212628A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5180241A (en) * 1975-01-08 1976-07-13 Sumitomo Electric Industries HIKARIDENSOYOFUAIBAANO SEIZOHOHO
JPS5669235A (en) * 1979-11-09 1981-06-10 Nippon Telegr & Teleph Corp <Ntt> Preparation of optical fiber
JPS56125233A (en) * 1980-03-07 1981-10-01 Hitachi Ltd Manufacture of optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5180241A (en) * 1975-01-08 1976-07-13 Sumitomo Electric Industries HIKARIDENSOYOFUAIBAANO SEIZOHOHO
JPS5669235A (en) * 1979-11-09 1981-06-10 Nippon Telegr & Teleph Corp <Ntt> Preparation of optical fiber
JPS56125233A (en) * 1980-03-07 1981-10-01 Hitachi Ltd Manufacture of optical fiber

Similar Documents

Publication Publication Date Title
US4668263A (en) Method for producing glass preform for optical fiber
US4165224A (en) Method of manufacturing optical fibre preforms
FI81209B (en) ENMODS OPTICAL VAOGROERSFIBER OCH FOERFARANDET FOER FRAMSTAELLNING AV DESS.
JPWO2004101456A1 (en) Optical fiber and manufacturing method thereof
EP0147225A2 (en) Method of forming an optical fiber
US4145458A (en) Method of producing internally coated glass tubes for the drawing of fiber-optic light conductors
US5167684A (en) Process and device for producing a hollow optical fiber
JPS61227938A (en) Preparation of parent material for optical fiber
JPS61155225A (en) Manufacture of optical wave guide tube
JPH11209141A (en) Production of segment core optical waveguide preform
EP0100174A1 (en) Method of making glass optical fiber
JPS6212628A (en) Production of optical fiber
US4772303A (en) Process for fabricating optical fiber
US5429653A (en) Method of partially introverting a multiple layer tube to form an optical fiber preform
JP2817865B2 (en) Optical fiber preform stretching equipment
JP3207855B2 (en) Preform manufacturing method
JPS62167235A (en) Production of base material for optical fiber
JP2000178039A (en) Production of quartz glass preform for optical fiber
JPS6054934A (en) Manufacutre of optical fiber preform
JPS598634A (en) Preparation of base material for optical fiber having retained plane of polarization
JPH01148725A (en) Production of optical fiber preform
JPS58115037A (en) Preparation of preform of optical fiber conserving polarization plane
JPS61168549A (en) Production of optical fiber keeping plane of polarization
JPS61101428A (en) Production of porous parent material of optical system
JPS6033234A (en) Correction of surface defect of quartz preform