JPS5815041A - Production of base material for optical fiber - Google Patents

Production of base material for optical fiber

Info

Publication number
JPS5815041A
JPS5815041A JP56112137A JP11213781A JPS5815041A JP S5815041 A JPS5815041 A JP S5815041A JP 56112137 A JP56112137 A JP 56112137A JP 11213781 A JP11213781 A JP 11213781A JP S5815041 A JPS5815041 A JP S5815041A
Authority
JP
Japan
Prior art keywords
tube
glass
layer
thin film
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56112137A
Other languages
Japanese (ja)
Other versions
JPH0243690B2 (en
Inventor
Hiroyoshi Matsumura
宏善 松村
Toshio Katsuyama
俊夫 勝山
Yasuo Suganuma
菅沼 庸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56112137A priority Critical patent/JPS5815041A/en
Priority to EP82302773A priority patent/EP0067017B1/en
Priority to DE8282302773T priority patent/DE3275591D1/en
Publication of JPS5815041A publication Critical patent/JPS5815041A/en
Priority to US06/883,456 priority patent/US4828592A/en
Priority to JP2855390A priority patent/JPH02239129A/en
Publication of JPH0243690B2 publication Critical patent/JPH0243690B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To make the production of an intended base material for optical fibers possible in the stage of production of a base raw material for optical fibers that generates double refraction in the core part by forming a thin film of glass on the inside wall of a quartz glass tube then reducing the pressure in the tube down to the pressure below the atmospheric pressure and melt sticking the tube by heating thereby making the tube solid. CONSTITUTION:A quartz glass tube 1 of 5-50mm. outside diameter and 0.3-5mm. thickness is prepared as a base material 1 for optical fibers, and a thin film 2 of glass for formation of the clad of optical fibers and a thin film 3 of glass for formation of the core are formed by a chemical deposition method on the inside wall of said tube. Silica glass contg. B2O3 of a softening point lower than that of the softening point of quartz glass is used for the film 2 and glass of a softening point higher than that of the film 2 is used for the film 3. Such tube is heated with a burner 4 to melt stick the end part, after which the inside is evacuated and the burner 4 is moved to make the tube solid with the films 2, 3, whereby the tube is formed to the base material having an elliptical shape in section wherein the outside circumference attains C2/a>=200/(100-r)-1 where the rate of ellipse is r, the minor axis diameter of the elliptical shape C2 and the diameter of the core formed a.

Description

【発明の詳細な説明】 本発明は光ファイバ母材O製造方法、更に詳しく言えば
光ファイバの光伝送の要部をなすコアに複屈折を生ぜし
める光ファイバを製造する工程で使用する光フアイバ母
材、即ちプレホームロッドの製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical fiber preform O, and more specifically, to an optical fiber used in the process of manufacturing an optical fiber that produces birefringence in the core, which is the essential part of optical transmission of the optical fiber. The present invention relates to a method of manufacturing a base material, that is, a preform rod.

光ファイバの一つの用途として、偏波面を乱れなく伝送
し、光集積回路との結合、測定装置、光スィッチ等の利
用が考えられる。このように光の偏波面を乱すことなく
(偏波面を保存)伝播できる円形状光ファイバとしては
光ファイバを形成するコアの直交主軸方向の伝播位相定
数の差が大きいことが必要となる。このような伝相伝播
定数差を得るため、コアに加わる熱応力歪の差を形成す
る方法が考えられている。
One possible use of optical fibers is to transmit polarized waves without disturbance, and to connect them to optical integrated circuits, to use them in measurement devices, optical switches, and the like. As described above, for a circular optical fiber that can propagate light without disturbing the plane of polarization (preserving the plane of polarization), it is necessary that the difference in the propagation phase constants in the orthogonal principal axis directions of the core forming the optical fiber is large. In order to obtain such a difference in phase conduction propagation constants, a method of creating a difference in thermal stress strain applied to the core has been considered.

しかし従来知られている方法は、ガラス管内壁に化学的
気相沈積(CVD)法によって、コア、クラッドとなる
ガラス層を形成し喪後、ガラス管内を少なくとも城圧を
しないで、中実化してロッドを作シ、これを1部研磨等
によって削シ非円形の光フアイバ母材(プレホーム誼ツ
ド)を形成し友後、細い光ファイバとするため加熱線引
する。これによって、プレホームロットの非円、ならび
、ガラス管と内壁に形成されるガラス層の材質の熱膨張
係数の差等によってコアに複屈折を生せしめる方法であ
る。
However, the conventionally known method involves forming a glass layer to serve as the core and cladding on the inner wall of the glass tube by chemical vapor deposition (CVD), and then solidifying the inside of the glass tube, at least without applying pressure. A rod is made, and a portion of the rod is polished to form a non-circular optical fiber preform, which is then heated and drawn to form a thin optical fiber. This is a method of producing birefringence in the core due to the non-circularity of the preform lot and the difference in coefficient of thermal expansion between the materials of the glass tube and the glass layer formed on the inner wall.

しかし、この方法では中実化したロッドの一部を非円と
する研磨工程等を必要とし、更に十分大きな複屈折を生
ぜしbibことができない、特にコアに複屈折を生ぜし
めるためには、クラッドあるいは外周のジャケットを楕
円形とすることが望ましいが、それらの形状を任意に制
御することが困難である。
However, this method requires a polishing process to make a part of the solid rod non-circular, and it is not possible to generate sufficiently large birefringence, especially in order to generate birefringence in the core. Although it is desirable that the cladding or the outer jacket be elliptical, it is difficult to control the shape arbitrarily.

したがって、本発明の目的は、円形の石英ガラス管の内
壁に少なくとも上記ガラス管の材質と異なるガラス薄膜
を形成し、これを加熱溶着し中実の光フアイバ用母材、
すなわちプレホームロットを作る方法において経済的、
簡易な方法で、上記ガラス薄膜部の少なくとも一部が楕
円となる製造方法を実現することである。
Therefore, an object of the present invention is to form a glass thin film different from at least the material of the glass tube on the inner wall of a circular quartz glass tube, and heat and weld this to form a solid optical fiber base material.
In other words, the method of making preformed lots is economical;
It is an object of the present invention to realize a manufacturing method in which at least a portion of the glass thin film portion has an elliptical shape using a simple method.

本発明の他の目的は、研磨工程や最初のガラス管を変形
する工程を要することなく、円形の中心層と上記中心層
外周に形成されその外周が楕円となる中間層と、上記中
間層外局に形成された最外り 同層からな裏、上記中間層の外局の楕円率が任意に設定
できる光フアイバ用母材の製造方法を実現することであ
る。
Another object of the present invention is to provide a circular center layer, an intermediate layer formed on the outer periphery of the center layer and having an elliptical outer periphery, and an outer periphery of the intermediate layer, without requiring a polishing process or a process of deforming the initial glass tube. It is an object of the present invention to realize a method for manufacturing an optical fiber base material in which the ellipticity of the outer layer of the intermediate layer can be arbitrarily set from the same outermost layer formed in the center layer.

本宛FJJ4Fi上記目的を達成するため、基材となる
ガラス管の内壁にガラス薄膜を形成し、これヲ加熱溶着
し、中実の光7アイパ用母材(プレホーム]を製造する
方法において、上記ガラス薄膜が形成された管の一端を
加熱して潰し、上記一端を潰されたガラス管の内部の圧
力を外記圧よシ低くして回転しながら上記潰された1端
から加熱部を漸時移動して中実化することを特徴とする 特に、本発明では、本発明によって得られたプレホーム
ロットの断面構造が中心層が円形で、中間層はその外周
が楕円となシ、最外周層が円形又は円形に近い形状の層
からなるように、上記方法において、上記中間層の一部
の材質は上記基材となるガラス管の軟化点よシ低匹軟化
点を有する材質て形成され、上記コア部を形成する材質
は上記低い軟化点を有する材質よシ高い軟化点を有する
材質で形成される。
In order to achieve the above-mentioned purpose, a method of forming a glass thin film on the inner wall of a glass tube serving as a base material and heat-welding it to produce a solid preform for Hikari 7 Eyepa, One end of the tube on which the glass thin film is formed is heated and crushed, and the heated part is removed from the crushed one end while rotating with the pressure inside the crushed glass tube lower than the external pressure. Particularly, in the present invention, the preform lot obtained by the present invention has a cross-sectional structure in which the center layer is circular and the middle layer has an elliptical outer circumference. In the above method, a part of the intermediate layer is made of a material having a softening point lower than that of the glass tube serving as the base material so that the outermost layer is formed of a circular or nearly circular layer. The material forming the core portion is made of a material having a higher softening point than the material having a lower softening point.

なお、中心層、中間層は実施例において説明する如く単
一の層に限定される必要はなく複数の層で形成してもよ
い。又楕円とは本発明では楕円の長軸を01、短軸をC
1としたとき、楕円率それ以下を円形とする。
Note that the center layer and the intermediate layer are not necessarily limited to a single layer as described in the embodiments, and may be formed of a plurality of layers. In addition, in the present invention, an ellipse is defined as 01 for the long axis and C for the short axis.
When it is set to 1, the ellipticity less than that is considered circular.

本発明の方法によれば、ガラス管の半径、厚み、減圧度
、ガラス薄膜の材質、量を特定することによって中心層
、又は中間層の楕円率を任意の再現性する光フアイバ母
材を実現することができる。
According to the method of the present invention, an optical fiber base material with arbitrary reproducibility of the ellipticity of the center layer or intermediate layer can be realized by specifying the radius, thickness, degree of vacuum of the glass tube, and material and amount of the glass thin film. can do.

特に、中心層を円形、中間層を楕円形とするときは、中
心層の直交する軸方向の屈折率を異なったものとするこ
とが容易に実現でき、偏波面を保存し易い光ファイバを
実現することができる。
In particular, when the central layer is circular and the intermediate layer is elliptical, it is easy to make the refractive index of the central layer different in the orthogonal axes, resulting in an optical fiber that easily preserves the plane of polarization. can do.

なお、鏝終的光ファイバは上記方法によって得られたプ
レホームロットを単に加熱しながら線引すれば上記断面
構造と相似の断面構造の光ファイバが容易に実現できる
Incidentally, the final optical fiber can be easily produced by simply drawing the preform lot obtained by the above method while heating it, and having a cross-sectional structure similar to the above-described cross-sectional structure.

以下本発明を図面を用いて詳細に説明する。The present invention will be explained in detail below using the drawings.

41図は本発明による光フアイバ母材の製造方法の工程
を示す図である。
FIG. 41 is a diagram showing the steps of the method for manufacturing an optical fiber preform according to the present invention.

まず、(l)光ファイバの基材となる石英ガラス管1が
用意される。このガラス管の径が大きく、厚みが薄いと
−は後の減圧量1!(3)にいて所定の形状が得られ難
いため必!!によっては径を小さくする工程が含まれる
。望ましくは外径5箇〜50■、厚さα3−〜5mであ
る。
First, (l) a quartz glass tube 1, which is a base material for an optical fiber, is prepared. If the diameter of this glass tube is large and the thickness is thin, - means the amount of subsequent pressure reduction is 1! It is necessary because it is difficult to obtain the specified shape in (3)! ! In some cases, a step of reducing the diameter is included. Desirably, the outer diameter is 5 to 50 cm and the thickness is α3 to 5 m.

上記ガラス管lの内壁に化学的堆積(CVD)法によっ
て、光ファイバの中間層となるガラス薄膜2および中心
層となるガラス薄膜3が形成される。中間層は光ファイ
バのクラッド、あるいはジャケットとクラット機能を持
つ場合がある。又中心層線光ファイバのコアのみ、ある
いはコアとクラット(すなわち、光伝送部を形成する)
を形成する場合が有る。
A glass thin film 2, which will serve as an intermediate layer of the optical fiber, and a glass thin film 3, which will serve as a center layer, are formed on the inner wall of the glass tube 1 by a chemical deposition (CVD) method. The intermediate layer may have optical fiber cladding or jacket and crut functionality. Also, only the core of the central layer optical fiber, or the core and the crut (i.e., forming the optical transmission part)
may form.

これらの材質、厚みについてを後に詳細に説明する。上
記工程によって得られたガラス薄膜を有するガラス管は
両端をガラス旋盤台に取付け、一定の回転速度で回転す
る(3)。図は取付台に取付られた管の熾部を加熱バー
ナ4で加熱して潰す。そしてガラス管の他の開口部に排
気タンク5を設け、排気管6よシ排気詞節弁7を調整し
ながら管内の気圧を減圧して一定の圧力に保つ。減圧量
は一方の端が石英管内部8に挿入されたU字管9で液1
0の液面の違いで測定される。この状態で加熱源(バー
ナ)4を漸時移動して中実のプレホームロッドを形成す
る。この減圧の程度は第3図で示すようK I III
IHt O〜20■H,0程度に設定する。
These materials and thicknesses will be explained in detail later. Both ends of the glass tube with the glass thin film obtained in the above process are attached to a glass lathe stand and rotated at a constant rotational speed (3). In the figure, the inner part of the tube attached to the mount is heated with a heating burner 4 to crush it. Then, an exhaust tank 5 is provided at the other opening of the glass tube, and while adjusting the exhaust pipe 6 and the exhaust valve 7, the pressure inside the tube is reduced and maintained at a constant pressure. The amount of pressure reduction is determined by a U-shaped tube 9 whose one end is inserted into the quartz tube 8.
It is measured by the difference in liquid level of 0. In this state, the heating source (burner) 4 is gradually moved to form a solid preform rod. The degree of this pressure reduction is K I III as shown in Figure 3.
IHt O~20■H, set to about 0.

プレホームロッドは加熱バーナ4によって溶融し、一方
から線引すれば、内層の一部が楕円形となる光ファイバ
が実現される。
The preformed rod is melted by a heating burner 4 and drawn from one side to produce an optical fiber in which a portion of the inner layer is elliptical.

第2図(a)、φ)e (C)および(d)は上記方法
によって作ったプレホームの断面の写真をトレースして
示したもので、各々の製造条件は次の通りである。
FIGS. 2(a), φ)e(C), and (d) are traced photographs of cross sections of preforms made by the above method, and the manufacturing conditions for each are as follows.

最初の石英管の外径は20■、厚さ1.5■で全て同じ
である。
The initial quartz tubes have the same outer diameter of 20 mm and thickness of 1.5 mm.

次に示すようなガラス薄膜を形成した後速度毎分50回
転で回転しながら、酸水素バーナ2を漸時0.17 m
l secの速さで移動した。
After forming a glass thin film as shown below, the oxyhydrogen burner 2 was gradually heated to 0.17 m while rotating at a speed of 50 revolutions per minute.
It moved at a speed of l sec.

(a)はコアとしてダルマをドープしたシリカガラスよ
りなシ減圧量は水の高さで9−(以下■H,0と表わす
)のものであシ約50%の楕円率の中心層が得られる。
In (a), the core is made of silica glass doped with Daruma, and the decompression amount is 9- (hereinafter expressed as ■H, 0) at the height of water, and a center layer with an ellipticity of about 50% is obtained. It will be done.

 (b)図は管の減圧量を27−H,0と大きくしたも
ので中空のプレホームのコアにドープされたダルマ層の
厚めは約15μmと厚いものである。(C)と(d)は
、コア(中心層)にシリカガラスを、クラツディング(
中間層)に硼素(BgOm)をドープし九シリカガラス
を形成したもので、コアを円形に、クラツディングを楕
円にした図(C)と、逆にコアを楕円にクラツディング
を円形にし要因(d)を示したものである。これらの作
製法は前記し九ように出発石英管を楕円軸が回転しない
ようにある1度収縮させるが、仁の収縮量とコア層、ク
ラツディング層の厚みを最適に選ぶ事で成しとげられる
In the figure (b), the amount of pressure reduction in the tube is increased to 27-H,0, and the thickness of the Daruma layer doped in the core of the hollow preform is about 15 μm. (C) and (d) have silica glass in the core (center layer) and cluttering (
The intermediate layer (interlayer) is doped with boron (BgOm) to form nine-silica glass, and the core is circular and the cladding is oval (C), and conversely the core is oval and the cladding is circular (factor (d)). This is what is shown. These manufacturing methods are achieved by shrinking the starting quartz tube once to prevent rotation of the elliptical axis as described above, and by optimally selecting the amount of shrinkage of the kernel and the thickness of the core layer and cladding layer. .

第3図は、石英管の厚さと、減圧度を変えたときの楕円
率の測定結果を示すもので、各曲線の実においてはコア
にダルマをドープしたシリカガラスを用い第2図(a)
、 (b)に示すように2層構造である。ダルマの磯度
は約15m0/%であるa%曲線共に出発石英管の外径
は201J内径17mのもので共通であシ、中空プレフ
ォームのゲルム層の厚みは約10μmである。加熱溶着
(カララプス)する前に13.5■、IZ8■、9.7
■の外径まで収縮させた後減圧を行って得られた中実の
プレフォームのコアの楕円率を示し丸もので、曲線11
゜12.13はそれぞれ13.5■、128■、9,7
■の実験例である。曲線12はコアにシリカを、クラツ
ディングに硼素をドープしたシリカガラスを用いてファ
イバで第2図(C)、、(ψのように3層構造となって
いる。硼素は約12 mo/チドープされておシ、中空
プレフォームにおいては18μmの厚みを有していた。
Figure 3 shows the measurement results of the ellipticity when changing the thickness of the quartz tube and the degree of vacuum.In each curve, the core was made of silica glass doped with Daruma, and Figure 2 (a)
, It has a two-layer structure as shown in (b). The roughness of Daruma is about 15 m0/%, the outer diameter of the starting quartz tube is 201J, and the inner diameter of 17 m is common for both a% curves, and the thickness of the gelm layer of the hollow preform is about 10 μm. 13.5■, IZ8■, 9.7 before heat welding (calarapus)
Curve 11 shows the ellipticity of the core of a solid preform obtained by shrinking it to the outer diameter of ■ and then reducing the pressure.
゜12.13 is 13.5■, 128■, 9,7 respectively
This is an experimental example of ■. Curve 12 is a fiber using silica glass doped with silica for the core and boron doped for the cladding, and has a three-layer structure as shown in Fig. 2 (C). The hollow preform had a thickness of 18 μm.

コアとなるシリカ層は約8μm厚みをもっているもので
、出発石英管は前記と同じ外径201111%内径17
■のものである。この管にクラツディング層とコア層を
作製した後約13.1−に収縮させた。その後減圧量を
変えてコララスし、1得られ九クラップインクの楕円率
を減圧量の関数として示したのが12の曲線である。
The silica layer serving as the core has a thickness of approximately 8 μm, and the starting quartz tube has the same outer diameter of 201111% and inner diameter of 17.
It is from ■. After forming a cladding layer and a core layer on this tube, it was shrunk to about 13.1-. Thereafter, curve 12 shows the ellipticity of the 9-clap ink obtained by changing the amount of vacuum as a function of the amount of vacuum.

以上の例より、プレホームロッドの一部に形成される楕
内層の楕円形状は減圧度ならびドーパントの材質、出発
石英管の径および厚さ、中空部の半径を制御することに
よって決定されることが分る。すなわち、減圧度が高匹
程楕円率は増大し、中空の管の厚さが厚い程楕円率が低
ぐなる。上記例から分るように、石英ガラス管の厚さは
0.3 m〜5m、外径は5■〜50111mb外気圧
と管内の圧力との差は1箇H,0〜30■H,0で、溶
着温度1700t〜2000tで本発明の方法は実現さ
れる0次に楕円率rと減圧度P (txxHt O)と
各層の厚みとの関係を定量的に説明する。
From the above example, the elliptical shape of the inner elliptical layer formed in a part of the preformed rod is determined by controlling the degree of vacuum, the material of the dopant, the diameter and thickness of the starting quartz tube, and the radius of the hollow part. I understand. That is, the higher the degree of vacuum, the greater the ellipticity, and the thicker the hollow tube, the lower the ellipticity. As can be seen from the above example, the thickness of the quartz glass tube is 0.3 m to 5 m, the outer diameter is 5 mm to 50111 mb, and the difference between the outside pressure and the pressure inside the tube is 1 H, 0 to 30 H, 0. Now, the relationship between the zero-order ellipticity r, the degree of pressure reduction P (txxHt O), and the thickness of each layer, which is realized by the method of the present invention at a welding temperature of 1700 t to 2000 t, will be quantitatively explained.

第4図は本発明の方法によって得られたプレホームロッ
ドの最外周層の内径(中心又は中間層の外周と同じ)の
楕円率と、中実化前の各層と中実化後の各層の厚さとの
関係を示すもので、縦軸はプレホームの楕内層の楕円率
を示し、横軸は(b′/暑勺X(d’/C’)を示、し
、これらは第5図及び第6図に示すように中実化前の石
英管の外径V内径1′、プレホームの外径d/、楕内層
の平均半径c ’  (tz r Jを示すもので、製
造条件を、溶着温度18001:、減圧度8@H,0加
熱バーナの移動速度0.8 wl/ sec、ガラス薄
膜はGem、 ト8.0.をドーパントとして含むシリ
カガラスである。図中、・、O9Δは最初の石英管径を
14.18および20鴫としたものをそれぞれ表す。
Figure 4 shows the ellipticity of the inner diameter of the outermost layer (same as the outer circumference of the center or middle layer) of the preformed rod obtained by the method of the present invention, and the ellipticity of each layer before solidification and each layer after solidification. It shows the relationship between the thickness and the vertical axis shows the ellipticity of the inner elliptic layer of the preform, and the horizontal axis shows (b'/X(d'/C'), and these are shown in Figure 5. As shown in Fig. 6, the outer diameter V inner diameter 1' of the quartz tube before solidification, the outer diameter d/ of the preform, and the average radius c' (tz r J of the elliptical inner layer), and the manufacturing conditions are , welding temperature 18001: degree of vacuum 8@H, 0 moving speed of heating burner 0.8 wl/sec, glass thin film is silica glass containing Gem, 8.0. as a dopant. In the figure, ., O9Δ represent the initial quartz tube diameters of 14.18 and 20 mm, respectively.

第4図より楕円率rは の関係があることが分る。From Figure 4, the ellipticity r is It turns out that there is a relationship between

上記U)式は溶着温度(1700〜2000′c)、〃
u熱源4の移動速度(0,02〜0.2mg/ Sec
 ) 、堆積ガラスの組成を現実的に光ファイバの製造
に実施する範凹で変えても成立する。なお、上記(1)
式中人は減圧度によって定まる定数であって、第7図は
上記橋本と威厚度Pとの関係を実験的に求めたもので、
同図よシ よって所定の楕円率rの楕内層を持つプレホームロッド
を作るためには、基材として、石英管を用い、溶着温度
を1700〜2000℃、加熱源の移動速度を0.02
〜0.2■H,0とすれば、減圧度P11量の径、圧さ
を X −(b’/a’) X (d’/C’)  ・−−
−−・−・−・−・(4)に基いて設定すれば良い。な
お、堆積ガラス層が一種類でなく複数層になっても、中
空時の堆積ガラス層の石英ガラス管の厚さに比べ十分薄
い場合は上記式が常に成立する。
The above equation U) is the welding temperature (1700-2000'c),
Movement speed of u heat source 4 (0.02~0.2mg/Sec
), it also holds true even if the composition of the deposited glass is varied within the practical range of optical fiber manufacturing. In addition, above (1)
The equation is a constant determined by the degree of decompression, and Figure 7 shows the relationship between Hashimoto and the degree of pressure P obtained experimentally.
According to the figure, in order to make a preformed rod having an inner elliptic layer with a predetermined ellipticity r, a quartz tube is used as the base material, the welding temperature is 1700-2000°C, and the moving speed of the heating source is 0.02°C.
~0.2■H,0, the diameter and pressure of the degree of pressure reduction P11 are X - (b'/a') X (d'/C') ・--
−−・−・−・−・The settings may be made based on (4). Note that even if the deposited glass layer is not one type but multiple layers, the above equation always holds true if the deposited glass layer is sufficiently thin compared to the thickness of the quartz glass tube when it is hollow.

本発明の方法の大きな利点一つは、第2図(C)および
第8図、第9図に示すように、プレホーム断面の層構造
が最外層が円形に近く、中間層外周が楕円、中心層が円
形に近い形状の光フアイバ母材が容易に実現できること
である。
One of the major advantages of the method of the present invention is that, as shown in FIG. 2(C), FIG. 8, and FIG. An optical fiber base material in which the center layer has a nearly circular shape can be easily realized.

第8図は中心層3がコア、中間層2がクラッド、最外層
1がジャケットとなシ、コア3とクラッド2で光伝送部
を形成し、ジャケット3とクラッド2でコアに複屈折を
生ぜしめている。第9図のものは中心層はコア3とクラ
ット2−2で構成され、中間層2−1はジャケットで、
最外層3はサポート部を形成し外周は円形であるコア3
とクラッド2−2で光伝送部を形成し、ジャケット2−
1と最外層はコア3複屈折を生ぜしめる機能を持つ。
In Figure 8, the center layer 3 is the core, the intermediate layer 2 is the cladding, the outermost layer 1 is the jacket, the core 3 and the cladding 2 form an optical transmission part, and the jacket 3 and the cladding 2 produce birefringence in the core. It's tight. In the one in Figure 9, the center layer is composed of a core 3 and a crat 2-2, and the middle layer 2-1 is a jacket.
The outermost layer 3 forms a support part, and the core 3 has a circular outer periphery.
and cladding 2-2 form an optical transmission section, and jacket 2-2
1 and the outermost layer have the function of producing core 3 birefringence.

このように1中間層の楕円率を中心層のそれよル高くす
るためには中間層の材質としてコアの材質の軟化点よシ
低い材質とする、これは中間層の材質ICB、 O,を
S10.加えることによって実現される。B、0.0量
を増大すると共に軟化点は低くなるが、熱膨張係数の差
を大きくとる丸めにはドーパン)B*Oaの量は3モル
−〜V30モルチがが望ましい、更に、中心層を円形と
するためKは、プレホーム母材の中間層の楕円率をr1
上記中間層楕円の短軸の長さをC−8、中心層の円形め
径をaとしたとき となるように、ガラス管の内壁に形成されるガラス薄膜
の厚さを前もって設定すれば良い。
In this way, in order to make the ellipticity of the intermediate layer higher than that of the center layer, the intermediate layer should be made of a material that has a lower softening point than the core material.This means that the intermediate layer material ICB, O, S10. This is achieved by adding The softening point decreases with increasing amount of B, 0.0, but for rounding with a large difference in thermal expansion coefficient, the amount of B*Oa is preferably 3 mol to V30 mol. To make it circular, K is the ellipticity of the intermediate layer of the preform base material r1
The thickness of the glass thin film formed on the inner wall of the glass tube may be set in advance so that the short axis length of the intermediate layer ellipse is C-8, and the circular diameter of the center layer is a. .

これら要件は次の理由による。ガラス薄膜が形成された
ガラス管を減圧しながら加熱溶着すると温度分配は始め
は外側が高い、又管の厚みがあるため、外側は威圧の影
響が少なく、王として表面張力によって円形を維持しよ
うとする。内側は減圧度によって主として支配され偏平
になろうとする。更に加熱が続くと内側の温度も高くな
り変形しやすくなる。し九がって威圧によって管が平面
となシながら収縮し中空部は少なくなる。この間、軟化
温度が低い中間層は粘性が漸時低下される。したがって
、中空部がなくなったときは粘性の低下した中間層の中
に中心層が浮いた形となる。このときは中心部が威圧さ
れないようになるため中心層の形状は主として表面張力
によって円形になろうとする力が働く。そして、冷却の
過程においては上記初期の石英管の内側に形成される楕
円と中心の円形コアの中間に中間層が充てんされ変形と
なって固化されるからである。
These requirements are due to the following reasons. When a glass tube with a thin glass film formed on it is heated and welded under reduced pressure, the temperature distribution is initially high on the outside, and because the tube is thick, the outside is less affected by coercion and tries to maintain its circular shape due to surface tension. do. The inside is mainly controlled by the degree of decompression and tends to become flat. If the heating continues, the temperature inside will also increase, making it easier to deform. Then, due to the pressure, the tube shrinks while becoming flat, and the hollow part becomes smaller. During this time, the viscosity of the intermediate layer having a low softening temperature is gradually reduced. Therefore, when the hollow part disappears, the center layer floats in the intermediate layer with reduced viscosity. At this time, the center layer is not under pressure, so the shape of the center layer tends to become circular mainly due to surface tension. This is because, during the cooling process, an intermediate layer is filled between the ellipse formed inside the initial quartz tube and the circular core at the center, and is deformed and solidified.

し九がって、これらの形状を決定する要因としては、中
心層が円形となシ易いかどうかは加熱溶着時の中間層の
軟化点、粘性、および中間層と中心層の相対的厚さの関
係および最外層内局(シ九かって中間層外周)の楕円率
の関係が考えられる。
Therefore, the factors that determine these shapes include the softening point of the intermediate layer during heat welding, the viscosity, and the relative thickness of the intermediate layer and the central layer. and the relationship between the ellipticity of the innermost station in the outermost layer (in other words, the outer periphery of the middle layer).

まず、中間層の外周を楕円とするための条件は、前述の
U)式の条件によって決定される。
First, the conditions for making the outer circumference of the intermediate layer an ellipse are determined by the conditions of the above-mentioned equation U).

次に、中心層の楕円率rが中間層の外周の楕円率よシ小
さくなる、すなわち円に近ずくためには前述の理由によ
って溶着時に中実化され固化される過程において、軟化
された中間層の中で中心層が表面張力等によって自由に
安定な円形に変化しやすくする必要があシ、このために
は中心層、中間層、最外層の軟化点温度をそれぞれal
、α。
Next, in order for the ellipticity r of the center layer to become smaller than the ellipticity of the outer periphery of the intermediate layer, that is, to approach a circle, the softened intermediate layer must be Among the layers, it is necessary for the center layer to easily change freely into a stable circular shape due to surface tension, etc., and for this purpose, the softening point temperature of the center layer, middle layer, and outermost layer must be adjusted to al.
, α.

およびα、とすると αi〉α雪、 α$〉α1  °0−0″□′。(6)
であればよい1通常この条件を満すには最外層は石英ガ
ラスで作られ、又中心部は高い屈折率を持つ必要がある
ため、Sin、又は810.にGem。
and α, then αi〉αsnow, α$〉α1 °0−0″□′.(6)
Normally, to satisfy this condition, the outermost layer must be made of quartz glass, and the center must have a high refractive index, so it should be made of Sin or 810. Gem.

あるいはP、0.をドーパントとして含むガラスで構成
し、中間層としてはB2O,をドーパントとして3 m
o/−から30m0/−含む8 i 0.が望ましい。
Or P, 0. The intermediate layer is made of glass containing B2O as a dopant, and the intermediate layer is 3 m thick with B2O as a dopant.
o/- to 30m0/- including 8 i 0. is desirable.

そして、中心層の真円度を向上するためには上記軟化点
の他に、中間層の楕円率、および中間層と中心層の材質
の量の割合が影響し、これらの間に一定の関係があるこ
とが実験的Klめ弓れ3゜第1口図は石英管(内径[7
■、外径12■)の内壁KCVD法によってクララ)′
(中間層)となる17モルチB、0.と83モルチ8i
0.のガラス薄膜を150μm形成したのち、コア(中
心層)となる100モルd8i0.のガラス薄膜を厚み
x(*m)を変えて形成し、減圧度10■H,0で溶着
中実化した場合の中間層の楕円率と中心層(コア)の楕
円率を示す。この場合中間層(クラッド)の楕円率は4
59Gである。なお、図におけるコア径はプレホームミ
ツトとなった場合の半径を示している。すなわち、楕円
率を一定とした場合、中心層(コア)の楕円率は中間層
の厚さと中心層の厚さの相対比によって決定されること
が分る。
In order to improve the roundness of the center layer, in addition to the softening point mentioned above, the ellipticity of the middle layer and the ratio of the materials of the middle layer and the center layer are affected, and there is a certain relationship between them. The experimental Kl bow angle 3° is shown in the quartz tube (inner diameter [7
■, outer diameter 12■) inner wall by KCVD method)'
(middle layer) 17 molti B, 0. and 83 morchi 8i
0. After forming a glass thin film of 150 μm thick, a 100 mol d8i0. The ellipticity of the intermediate layer and the ellipticity of the center layer (core) are shown when the glass thin films of 2 are formed with different thicknesses x (*m) and welded and solidified at a degree of vacuum of 10 μH, 0. In this case, the ellipticity of the intermediate layer (cladding) is 4
It is 59G. Note that the core diameter in the figure indicates the radius when the core is preformed. That is, it can be seen that when the ellipticity is constant, the ellipticity of the center layer (core) is determined by the relative ratio of the thickness of the intermediate layer and the thickness of the center layer.

第11図は、第10図のように中間層の楕円率が変つ九
と自中心層の楕円率が5−以下となるときの中間層(ク
ラッド)の短軸径と中心層(コカの径の比を実験的に求
めたtのである。同図において横軸はクラッドの外周の
楕円率rを、縦軸にはクラッドの短軸径C3と;アの径
麿O比ユを示す、この測定結果より、コアが円形となる
境界では 、歩方によって円形にな〕やすいので、中間層の楕円率
をrと設定して、石英管の厚さ、径、減圧度を設定する
とき、中心層を円形とするためにはプにCVD法による
ガラス薄膜の層の厚さを設定すればよい。
Figure 11 shows the minor axis diameter of the intermediate layer (cladding) and the central layer (coca The ratio of the diameters is experimentally determined.In the figure, the horizontal axis shows the ellipticity r of the outer periphery of the cladding, and the vertical axis shows the short axis diameter C3 of the cladding; From this measurement result, at the boundary where the core is circular, it tends to become circular depending on the way you walk, so when setting the ellipticity of the intermediate layer as r and setting the thickness, diameter, and degree of vacuum of the quartz tube, In order to make the center layer circular, the thickness of the glass thin film formed by the CVD method may be set appropriately.

上記説明は第8図の断面構造の場合について説明したが
、1第9図の断面構造の光フアイバ母材を製造する場合
についても同様の関係が成立する。
Although the above description has been made regarding the case of the cross-sectional structure shown in FIG. 8, the same relationship holds true when manufacturing an optical fiber base material having the cross-sectional structure shown in FIG. 1.

次に11本発明による製造方法による具体的実施例を例
示する。
Next, 11 specific examples of the manufacturing method according to the present invention will be illustrated.

実施例 1 石英管(外径18■φ、中径15wφ)の内壁面に81
0鵞−B、0.−Gem、のガラス薄膜を50μm堆積
(この堆積量は加熱浴着後外径(2d’)7mφ、堆積
ガラス層の平均径(2C’ )3.1■φに相当する。
Example 1 81 on the inner wall surface of a quartz tube (outer diameter 18 φ, middle diameter 15 w φ)
0 Goose-B, 0. -Gem, was deposited to a thickness of 50 .mu.m (this amount of deposition corresponded to an outer diameter (2d') of 7 m.phi. after heating bath deposition and an average diameter (2C') of the deposited glass layer of 3.1 .phi.

なお溶着時加熱によって石英外壁面から石英微粉が飛散
するため、プレホームの外径はや中小さくなっている)
する。こζで堆積ガラス層の楕円率r:tsosとする
ため、(1)式を用−て、減圧度を8■H,0、X 嵩
5. Oを得&1 九。したがって b//a’g5,0x−7−帽11と
とす゛れば楕円率rw501が得られる。このため21
′ (溶着前の管内径)を&1mφ、2b′(溶着前の
管外径)をI L2wmφとして、溶着した結果による
と中層の楕円率51チのプレホームが得られた。
(Note that the outer diameter of the preform is medium to small because fine quartz powder is scattered from the quartz outer wall surface due to heating during welding.)
do. In order to set the ellipticity r:tsos of the deposited glass layer at this ζ, using equation (1), the degree of vacuum is set to 8■H,0,X, volume 5. Got an O & 1 Nine. Therefore, by writing b//a'g5,0x-7-cap11, the ellipticity rw501 is obtained. For this reason 21
According to the welding results, a preform with a middle layer ellipticity of 51 inches was obtained by setting the inner diameter of the pipe before welding to &1 mφ and the outer diameter of the pipe before welding to I L2wmφ.

実施例 2 石英管(内fi18wφ、内径15+wφ)の内壁面K
IRK、1 !$4ルーIB、0.+85−v−ル%s
iO。
Example 2 Inner wall surface K of quartz tube (inner fi 18wφ, inner diameter 15+wφ)
IRK, 1! $4 ru IB, 0. +85-v-le%s
iO.

ガラスを180μm100モル慢S10.ガラスをし 154mCVD法によって堆積処、加熱して、内径5m
、外径11■の石英管にする0次に管内部を一大気圧に
比べ水の高さで8■H,OK減圧しながら溶着しプレホ
ームロッドを形成した。得られたプレホームロッドの外
径は9.9謹φ、コアは10.3■φの円形で、クラッ
ドは楕円率40g6の楕円形で、短軸の径は1.5園φ
であった。
The glass is 180 μm 100 molar S10. The glass was deposited using the CVD method and heated to a diameter of 5 m.
A preform rod was formed by welding the inside of the tube to a quartz tube with an outer diameter of 11 mm while reducing the pressure to 8 mm at a water level compared to 1 atmospheric pressure. The outer diameter of the obtained preformed rod is 9.9 mm, the core is circular with 10.3 mm, the cladding is oval with an ellipticity of 40 g6, and the short axis diameter is 1.5 mm.
Met.

実施例 3 実施例2記載と同じ石英管の内壁面に順に15モst%
B、O,千 85 モルg B io、 カ5スを18
0μm%lOOモルチ8 i 0.ガラスを&2μm1
44ル$Ge o、+ 9 @%As% 810. f
Jうxヲ0.3μmcVD法によって堆積した後加熱し
て、内径5■φ、外径11wφの石英管とする。次に管
内部を大気圧に比べて8sa*H10減圧しなから゛加
熱溶着し中実化したプレホームロッドを得た。
Example 3 15% of the inner wall of the same quartz tube as described in Example 2 was applied in order.
B, O, 1,000 85 mole g B io, 18 cass.
0 μm% lOO Morch 8 i 0. glass &2μm1
44 Le $Ge o, + 9 @%As% 810. f
A quartz tube having an inner diameter of 5 .phi. and an outer diameter of 11 w.phi. is formed by depositing the material by a cVD method of 0.3 .mu.m and then heating it. Next, the inside of the tube was reduced in pressure by 8 sa*H10 compared to atmospheric pressure, and then heated and welded to obtain a solid preform rod.

得られたプレホームロッドは外径9.9mφ、中心部8
 i 0.層とSip、十GeO,層は同心状の円形で
それぞれ0.321111% α095簡の半径を持ち
、5iO1十B、01層の外周は楕円率279gであっ
た。
The obtained preformed rod had an outer diameter of 9.9 mφ and a center part of 8
i0. The layers Sip, 10GeO, and Sip were concentric circles, each having a radius of 0.321111% α095, and the outer circumference of the 5iO10B, 01 layer had an ellipticity of 279 g.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法のステップを示す図、第2図
は本発明の製造方法によって得られ九光フ楕円車との関
係を示す図、第4図は光フアイバ母材を構成する層の厚
さと楕内層の楕円率の関係を示す図、第5図及び第6r
IAは、第4図の説明のためのガラス管断面図及びプレ
ホームの断面図、第7図はガラス管内の減圧度と楕内層
の楕円率の関係を示す図、第8図および第9図は本発明
によって得られるプレホームの断面図、1llo図は木
登v4による製造方法によるプレホームのコア径とコア
楕円率の関係を示す図、第11図は本発明によるプレホ
ームのクラッド短軸径とコア径の比とクラッド楕円率の
関係を示す図である。 1−・・石英ガラス管(最外層)、2・・・クラッド(
中間層)、3−・・コア(中心層)、4・・・加熱源、
5・・・排気タンク、6・・・排気口、7・・・排気調
節弁、8・・・石英管内部、9・・・0字管、1G・・
・水。 茅 I  図 (1) (Z) (4) ¥J  z  邑 (0−2<b) (f) 第  3 日 I 3A  /L (次、・列、晴、) PC慣哨(H2O) ′fJ ′g 図 ′yfJq図 1 10  日 フ8し7t−1−リコ了牛イL(、/wL、ン¥117
1図 7フツレの棒円卑(’/、) 手続補正書(方式) 昭和56 年特許願第 112137号発明の名称 光フアイバ母材の製造方法 補正をする者 );  Pl、   f510)株式会Jt  I’m
  立i  住所−1) 勝  茂 代   理   人 補正の対象 明細書の「図面の簡単な説明」の欄 補正の内容
FIG. 1 is a diagram showing the steps of the manufacturing method of the present invention, FIG. 2 is a diagram showing the relationship with a nine-light ellipsoid obtained by the manufacturing method of the present invention, and FIG. 4 is a diagram showing the optical fiber base material. Diagrams showing the relationship between layer thickness and ellipticity of the inner elliptic layer, Figures 5 and 6r
IA is a cross-sectional view of the glass tube and a cross-sectional view of the preform for explanation of FIG. 4, FIG. 7 is a diagram showing the relationship between the degree of vacuum in the glass tube and the ellipticity of the inner elliptic layer, and FIGS. 8 and 9. is a cross-sectional view of the preform obtained by the present invention, Figure 1llo is a diagram showing the relationship between the core diameter and core ellipticity of the preform produced by the manufacturing method by Kinoto v4, and Figure 11 is the clad minor axis of the preform according to the present invention. FIG. 3 is a diagram showing the relationship between the ratio of the diameter to the core diameter and the cladding ellipticity. 1-... Quartz glass tube (outermost layer), 2... Clad (
middle layer), 3-... core (center layer), 4... heating source,
5...Exhaust tank, 6...Exhaust port, 7...Exhaust control valve, 8...Quartz tube inside, 9...0-shaped tube, 1G...
·water. Kaya I Figure (1) (Z) (4) ¥J z Ou (0-2<b) (f) 3rd day I 3A /L (Next,・Line, Clear,) PC outpost (H2O) 'fJ 'g Figure'yfJqFigure 1 10 days Fu8shi7t-1-Riko Ryogyui L(,/wL, N¥117
1 Figure 7 Futsure round circle base ('/,) Procedural amendment (method) Patent application No. 112137 of 1981 Name of the invention Manufacturing method of optical fiber base material Person who makes the amendment); Pl, f510) Co., Ltd. Jt I'm
Address - 1) Shigeyo Katsu, Osamu Contents of amendment to the "Brief explanation of drawings" column of the specification subject to personal amendment

Claims (1)

【特許請求の範囲】 1、基材となる石英ガラス管の内壁にガラス薄膜層を形
成し、その後、上記石英ガラス管を加熱溶着によって中
実化された光フアイバ母材を製造する方法において、上
記加熱溶着時に石英ガラス管内の圧力を外気圧よシ低く
することを特徴とする光フアイバ母材の製造方法。 2 第1項記載の製造方法において、加熱溶着開始時の
石英管の厚さを0.3−〜5mとし、管の外径を5fi
〜50■とじ外気圧と管内の圧力差を1m1In、o〜
30■H,0としたことを特徴とする光フアイバ母材の
製造方法。 λ 第1項記載、の方法において、ガラス薄膜層を形成
するとき、上記石英ガラス管の内壁に最初に上記石英ガ
ラスの軟化点よシ低い第一のガラス薄膜層を形成し、次
に上記第一のガラス薄膜層の軟化点よシ高い軟化点の第
二のガラス薄膜層を形成することを特徴とする光フアイ
バ母材の製造方法。    ・′ 表 第3項記載の方法において、第一のガラス薄膜とし
てB、O,を含むシリカガラスで形成することを特徴と
する光フアイバ母材の製造方法。 & 第3項又は第4項記載の方法において、第−及び第
二のガラス薄膜層の厚さが、光ファイI(母材の上記第
一のガラス薄膜層で形成される層の外局が楕円率r、楕
円形短軸径C1、第二のガラス薄層で形成されるコアの
径をaとしたとき、 となるように形成することを特徴とする光フアイバ母材
の製造方法。
[Claims] 1. A method for manufacturing an optical fiber base material in which a glass thin film layer is formed on the inner wall of a quartz glass tube serving as a base material, and then the quartz glass tube is solidified by heat welding, A method for manufacturing an optical fiber base material, characterized in that the pressure inside the quartz glass tube is made lower than the external pressure during the heat welding. 2 In the manufacturing method described in item 1, the thickness of the quartz tube at the start of heat welding is 0.3 to 5 m, and the outer diameter of the tube is 5 fi.
~50■ The difference between the outside pressure and the pressure inside the pipe is 1m1In, o~
A method for producing an optical fiber base material, characterized in that the temperature is 30■H,0. λ In the method described in item 1, when forming a glass thin film layer, first a first glass thin film layer lower than the softening point of the quartz glass is formed on the inner wall of the quartz glass tube, and then the first glass thin film layer is formed on the inner wall of the quartz glass tube. A method for producing an optical fiber base material, comprising forming a second glass thin film layer having a softening point higher than that of the first glass thin film layer. -' A method for manufacturing an optical fiber base material, characterized in that the first glass thin film is formed of silica glass containing B and O in the method described in Table 3. & In the method described in item 3 or 4, the thickness of the first and second glass thin film layers is such that the thickness of the optical fiber I (the outer layer of the layer formed of the first glass thin film layer of the base material is A method for manufacturing an optical fiber preform, characterized in that the optical fiber preform is formed as follows, where r is the ellipticity, C1 is the short axis diameter of the ellipse, and a is the diameter of the core formed by the second thin glass layer.
JP56112137A 1981-05-29 1981-07-20 Production of base material for optical fiber Granted JPS5815041A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56112137A JPS5815041A (en) 1981-07-20 1981-07-20 Production of base material for optical fiber
EP82302773A EP0067017B1 (en) 1981-05-29 1982-05-28 Polarization plane maintaining optical fiber and fabricating method therefor
DE8282302773T DE3275591D1 (en) 1981-05-29 1982-05-28 Polarization plane maintaining optical fiber and fabricating method therefor
US06/883,456 US4828592A (en) 1981-05-29 1986-07-08 Polarization plane maintaining optical fiber fabricating method
JP2855390A JPH02239129A (en) 1981-07-20 1990-02-09 Production of optical fiber base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56112137A JPS5815041A (en) 1981-07-20 1981-07-20 Production of base material for optical fiber

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2855390A Division JPH02239129A (en) 1981-07-20 1990-02-09 Production of optical fiber base material

Publications (2)

Publication Number Publication Date
JPS5815041A true JPS5815041A (en) 1983-01-28
JPH0243690B2 JPH0243690B2 (en) 1990-10-01

Family

ID=14579134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56112137A Granted JPS5815041A (en) 1981-05-29 1981-07-20 Production of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS5815041A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260442A (en) * 1984-06-06 1985-12-23 Sumitomo Electric Ind Ltd Preparation of fixed polarisation fiber
JPH02239129A (en) * 1981-07-20 1990-09-21 Hitachi Ltd Production of optical fiber base material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248329A (en) * 1975-10-15 1977-04-18 Hitachi Ltd Method for preparation of optical fibers
JPS5669235A (en) * 1979-11-09 1981-06-10 Nippon Telegr & Teleph Corp <Ntt> Preparation of optical fiber
JPS56125233A (en) * 1980-03-07 1981-10-01 Hitachi Ltd Manufacture of optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248329A (en) * 1975-10-15 1977-04-18 Hitachi Ltd Method for preparation of optical fibers
JPS5669235A (en) * 1979-11-09 1981-06-10 Nippon Telegr & Teleph Corp <Ntt> Preparation of optical fiber
JPS56125233A (en) * 1980-03-07 1981-10-01 Hitachi Ltd Manufacture of optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02239129A (en) * 1981-07-20 1990-09-21 Hitachi Ltd Production of optical fiber base material
JPH0577618B2 (en) * 1981-07-20 1993-10-27 Hitachi Ltd
JPS60260442A (en) * 1984-06-06 1985-12-23 Sumitomo Electric Ind Ltd Preparation of fixed polarisation fiber

Also Published As

Publication number Publication date
JPH0243690B2 (en) 1990-10-01

Similar Documents

Publication Publication Date Title
US4529426A (en) Method of fabricating high birefringence fibers
US5482525A (en) Method of producing elliptic core type polarization-maintaining optical fiber
US4426129A (en) Optical fiber and method of producing the same
US4230396A (en) High bandwidth optical waveguides and method of fabrication
US4184859A (en) Method of fabricating an elliptical core single mode fiber
US4561871A (en) Method of making polarization preserving optical fiber
JPS5843336B2 (en) Manufacturing method of clad type optical glass fiber
US4935045A (en) Method of manufacturing a preform for asymmetrical optical fiber
NO792482L (en) OPTICAL CHAIRMAN WITH LARGE BANDWIDTH AND HAVING B203 FREE CORE AND MANUFACTURING SAME FOR THE SAME
KR20090127300A (en) Reduction of optical fiber cane/preform deformation during consolidation
JPS5969438A (en) Manufacture of base material for optical fiber
US5133794A (en) Method of manufacturing optical fibres
JPS5815041A (en) Production of base material for optical fiber
JPH0127006B2 (en)
JPH0577618B2 (en)
JPS5939736A (en) Production of base material for optical fiber retaining plane of polarization
JPS6350291B2 (en)
JP3491642B2 (en) Optical fiber preform, optical fiber, and manufacturing method thereof
JP4975911B2 (en) Optical fiber preform manufacturing method
JPS58135141A (en) Preparation of single polarized optical fiber
JPH0557215B2 (en)
JPH01148723A (en) Production of constant-polarization fiber
JPS59217639A (en) Manufacture of polarization maintaining optical fiber
JPH0475174B2 (en)
JP2023551141A (en) Method of manufacturing preforms, preforms, and intermediate products for anti-resonant hollow core fibers with nested capillaries