JPS60260442A - Preparation of fixed polarisation fiber - Google Patents

Preparation of fixed polarisation fiber

Info

Publication number
JPS60260442A
JPS60260442A JP59117395A JP11739584A JPS60260442A JP S60260442 A JPS60260442 A JP S60260442A JP 59117395 A JP59117395 A JP 59117395A JP 11739584 A JP11739584 A JP 11739584A JP S60260442 A JPS60260442 A JP S60260442A
Authority
JP
Japan
Prior art keywords
core
glass rod
layer
quartz tube
thermal stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59117395A
Other languages
Japanese (ja)
Inventor
Hiroshi Yokota
弘 横田
Toshio Tamazuka
弾塚 俊雄
Tooru Miyougadani
徹 茗荷谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59117395A priority Critical patent/JPS60260442A/en
Publication of JPS60260442A publication Critical patent/JPS60260442A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • C03B2203/31Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres by use of stress-imparting rods, e.g. by insertion

Abstract

PURPOSE:To prepare fixed polarisation fiber capable of obtaining high polarisation maintaining characteristics with high reproducibility by arranging a core glass rod and a stress generating glass rod appropriately in a quartz tube to make the quartz solid and to one body, and then drawing to wire. CONSTITUTION:A core glass rod 13 having a rectangular sectional shape with a core layer 11 having a circular sectional shape in the central part is prepd. by grinding a preform member 10 comprised of a core layer 11 and a clad layer 12. Then, a thermal stress generating glass rod 14 having higher coefft. of thermal expansion than the core glass rod 13 is arranged to the position facing oppositely to each other on both sides of the core layer 11 along a longer side of the rectangular section of the core glass rod 13, and the glass rod is inserted into a quartz tube 15. The inside of the quartz tube 15 is evacuated and solidified and integrated by heating. Obtd. rod is drawn at high temp.; thus, a fixed polarisation fiber 16 comprised of a core 11', clad 12', and a thermal stress generating layer 14' is prepd. Said thermal stress generating layer 14' faces the core 11' with a linear sectional shape 17 forming a structure strong to the shift of the thermal stress generating layer 14' from an axis of symmetry.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光ファイバに関し、特に光フアイバ内を伝搬す
、る信号光の偏波状態を保持する定偏波ファイバの再現
性の良い製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to optical fibers, and more particularly to a method for manufacturing a polarization-controlled fiber with good reproducibility that maintains the polarization state of signal light propagating within the optical fiber. It is.

近年定偏波ファイバはジャイロスコープ等における光セ
ンサへの応用、また超大容量通信であるコヒレント通信
への応用が考えられ、早急な開発が望まれている。
In recent years, polarization-controlled fibers have been considered for application in optical sensors such as gyroscopes, and in coherent communication, which is ultra-high capacity communication, and prompt development is desired.

・ 従来の技術 従来、この種定偏波ファイバの製造方法としては、たと
えば特開昭58−1−5+54−1号公報に提案されて
いるように、石英管の内側に熱応力層となるガラス薄膜
層を形成し、その後石英管を加熱中実化する際に、石英
管の内圧を大気圧より負圧とし、コア層と熱応力層との
ガ2ヌ粘度の差を利用してコア層と熱応力層との楕円率
に差をつけることによシ、線引き後のコアに異方性応力
を発生させる方法が用いられている。:〔従来技術1〕
また、他の例としては、たとえば特開昭57−2053
33号公報で、第2齢に示すように円形断面のコア用母
材20の周囲に熱膨張係数の異なる応力付加用ガラヌロ
ツド21 、22および23 、24を相対向する位置
に配置し、石英管25内に挿入して加熱中実して一体化
し、しかる後高温加熱して線引しファイバ化する方法が
開示されている。:〔従来技術2〕 発明が解決しようとする問題点 上に述べた従来技術工は、コア層及び熱応力層の楕円率
が負圧値、中実化温度、中実化前の石英管の内外径、コ
ア層の内径、さらにはコア層のドーパント組成量など多
種の要因に太きく左右され、これら各要因のいずれの値
が僅かに違っても得られる楕円率が大きく異ってしまい
、再現性が極めて乏しいという問題があった。
- Conventional technology Conventionally, as a manufacturing method of this kind of polarization-controlled fiber, as proposed in Japanese Patent Application Laid-Open No. 58-1-5+54-1, a method of manufacturing a glass to form a thermally stressed layer inside a quartz tube has been proposed. When forming a thin film layer and then heating the quartz tube to solidify it, the internal pressure of the quartz tube is made negative from atmospheric pressure, and the core layer is formed using the difference in viscosity between the core layer and the thermal stress layer. A method is used in which anisotropic stress is generated in the core after drawing by creating a difference in ellipticity between the wire and the thermal stress layer. : [Prior art 1]
Further, as another example, for example, Japanese Patent Application Laid-Open No. 57-2053
In Publication No. 33, stress-applying galanuloids 21, 22, and 23, 24 having different thermal expansion coefficients are arranged in opposing positions around a core base material 20 having a circular cross section, as shown in the second issue, and a quartz tube is used. A method is disclosed in which the fibers are inserted into a tube 25, heated to form a solid body, and then heated to a high temperature to be drawn into a fiber. : [Prior Art 2] Problems to be Solved by the Invention In the prior art described above, the ellipticity of the core layer and the thermal stress layer depends on the negative pressure value, the solidification temperature, and the quartz tube before solidification. It is strongly influenced by various factors such as the inner and outer diameters, the inner diameter of the core layer, and even the dopant composition of the core layer, and even if the values of any of these factors differ slightly, the obtained ellipticity will vary greatly. There was a problem that reproducibility was extremely poor.

また従来技術2は、コア用母材の周囲に相対向して配置
する4本の熱応力付加用ガラスロッドの外径を厳密に一
致させないと、加熱中実して一体化した後、高温加熱し
てファイバ化した斤、第3図に示すファイバ断面内にお
いて、熱応力付加層31 、32及び33.’34がそ
れぞれの対称軸(x、y)から軸ずれを起し、高複屈折
率性を有する定偏波ファイバを再現性良く製造すること
ができないという問題があった。なお蜀はコア層、あは
クラッド層である。
In addition, in conventional technology 2, if the outer diameters of the four glass rods for applying thermal stress, which are placed opposite to each other around the core base material, are not exactly matched, the core material is solidified and integrated, and then heated at high temperature. In the cross section of the fiber shown in FIG. 3, thermal stress applying layers 31, 32 and 33. '34 causes axis deviation from the respective symmetry axes (x, y), and there is a problem that a polarization constant fiber having high birefringence cannot be manufactured with good reproducibility. Note that Shu is the core layer and A is the cladding layer.

問題点を解決するための手段・作用 筒1因a乃至dにより本発明の定偏波ファイバの製造方
法を説明する。シングルモード光ファイバ用のコア層1
1とクラッド層12からなるプリフォーム母材10ヲ、
たとえばVAD法、内封法などで作成しく第1図a)、
このプリフォーム母材10 ’ii 。
Means for Solving the Problems and Effects The method for manufacturing the polarization constant fiber of the present invention will be explained with reference to factors a to d. Core layer 1 for single mode optical fiber
1 and a cladding layer 12,
For example, it can be created using the VAD method or the internal sealing method, as shown in Figure 1 a).
This preform base material 10'ii.

第1図aの点線で示すように矩形状断面を有する平板状
に研削加工し、矩形状断面の中心に円形断面のコア層1
ltl−有するコア用ガラヌロツド13ヲ作製する(第
1図b)。研削加工後、研削面の表面を平滑にするため
、たとえばHF溶液中でエツチングした後、火矢研摩す
ることが有効である。
As shown by the dotted line in FIG.
A galanuloid 13 for the core having ltl- is prepared (FIG. 1b). After the grinding process, in order to smooth the surface of the ground surface, it is effective to perform etching in, for example, an HF solution, followed by fire arrow polishing.

次に第1図Cに示すようにコア用ガラスロッド’13の
矩形状断面の長辺の面に沿って、コア層11よシ熱膨張
係数の高い熱応力付加用ガラスロッド14をコア層11
の両側に相対向する位置に配置する。
Next, as shown in FIG.
Place it in a position facing each other on both sides.

熱応力付加用ガラスロッド14は、通常同封法で作製す
るのが一般的であるが、これに限定されるものではない
。熱応力付加用ガラスロッド14は、組成としては、屈
折率を低めるドーバン) B201. Fと、屈折率を
高めるドーパントGe01 + P tOs r人12
0a、 Gazes、 Tro!、 SbgOs等のう
ち少くとも両ドーバントヲそれぞれ1種以上含むものが
よい。たとえばSiOg−BgOs−Ge01. Si
kOx−BgOs−PtOs、5i02−1hOs−F
−GeOg、 S+O*−GeOg−F、 SICh−
PtO2−F、 JO++−GeOx−PgOs−F 
などが適用される。
The glass rod 14 for applying thermal stress is generally produced by a sealing method, but the method is not limited thereto. The glass rod 14 for applying thermal stress has a composition of Dovan which lowers the refractive index B201. F and a dopant that increases the refractive index Ge01 + P tOs r person 12
0a, Gazes, Tro! , SbgOs, etc., containing at least one kind of both dopant. For example, SiOg-BgOs-Ge01. Si
kOx-BgOs-PtOs, 5i02-1hOs-F
-GeOg, S+O*-GeOg-F, SICh-
PtO2-F, JO++-GeOx-PgOs-F
etc. apply.

コア用ガラスロッド13に熱応力付加用ロッド14を配
置した状態で石英管15に挿入する。なお石英管15に
挿入する前に、コア用ガラスロッド13に配置した熱応
力付加用ロッド14t−加熱融着しておくことも有効で
ある。
The core glass rod 13 is inserted into the quartz tube 15 with the thermal stress applying rod 14 arranged thereon. It is also effective to heat-fuse the thermal stress applying rod 14t arranged on the core glass rod 13 before inserting it into the quartz tube 15.

石英管15に挿入した後、石英管150内部を減圧状態
にしくたとえば300 mm Hg以下に減圧すること
が望ましい。)、加熱中実して一体化する。
After insertion into the quartz tube 15, it is desirable to reduce the pressure inside the quartz tube 150 to, for example, 300 mm Hg or less. ), heat the solid and integrate it.

一体化したロッドを線引炉で高温加熱し、第1図dに示
す断面を有する定偏波ファイバを製造する。第1図dで
16唸定偏波フアイバ、11′はコア、12′はクラッ
ド、14′は熱応力付加層である。
The integrated rod is heated to a high temperature in a drawing furnace to produce a constant polarization fiber having the cross section shown in FIG. 1d. In FIG. 1d, there are 16 constant polarization fibers, 11' is the core, 12' is the cladding, and 14' is the thermally stressed layer.

なお、第1図dに示すように、熱応力付加層14′の形
状は、板状のコア用ガラスロッド13全用いたことによ
り、コア11′に面した部分17が断面で直線状になシ
、熱応力付加層14′の対称軸からのずれに対して強い
構造となっている。
As shown in FIG. 1d, the shape of the thermal stress adding layer 14' is such that the portion 17 facing the core 11' is linear in cross section because the entire plate-shaped core glass rod 13 is used. The structure is strong against deviations from the axis of symmetry of the thermal stress adding layer 14'.

実施例 本発明の実施例を以下に述べる。Example Examples of the present invention will be described below.

実施例1: VAD法で作製したシングルモード光ファイバ用母材の
外周を研削加工し、16 mm x 3mmの矩形断面
を有するコア用ガラスロッドを作成した。中心部に1.
2mmのGeO2をドーグしたコア層を有している。試
料のコア用ガラスロッドは、屈折率差△n = 0.2
7チであった。
Example 1: The outer periphery of a single mode optical fiber base material produced by the VAD method was ground to create a core glass rod having a rectangular cross section of 16 mm x 3 mm. 1 in the center.
It has a core layer doped with 2 mm of GeO2. The glass rod for the core of the sample has a refractive index difference △n = 0.2
It was 7chi.

研削加工後、20%HF溶液中で4時間エツチングした
のち、B2102炎で火炎研摩い研削した界面を平滑化
した。
After the grinding process, etching was performed in a 20% HF solution for 4 hours, and then the ground interface was smoothed by flame polishing with B2102 flame.

一方向性CVD法により作製した外径13 mmφ1日
付熱応力層の内径9.5mmφの熱応力付加用ガラスロ
ツドヲ、25チ)(F浴液中で48時間浸漬してエツチ
ングしたのち、外径6.5 mmφに延伸した。この熱
応力付加用ガラスロツドを中心線から2分割した後、別
に作製した矩形断面のコア用ガラスロッドのコア層に対
して両側に配置し、両端部をコア用ガラスロッドに融着
して固定した。この融着固定に際し、コア層中心と、熱
応力付加用ガラスロツドの中心が一直線上に並ぶよう合
わせである。
A 25-inch glass rod for applying thermal stress with an inner diameter of 9.5 mm and an outer diameter of 13 mm and an inner diameter of 9.5 mm, manufactured by the unidirectional CVD method (after being immersed in F bath solution for 48 hours and etched, the outer diameter of the layer was 6 mm). This glass rod for applying thermal stress was divided into two from the center line, and then placed on both sides of the core layer of a glass rod for a core with a rectangular cross section prepared separately, and both ends were attached to the glass rod for a core. They were fused and fixed. During this fusion and fixing, the center of the core layer and the center of the glass rod for applying thermal stress were aligned in a straight line.

熱応力付加用ガラスロツドを配置した状態で、コア用ガ
ラスロッドと共に組合せロッドを外径18mmφ、内径
16.5mmφの石英管内に挿入し、石英管内f 45
0 mm Hyに減圧した状態でHz/Ch炎で加熱中
実して一体化した。この中実化したロツドヲH2102
炎で、バーナのトラバーヌ速度15皿/minで2回火
炎研摩し、表面を滑らかにした。こうして得られたプリ
フォームロッドをカーボン抵抗炉で2100℃に加熱し
て外径125μmφに線引し、ファイバ化した。
With the glass rod for applying thermal stress in place, insert the combined rod together with the glass rod for the core into a quartz tube with an outer diameter of 18 mmφ and an inner diameter of 16.5 mmφ, and set f 45 inside the quartz tube.
The mixture was heated solidly with a Hz/Ch flame under reduced pressure to 0 mm Hy to be integrated. This solidified Rodswo H2102
The surface was smoothed by flame polishing twice at a burner travertine speed of 15 plates/min. The preform rod thus obtained was heated to 2100° C. in a carbon resistance furnace and drawn to have an outer diameter of 125 μmφ to form a fiber.

得られたファイバの偏波特性を光の波長λ=1.15μ
mで評価したところ、複屈折率B= 3.5 XIOの
良好が値が得られた。伝送損失αはα= 1.3 dB
/ Kn’1(λ= 1.15 IIm)であった。
The polarization characteristics of the obtained fiber are determined by the wavelength of light λ = 1.15μ
When evaluated using m, a good value of birefringence B=3.5XIO was obtained. Transmission loss α is α = 1.3 dB
/ Kn'1 (λ = 1.15 IIm).

−同様の方法で6本のプリフォームを作製し、偏波特性
を評価した結果、いずれのプリフォームとも、B=3.
5±0.5 X 10−4の範囲に入っておシ、優れた
再現性を示した。
- Six preforms were manufactured in the same manner and their polarization characteristics were evaluated. As a result, all preforms had B=3.
It was within the range of 5±0.5×10 −4 and showed excellent reproducibility.

実施例2: 肉付CvD法で作製したシングルモード光ファイバ用母
材の外周を研削加工して13 mm X 3 mmの矩
形断面を有するコア用ガラスロッドを作成した。
Example 2: A glass rod for a core having a rectangular cross section of 13 mm x 3 mm was prepared by grinding the outer periphery of a single mode optical fiber base material produced by the thickened CvD method.

中心部に1.0mmφのG60g ’(i’ドープした
コア層を有している。試料のコア用ガラスロッドは、屈
折率差Δn=0.31%であった。
It has a core layer doped with G60g'(i') with a diameter of 1.0 mm in the center. The glass rod for the core of the sample had a refractive index difference Δn=0.31%.

研削加工後、実施例1の同様の条件でHF溶液中でのエ
ツチング、Ha102炎による火炎研摩処理を施したの
ち、コア層に対し両側に、実施例1と同様の方法で作製
した外径smmφの熱応力付加用ガラスロツドを配置し
、両端部を融着固定して組合せロッド會形成した。この
組合せロッド會外径16mm$、内径14閣φの通常の
市販の石英管に挿入し、石英管内’t 360 mmH
yに減圧した状態で11*10x炎によシ加熱中実して
一体化した。この゛一体イヒしたプリフォームを実施例
1と同様の方法でファイバ化し、偏波特性を評価した。
After the grinding process, etching in an HF solution and flame polishing using Ha102 flame were performed under the same conditions as in Example 1, and then the outer diameter smmφ was prepared on both sides of the core layer in the same manner as in Example 1. A glass rod for applying thermal stress was placed, and both ends were fused and fixed to form a combined rod assembly. This combination rod was inserted into a normal commercially available quartz tube with an outer diameter of 16 mm and an inner diameter of 14 mm, and the inside of the quartz tube was 360 mmH.
While the pressure was reduced to y, the mixture was heated with an 11*10x flame and solidified to integrate. This integrated preform was made into a fiber in the same manner as in Example 1, and its polarization characteristics were evaluated.

評価結果は、光の波長λ=1.15胛で、複屈折率B=
4.2X10 の良 。
The evaluation results are that the wavelength of light λ=1.15, and the birefringence B=
4.2x10 good.

好な値が得られた。伝送損失αは、α=t、sdB/K
m(λ:1.15μm)であった。同様の方法で4本の
プリフォームを作製し、線引きしたコアイノくについ゛
て偏波特性を評価した結果、いずれのプリフォームにつ
いてもB=a、s±0.4 X 10−’の範囲に入っ
ており、優れた再現性で高い偏波保持特性を示す定偏波
ファイバ金製造することができた。
A good value was obtained. The transmission loss α is α=t, sdB/K
m (λ: 1.15 μm). Four preforms were made in the same manner, and the polarization characteristics of the drawn cores were evaluated. As a result, all preforms had a range of B = a, s ± 0.4 x 10-'. We were able to manufacture a polarization-constant fiber gold exhibiting high polarization-maintaining properties with excellent reproducibility.

発明の効果 本発明の方法によると、矩形状断面を有する平板状のコ
ア用ガラスロッドのコア層に対し、両(IIIに相対向
する位置に円形断面の応力付加用ガラスロッドを配置す
るので、熱応力付加層の対称軸力島らのずれの発生が生
じ難く、高い偏波保持特性〃蓋再現性良く得られ、さら
に板状のコア用ガラスロッドを用いることによp1コア
に面した熱応力付加層の部分が直線状となることから、
熱応力付加。
Effects of the Invention According to the method of the present invention, stress-applying glass rods with a circular cross section are arranged at positions opposite to both (III) of the core layer of a flat glass rod for a core having a rectangular cross section. It is difficult for the symmetrical axial force island of the thermal stress application layer to shift, and high polarization maintaining properties can be obtained with good lid reproducibility.Furthermore, by using a plate-shaped glass rod for the core, the heat distribution facing the p1 core is prevented. Since the stress-applying layer is linear,
Addition of thermal stress.

層の対称軸からのずれに対して強い構造となる利点があ
り、効果が大きい。
It has the advantage of having a structure that is resistant to deviations from the symmetry axis of the layers, and is highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a乃至dは本発明の定偏波ファイバの製造方法を
説明する図、第2図及び第3図はそれぞれ従来の製造方
法を説明する図である010・・・プリフォーム母材、
11・・・コア層、12.・・フラッド層、13・・・
コア用ガラスロッド、14・・・熱応力付加用ガラスロ
ッド、15・・・石英管、16・・・定偏波ファイバ、
ll’、、、コア、12′・・・クラッド、14’、、
、熱応力付加 層、加・・・コア用母材、21〜24・
・・応力付加用ガラスロッド、25・・・石英管、加・
・・コア層、31〜34・・・熱応力付加層、あ・・・
クラッド層。 特許出願人 住友電気工業株式会社 代理人弁理士 玉 蟲 久 五 部 □第1図 a 第2図 21、22.23.24ん方向加用ガラスロッド1 第3図
1A to 1D are diagrams for explaining the manufacturing method of the polarization constant fiber of the present invention, and FIGS. 2 and 3 are diagrams for explaining the conventional manufacturing method, respectively.010...Preform base material,
11... Core layer, 12. ...Flood layer, 13...
Glass rod for core, 14... Glass rod for applying thermal stress, 15... Quartz tube, 16... Constant polarization fiber,
ll', , core, 12'... cladding, 14', ,
, thermal stress application layer, processing...base material for core, 21-24.
・Glass rod for adding stress, 25...Quartz tube, processing・
...Core layer, 31-34...Thermal stress adding layer, Ah...
cladding layer. Patent Applicant Sumitomo Electric Industries Co., Ltd. Patent Attorney Hisashi Gobe Tamamushi □Figure 1a Figure 2Glass rod for 21, 22, 23, and 24 directions 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] コアの外周部に熱応力層を設けてなる定偏波ファイバの
製造方法において、中心に円形断面のコア層含有する矩
形状断面のコア用ガラヌロツドの該矩形状断面の長辺に
沿って、該コア層に対し両側に相対向する位置゛に、該
コア用ガラヌロツドよシ熱膨張係数の高い応力付加用ガ
ラスロッドを配置し、該応力付加用ガラスロッドを配置
したコア用ガラスロンドを石英管内に挿入し、該石英管
の内部を減圧状態にして加熱中実して一体化し、しかる
後該石英管を高温加熱して線引きしファイバ化する各工
程からなることを特徴とする定偏波ファイバの製造方法
In a method for manufacturing a polarization constant fiber in which a thermal stress layer is provided on the outer periphery of the core, a core galanuloid with a rectangular cross section containing a core layer with a circular cross section in the center is coated along the long side of the rectangular cross section. Stress-applying glass rods having a higher coefficient of thermal expansion than the core galanuloid are arranged at positions opposite to the core layer on both sides, and the core glass rod with the stress-applying glass rod is placed inside the quartz tube. A constant polarization fiber characterized by comprising the steps of: inserting the quartz tube into a quartz tube, heating the interior of the quartz tube to a reduced pressure state, and integrating the quartz tube into a solid body; then heating the quartz tube at a high temperature and drawing it into a fiber. Production method.
JP59117395A 1984-06-06 1984-06-06 Preparation of fixed polarisation fiber Pending JPS60260442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59117395A JPS60260442A (en) 1984-06-06 1984-06-06 Preparation of fixed polarisation fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59117395A JPS60260442A (en) 1984-06-06 1984-06-06 Preparation of fixed polarisation fiber

Publications (1)

Publication Number Publication Date
JPS60260442A true JPS60260442A (en) 1985-12-23

Family

ID=14710586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59117395A Pending JPS60260442A (en) 1984-06-06 1984-06-06 Preparation of fixed polarisation fiber

Country Status (1)

Country Link
JP (1) JPS60260442A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141436A (en) * 1988-11-21 1990-05-30 Sumitomo Electric Ind Ltd Production of polarized wave maintaining optical fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205333A (en) * 1981-06-12 1982-12-16 Nippon Telegr & Teleph Corp <Ntt> Manufacture of single-polarization single-mode optical fiber
JPS5815041A (en) * 1981-07-20 1983-01-28 Hitachi Ltd Production of base material for optical fiber
JPS58110439A (en) * 1981-12-22 1983-07-01 Hitachi Cable Ltd Manufacture of constant polarization type optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205333A (en) * 1981-06-12 1982-12-16 Nippon Telegr & Teleph Corp <Ntt> Manufacture of single-polarization single-mode optical fiber
JPS5815041A (en) * 1981-07-20 1983-01-28 Hitachi Ltd Production of base material for optical fiber
JPS58110439A (en) * 1981-12-22 1983-07-01 Hitachi Cable Ltd Manufacture of constant polarization type optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141436A (en) * 1988-11-21 1990-05-30 Sumitomo Electric Ind Ltd Production of polarized wave maintaining optical fiber

Similar Documents

Publication Publication Date Title
US4906068A (en) Polarization-maintaining optical fibers for coupler fabrication
US4834786A (en) Method of manufacturing a preform for asymmetrical optical fiber
GB2104241A (en) Single polarization optical fibres
US4828592A (en) Polarization plane maintaining optical fiber fabricating method
GB2189900A (en) Optical fibre devices
US4904052A (en) Polarization preserving optical fiber and method of manufacturing
JPS60260442A (en) Preparation of fixed polarisation fiber
JPH0236535B2 (en)
JPH0627010B2 (en) Method of manufacturing polarization-maintaining optical fiber
JPS60186432A (en) Manufacture of polarization-maintaining fiber
JPH0685005B2 (en) Constant polarization fiber and manufacturing method thereof
EP0312594A1 (en) An improved polarization preserving optical fiber and method of manufacturing.
JPS58135141A (en) Preparation of single polarized optical fiber
JPS6328857B2 (en)
JPH0212887B2 (en)
JPH01279211A (en) Polarized wave maintaining optical fiber
JPS60246239A (en) Manufacture of polarization stabilized optical fiber
JPH02157133A (en) Production of elliptic core type polarization plane maintaining optical fiber
JPS6367168B2 (en)
JPH0364707A (en) Manufacture of spot size converting optical fiber
JPS598634A (en) Preparation of base material for optical fiber having retained plane of polarization
JPH0742127B2 (en) Method for manufacturing polarization preserving optical fiber preform
JPH0439605A (en) Elliptic core type polarization plane maintaining optical fiber and optical fiber polarizer
JPS59190234A (en) Preparation of fiber for maintenance of straight polarization
JPS6168341A (en) Production of parent material for fixed polarization fiber