JPS60246239A - Manufacture of polarization stabilized optical fiber - Google Patents

Manufacture of polarization stabilized optical fiber

Info

Publication number
JPS60246239A
JPS60246239A JP59104114A JP10411484A JPS60246239A JP S60246239 A JPS60246239 A JP S60246239A JP 59104114 A JP59104114 A JP 59104114A JP 10411484 A JP10411484 A JP 10411484A JP S60246239 A JPS60246239 A JP S60246239A
Authority
JP
Japan
Prior art keywords
core
optical fiber
glass
glass rod
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59104114A
Other languages
Japanese (ja)
Inventor
Hiroshi Yokota
弘 横田
Toshio Tamazuka
弾塚 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59104114A priority Critical patent/JPS60246239A/en
Publication of JPS60246239A publication Critical patent/JPS60246239A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • C03B2203/31Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres by use of stress-imparting rods, e.g. by insertion

Abstract

PURPOSE:To obtain the titled optical fiber having excellent transmission characteristics, in high reproducibility, by grinding a specific V-shaped groove to a clad, putting a stress-imparting glass rod into the groove, inserting the assembly in a quartz tube, collapsing and integrating by heating, and drawing the product. CONSTITUTION:The glass rod 1 is made of the core 2 having high refractive index and the clad having lower refractive index than the core and placed at the outer circumference of the core. A pair of V-shaped grooves are formed to the clad by grinding at the opposite positions around the core. The opening angle theta of the groove against the core 2 is 90 deg.<theta<150 deg., and the ratio of d/a is 1.5<d/ a<5 wherein (d) is the distance between the center of the core 2 and the apex of the opening angle theta and (a) is radius of the core 2. A glass rod 3 for imparting thermal stress and having higher thermal expansion coefficient than the clad is fixed in the groove, and the whole assembly is inserted into the quartz tube 4 to form the preform (c). The preform is collapsed and integrated by heating and drawn to obtain the titled optical fiber (d).

Description

【発明の詳細な説明】 産業上の利用分野 本発明は元ファイバに関し、とくに元ファイバ内を伝搬
する信号光の偏波状態を保持する定偏波光ファイバの製
造方法に関するものである。定偏波光ファイバはジャイ
ロスコープ等における元センサへの応用、また超大容量
通信であるコヒーレント通信への応用が期待される。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an original fiber, and more particularly to a method for manufacturing a polarization constant optical fiber that maintains the polarization state of signal light propagating within the original fiber. Polarization-controlled optical fibers are expected to be applied to sensors such as gyroscopes, and to coherent communications, which are ultra-high-capacity communications.

従来の技術 従来のこの種定偏波光ファイバf製造する方υ、として
は、たとえば特開昭58−15041号公報に記載され
ているように、石英管の内1htlにガラス薄膜層を形
成し、その後石英管を加熱中実化する際に石英管内圧を
大気圧より負圧にし、コア部と熱応力層とのガラス粘度
差を利用して、第2図V(示すように熱応力層6を楕円
状化し、はぼ円形のコア2に異方性応力を発生させる方
法がとられていた。
BACKGROUND OF THE INVENTION A conventional method of manufacturing this kind of polarized optical fiber f is to form a glass thin film layer on one htl of a quartz tube, as described in, for example, Japanese Unexamined Patent Publication No. 15041/1982. After that, when heating the quartz tube to solidify it, the internal pressure of the quartz tube is made negative from atmospheric pressure, and the difference in glass viscosity between the core part and the thermal stress layer is used to make the thermal stress layer 6 as shown in Figure 2V. A method has been adopted in which the core 2 is made into an ellipse and anisotropic stress is generated in the roughly circular core 2.

第2図で20は光ファイバ、4は石英管を示す。In FIG. 2, 20 is an optical fiber and 4 is a quartz tube.

(従来技術1) また他の方法として、たとえば特開昭57−20565
3号公報に記載されているように、第6図αに示すごと
くコア用のガラスロッド1の周囲に熱膨張係数の異なる
応力付与用ガラスロッド6を配置し、石A管4に内挿し
た後、加熱中実化して一体とし、しかる後線引すること
により第51kl b K示すような定偏波光ファイバ
60を製造する方法が提案されている。第6図αで5は
石英ロンド、第6図すで2はコア、31は熱応力層であ
る。(従来技術2) 発明が解決しようとする問題点 従来技術1による方法では、コアおよび熱応力層の楕円
率が加熱中火化の除の大気圧に対する負圧値、中火化温
度、中火化前の石英管の内外径。
(Prior art 1) As another method, for example, Japanese Patent Application Laid-Open No. 57-20565
As described in Publication No. 3, stress applying glass rods 6 having different coefficients of thermal expansion were arranged around the glass rod 1 for the core as shown in FIG. 6 α, and inserted into the stone A tube 4. A method has been proposed in which a polarization-constant optical fiber 60 as shown in 51 kl b K is manufactured by heating, solidifying, and then drawing. In FIG. 6 α, 5 is a quartz iron, 2 in FIG. 6 is a core, and 31 is a thermal stress layer. (Prior Art 2) Problems to be Solved by the Invention In the method according to Prior Art 1, the ellipticity of the core and thermal stress layer is determined by the negative pressure value with respect to the atmospheric pressure during heating, the intermediate ignition temperature, and the temperature before intermediate ignition. Inner and outer diameter of quartz tube.

コアの内径、さらにコアのドーパント組成的の多種の要
因に大きく左右され、これらいずれの値が僅かに違って
も侍られる楕円率が大きく異なってしまい、再現性が乏
しいという問題がある。
This is greatly influenced by various factors such as the inner diameter of the core and the dopant composition of the core, and even a slight difference in any of these values results in a large difference in the ellipticity that can be achieved, resulting in a problem of poor reproducibility.

また従来技術2による方法では、コア用のガラスロッド
を中心にして、応力付与用ガラスロッドを理想的に相対
向する位置に“隙間”なしに配列することは困難で、こ
のため線引きされた元ファイバの熱応力層の対称軸から
のずれが生じ、偏波貨持特性の再現性が乏しいという問
題がある。
In addition, in the method according to Prior Art 2, it is difficult to arrange the glass rods for applying stress in ideal opposing positions without any "gap" around the glass rod for the core. There is a problem in that the thermal stress layer of the fiber is deviated from the axis of symmetry, resulting in poor reproducibility of polarization holding characteristics.

問題点を解決するための手段・作用 本発明は、熱応力層を再現性よく、コア用のガラスロッ
ドの周囲に配置するため以下の構成をとる。第1図α乃
至dは本発明の各工程の要部を説明する図である。
Means/Function for Solving the Problems The present invention has the following configuration in order to arrange the thermal stress layer around the glass rod for the core with good reproducibility. FIGS. 1A to 1D are diagrams for explaining the main parts of each process of the present invention.

第1図αはコア用のガラスロッド1の断面図を示す。コ
ア用のガラスロッド1の側面にコア2を中心に相対向す
る位置に、コア2に対する開き角θのV字形溝を切削加
工して設ける(第1図b)。
FIG. 1 α shows a sectional view of a glass rod 1 for the core. A V-shaped groove having an opening angle θ with respect to the core 2 is cut and provided on the side surface of the glass rod 1 for the core at a position opposite to each other with the core 2 at the center (FIG. 1b).

次にこの2字形溝に内接し介在して石英より熱膨張係数
の大きい熱応力付与用ガラスロッド5を固定し配置する
。熱応力付与用ガラスロッド径が等しければ、V字形溝
内に2点で線接触状態に固定され、所望の位置に配列す
ることができる。なおコア用のガラスロッドの外周研削
により、極めて高精度でコアに相対向するようV字形溝
を設けることは容易に可能である。熱応力付与用ガラス
口(6) ラドをV字形溝内に介在して固定配置したコア用のガラ
スロッドを石英管4内に挿入する(第1図C)。しかる
後石英管を加熱し中央化して一体とし、線引してファイ
バ化する(第1図d)。51は熱応力層で、10は得ら
れた定偏波光ファイバである。
Next, a glass rod 5 for applying thermal stress, which has a coefficient of thermal expansion larger than that of quartz, is fixed and disposed so as to be inscribed in and interposed in this double-shaped groove. If the diameters of the glass rods for applying thermal stress are equal, the glass rods can be fixed in line contact at two points within the V-shaped groove and arranged at desired positions. Note that by grinding the outer periphery of the glass rod for the core, it is possible to easily provide a V-shaped groove facing the core with extremely high precision. Glass port for applying thermal stress (6) A glass rod for a core with a rad fixedly disposed within a V-shaped groove is inserted into the quartz tube 4 (FIG. 1C). Thereafter, the quartz tube is heated, centralized and integrated, and drawn to form a fiber (FIG. 1d). 51 is a thermal stress layer, and 10 is the obtained polarization constant optical fiber.

熱応力付与層としては石英ガラス(5i02 )にG−
□! 、 Pg Os 、 IhOs、 Ti1t、 
AL*Os + C;axOsr 5bzO11等のう
ち、少くとも1以上を加えたものが望ましい。また熱応
力付与層の屈折率は、光フアイバ内でクラッドモードの
発生を防止する罠めに、石英ガラスの屈折率とほぼ同一
か、または石英ガラスの屈折率よりも小さいことが望ま
しい。従って屈折率を下げるドーパントと17てB20
. 、 Fのうち少くとも1種と、上述したその他のド
ーパントを共存させることが望ましい。
As the thermal stress imparting layer, G-
□! , PgOs, IhOs, Ti1t,
It is desirable to add at least one of AL*Os + C; axOsr 5bzO11, etc. Further, the refractive index of the thermal stress imparting layer is desirably approximately the same as or smaller than the refractive index of silica glass in order to prevent the occurrence of cladding modes within the optical fiber. Therefore, with a dopant that lowers the refractive index, 17 and B20
.. , F and the other dopant mentioned above are desirably present together.

次に第4図に示す2字形溝の開き角θと、コア半径α、
V字形溝の頂角位置間距離2dを種々変えて、V字形溝
をコア用のガラスロッドに設けた本発明による定偏波光
ファイバを作製し、複屈折(4′) 本性を測定した。
Next, the opening angle θ of the two-shaped groove shown in Fig. 4, the core radius α,
By varying the distance 2d between the apex positions of the V-shaped grooves, polarization-constant optical fibers according to the present invention in which the V-shaped grooves were provided in the glass rod for the core were prepared, and the birefringence (4') properties were measured.

第5図はd/a = 4.5に固定し、θを変えたとき
のビート長の測定結果である。図から90°くθ<15
0゜の範囲が最大の複屈折率性を示す領域であることが
わかる。
FIG. 5 shows the measurement results of the beat length when d/a was fixed at 4.5 and θ was varied. 90° from the figure θ<15
It can be seen that the range of 0° is the region exhibiting maximum birefringence.

第6図はθ=120°に固定し、d/αの比を変えたと
きの測定結果である。図からd/αく5であることが望
ましいことが解る。ただしd/a < 1.5 になる
と、伝送損失値が急増する現象が見られた。従って1.
5<d/αく5の範囲で作製することが望ましい。
FIG. 6 shows the measurement results when θ was fixed at 120° and the ratio of d/α was varied. From the figure, it can be seen that it is desirable that d/α be 5. However, when d/a < 1.5, a phenomenon was observed in which the transmission loss value rapidly increased. Therefore 1.
It is desirable to manufacture the film in the range of 5<d/α.

なお本測定における光の波長λは0.85μmである。Note that the wavelength λ of light in this measurement is 0.85 μm.

実施例 実施例1: VAD法で作製したコア径1.5m′frLφ、クラッ
ド径1t5 yarnφのシングルモード光7アイノく
用のガラス母材に、本発明によりθ−120°ld/c
L−2のV字形溝を研削形成した。なおコア部にはG−
01を添加し、コアとクラッド層の屈折率差は0.27
%であった。この2字形溝を研削したガラスロッドのV
字形溝にMCVD法で作製したB20B: 14m01
%、 F:0−2u)L%+GaO@:4moL%を含
む熱応力付与ガラスロッド(外径6mmφ)を介在固定
し、先端部を加熱融着した。
Examples Example 1: According to the present invention, a glass base material for a single-mode light beam with a core diameter of 1.5 m'frLφ and a cladding diameter of 1t5 yarn, manufactured by the VAD method, was heated to θ-120°ld/c.
A V-shaped groove L-2 was formed by grinding. In addition, the core part has G-
01 is added, and the refractive index difference between the core and cladding layer is 0.27.
%Met. The V of the glass rod with this two-shaped groove ground.
B20B made with MCVD method in the shape groove: 14m01
%, F:0-2u)L%+GaO@:4mol% A thermally stressed glass rod (outer diameter 6 mmφ) was interposed and fixed, and the tip portion was heat-fused.

さらに全体を外径’l ’1rran tlr 、内径
16.5mynφの石英管内に挿入し、H2102炎に
より高温加熱し、中実化して一体としたガラスロッドを
紛引きし、伝送損失、偏波特性を評価した。その結果、
波長λ−1,15μmの光で、伝送損失が1.2 d 
B/ hmrビート長3mmの良好な特性が得られた。
Furthermore, the entire body was inserted into a quartz tube with an outer diameter of 'l'1 rran tlr and an inner diameter of 16.5 myinφ, heated to a high temperature with an H2102 flame, solidified, and the integrated glass rod was powdered to determine the transmission loss and polarization characteristics. was evaluated. the result,
Transmission loss is 1.2 d for light with wavelength λ-1, 15 μm
Good characteristics with a B/hmr beat length of 3 mm were obtained.

また同様な方法で7本の光フfイバ母材を作製し、線引
きしてファイバ化し、特性評価を行った結果、伝送損失
が1.2±0.2 dB/hrn 、ビート長6±0,
5mmと極めて高い肖現性が確認きれた。
In addition, seven optical fiber base materials were fabricated using the same method, drawn and made into fibers, and the characteristics were evaluated. As a result, the transmission loss was 1.2 ± 0.2 dB/hrn, and the beat length was 6 ± 0. ,
Extremely high portraiture of 5 mm was confirmed.

実施例2: MCVD 法により作製したコア径1.’1mmφ、ク
ラッド径15.5mmφのシングルモード光フIイパ用
のガラス母材を実施例1と同様に研削加工し、θ−90
°。
Example 2: Core diameter 1.0% produced by MCVD method. A glass base material for a single mode optical fiber I with a diameter of 1 mm and a cladding diameter of 15.5 mm was ground in the same manner as in Example 1, and
°.

d/α−3のV字形溝を形成した。コf部とクラッド層
との屈折率差は0.26%であった。実施例1と同じ応
力付与用ガラスロッドを2字形溝に介在固定し、外径2
2 mmφ、内径16mrrLφの石英管に挿入し、実
施例1と同じ工程で加熱中実化して一体となし、線引き
を行った。得られた定偏波光ファイバについて波長λ−
1,15μmの光で特性評価を行った結果、伝送損失1
.6dB/km、ビート長5mmの良好な特性が得られ
た。
A V-shaped groove of d/α-3 was formed. The refractive index difference between the co-f part and the cladding layer was 0.26%. The same glass rod for applying stress as in Example 1 was interposed and fixed in the two-shaped groove, and the outer diameter was 2.
It was inserted into a quartz tube with a diameter of 2 mmφ and an inner diameter of 16 mrrLφ, heated to form a solid body in the same process as in Example 1, and then wire-drawn. For the obtained polarization-controlled optical fiber, the wavelength λ−
As a result of characteristic evaluation using 1.15 μm light, the transmission loss was 1.
.. Good characteristics of 6 dB/km and a beat length of 5 mm were obtained.

また実施例1と同様に、実施例2についても7本の光フ
アイバ母材を作製し、線引きしてファイバ化し、特性評
価を行った結果、伝送損失が1.6±肌2dB/km、
ビート長5±9.5 mm と再現性の幾イことが確認
された。
Similarly to Example 1, seven optical fiber base materials were prepared for Example 2, and the fibers were drawn and evaluated. As a result, the transmission loss was 1.6 ± 2 dB/km,
It was confirmed that the beat length was 5±9.5 mm and the reproducibility was good.

発明の効果 以上詳述したように、本発明によれば伝送特性の優れた
、かつ再現性の高い定偏波光ファイバを製造することが
でき、光センサへの応用、超大容量通信のコヒーレント
通信への適用等において効果が大である。
Effects of the Invention As detailed above, according to the present invention, it is possible to manufacture polarization-controlled optical fibers with excellent transmission characteristics and high reproducibility, which can be applied to optical sensors and coherent communications for ultra-high capacity communications. It is highly effective in applications such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図α乃至dは本発明の製造工程の要部を1明する図
、第2図は従来例、第5図α、b+71他の従(7) 来例による定偏波光ファイバの構成を説明する図、第4
図は本発明にょる定偏波光ファイバの構成例を説明する
図、第5図および第6図は本発明にょる定偏波光ファイ
バの複屈折率性および伝送特性の測定結果を示す図であ
る。 1・・・コア用のガラスロッド、2・・・コア、6・・
・熱応力付与用ガラスロッド、4・・・石英管、1o・
・・定偏波光ファイバ、61・・・熱応力層、5・・・
石英ロッド、50・・・定偏波光ファイバ 特許出願人住友電気工業株式会社 代理人弁理士 玉 蟲 久 五 部 (8) 壇−J−瞭6 ソーエ室呂
Figures 1 α to d are diagrams illustrating the main parts of the manufacturing process of the present invention, Figure 2 is a conventional example, and Figure 5 α, b + 71 and other examples (7) shows the configuration of a polarization-controlled optical fiber according to a conventional example. Diagram to explain, 4th
The figure is a diagram illustrating a configuration example of a polarization constant optical fiber according to the present invention, and FIGS. 5 and 6 are diagrams showing measurement results of birefringence and transmission characteristics of the polarization constant optical fiber according to the present invention. . 1... Glass rod for core, 2... Core, 6...
・Glass rod for applying thermal stress, 4...Quartz tube, 1o・
...Constant polarization optical fiber, 61...Thermal stress layer, 5...
Quartz rod, 50...Constant polarization optical fiber patent applicant Sumitomo Electric Industries Co., Ltd. Representative Patent Attorney Hisashi Tamamushi Gobu (8) Dan-J-Ryo 6 Soe Muroro

Claims (1)

【特許請求の範囲】[Claims] 中心部に屈折率の高い層のコアと、該コアの外周に該コ
アの屈折率より屈折率の低い層のクラッドとからなるガ
ラスロンドの該クラッドに、該コアを中心に相対向する
位置に、該コアに対する開き角θが90°〈θ〈150
°で、かつ該コア中心から該開き角の頂点までの距離d
と該コアの半径αとの比が1.5<d/αく5なるV字
形溝を研削し、該V字形溝に該クラッドより熱膨張係数
の犬なる応力付与用ガラスロンドを介在して配置し、該
応力付与用ガラスロンドをV字形溝に介在配置したガラ
スロンド全体を石英管内に挿入し、該応力付与用ガラス
ロンドをV字形溝に介在配置したガラスロンドを内包し
た石英管を加熱して中実一体化し、しかる後線引きを行
う各工程からなることを特徴とする定偏波光ファイバの
製造方法。
The cladding of the glass rond is composed of a core having a layer with a high refractive index in the center and a cladding having a refractive index lower than the refractive index of the core on the outer periphery of the core, at positions opposite to each other with the core as the center. , the opening angle θ with respect to the core is 90°〈θ〈150
°, and the distance d from the core center to the apex of the opening angle
A V-shaped groove with a ratio of 5 to the radius α of the core is 1.5<d/α, and a stress-applying glass rond having a thermal expansion coefficient higher than that of the cladding is interposed in the V-shaped groove. The entire glass rond with the stress-applying glass rond interposed in the V-shaped groove is inserted into a quartz tube, and the quartz tube containing the glass rond with the stress-applying glass rond interposed in the V-shaped groove is heated. 1. A method for producing a polarization-constant optical fiber, comprising the steps of integrating the fiber into a solid body, and then drawing the fiber.
JP59104114A 1984-05-23 1984-05-23 Manufacture of polarization stabilized optical fiber Pending JPS60246239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59104114A JPS60246239A (en) 1984-05-23 1984-05-23 Manufacture of polarization stabilized optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59104114A JPS60246239A (en) 1984-05-23 1984-05-23 Manufacture of polarization stabilized optical fiber

Publications (1)

Publication Number Publication Date
JPS60246239A true JPS60246239A (en) 1985-12-05

Family

ID=14372094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59104114A Pending JPS60246239A (en) 1984-05-23 1984-05-23 Manufacture of polarization stabilized optical fiber

Country Status (1)

Country Link
JP (1) JPS60246239A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503636A (en) * 2007-07-31 2011-01-27 コーニング インコーポレイテッド Polarization maintaining optical fiber and single polarization optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503636A (en) * 2007-07-31 2011-01-27 コーニング インコーポレイテッド Polarization maintaining optical fiber and single polarization optical fiber

Similar Documents

Publication Publication Date Title
EP0032390A2 (en) Method of producing a preform rod for an optical fiber
US6580860B1 (en) Method for making shaped highly birefringent optical fibers
KR20010020930A (en) Method of manufacturing polarization-maintaining optical fiber coupler
JPS60246239A (en) Manufacture of polarization stabilized optical fiber
JPS6365615B2 (en)
JPH0627010B2 (en) Method of manufacturing polarization-maintaining optical fiber
JPH0685005B2 (en) Constant polarization fiber and manufacturing method thereof
JPH06235838A (en) Production of polarization maintaining optical fiber
JPS6218492B2 (en)
JPS6328857B2 (en)
JPH01314209A (en) Constant polarization optical fiber
JPS58135141A (en) Preparation of single polarized optical fiber
JPS60242406A (en) Single polarization optical fiber
JPH0225806A (en) Polarization maintaining optical fiber and manufacture thereof
JPS60260442A (en) Preparation of fixed polarisation fiber
JPH0210093B2 (en)
JPH01279211A (en) Polarized wave maintaining optical fiber
JPH01222208A (en) Polarization maintaining optical fiber and fiber base material for producing said fiber
JPS61228404A (en) Optical fiber for constant polarized wave
JPH02157133A (en) Production of elliptic core type polarization plane maintaining optical fiber
JPS62148333A (en) Preparation of constant polarization optical fiber
JPH01148724A (en) Production of polarization retaining fiber
JPS63306403A (en) Polarization maintaining fiber
JPH04322207A (en) Optical fiber coupler and its manufacture
CN110187436A (en) A kind of line-styled single polarization fiber and its manufacturing method