JPH0225806A - Polarization maintaining optical fiber and manufacture thereof - Google Patents
Polarization maintaining optical fiber and manufacture thereofInfo
- Publication number
- JPH0225806A JPH0225806A JP63176354A JP17635488A JPH0225806A JP H0225806 A JPH0225806 A JP H0225806A JP 63176354 A JP63176354 A JP 63176354A JP 17635488 A JP17635488 A JP 17635488A JP H0225806 A JPH0225806 A JP H0225806A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- refractive index
- cladding
- polarization
- cores
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 56
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 230000010287 polarization Effects 0.000 title abstract description 25
- 238000005253 cladding Methods 0.000 claims description 38
- 239000011521 glass Substances 0.000 claims description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000005553 drilling Methods 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims 1
- 239000011162 core material Substances 0.000 description 46
- 239000010453 quartz Substances 0.000 description 10
- 238000009826 distribution Methods 0.000 description 9
- 230000035882 stress Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000000644 propagated effect Effects 0.000 description 4
- 239000000835 fiber Substances 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/105—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
〔産業上の利用分野〕
本発明は、直交する2つの偏波モードの結合を減少させ
た偏波保持光ファイバに関するものである。
〔従来の技術〕
光フアイバセンサなどのように、先ファイバ中を伝搬さ
せた光波信号の位相情報を利用する用途には、直交する
2つの偏波モード相互間の不規則な結合を防止した偏波
保持光ファイバが必要となる。このような光ファイバは
、光フアイバ横断面内のX方向の屈折率分布とy方向の
屈折率分布に異方性を与えて両偏波モードの伝搬定数β
とβ の差を拡大することにより得られる。
具体的な設計法としては、大越孝敬 他による「光ファ
イバ」 (オーム社、昭和58年)に記されているよう
に、■コア形状を真円から楕円形状にした「楕円コア型
」と■異方性の熱応力付与による光弾性効果を利用した
「応力付与型」の2種類が知られている。第4図は「楕
円コア型」の偏波保持光ファイバの一例を示す横断面図
であり、クラッド1の中央に楕円形のコア2が設けられ
ている。第5図は「応力付与型」の偏波保持光ファイバ
の一例を示す横断面図であり、クラッド1の中央に真円
形のコア3が形成され、その両側に応力付与部4.5が
付加されている。
〔発明が解決しようとする課題〕
「楕円コア型」偏波保持光ファイバの場合、X方向とy
方向の屈折率分布の異方性は、楕円コアの長軸と短軸の
長さの差異に起因するが、この程度の幾何学的異方性か
らは応力付与型に比べて必ずしも複屈折(x、y方向の
屈折率の差)は大きくできない。また、楕円形状のコア
を設計通りの精度で製造することは必ずしも容品でない
。すなわち、プリフォームを線引きして光ファイバにす
る場合、溶融後のプリフオ・−ムは液体化したガラスの
表面張力により断面内の異形部は真円に近付こうとする
ため、プリフォーム段階でいかに正確に楕円コアを加工
しても線引き後の光ファイバのコアは真円に近付いてし
まう。
一方、応力付与型偏波保持光ファイバについては、比較
的大きな複屈折が得られるものの、応力付与部に通常用
いるボロン(B)添加石英材料が高価なために光フアイ
バ全体が通常の通信用の光ファイバに比べ高価となる。
本発明の課題は、このような問題点を解消することにあ
る。
〔課題を解決するための手段〕
上記課題を解決するために、本発明の偏波保持光ファイ
バは、その横断面形状が、複数のコアと、これらのコア
を共通に取り囲み屈折率がこれらのコアよりも低い第1
のクラッドと、この第1のクラッドを取り囲み屈折率が
前記コアの屈折率と前記第1のクラッドの屈折率の中間
の値である第2のクラッドとで構成されているものであ
る。
また、本発明の製造方法は、円筒状のガラスロッドの軸
方向に複数の穴を開ける工程と、前記複数の穴の中に屈
折率が前記ガラスロッドよりも高いガラス棒を挿入して
溶融一体化する工程と、前記ガラス棒が挿入され溶融一
体化された前記ガラスロッドの周囲に屈折率が前記ガラ
ス棒よりも低く前記ガラスロッドよりも高いガラスを付
加してプリフォームを得る工程と、前記プリフォームを
線引きする工程とを有するものである。
〔作用〕
複数のコアによって形成される導波部は、X偏波モード
では平均的に屈折率が高く、y偏波モードでは平均的な
屈折率が低くなる。その結果、両−波成分に対応する屈
折率に差異が生じ複屈折が発生する。すなわち、X方向
の伝搬定数β8とy方向の伝搬定数β とが一致しなく
なり、両偏波モードは結合することができず、相互に干
渉し合うことなく伝搬される。さらに、第1クラツドの
屈折率の落ち込み部分の厚さがXsY方向で異なるので
、Xs X方向の異方性が一層拡大される。
〔実施例〕
第1図は本発明の一実施例を示す斜視図である。
屈折率n1の円形コア8.9は、屈折率n、)の円形の
第1クラツド6の中に配置されている。さらに、第1ク
ラツド6の周囲を屈折率n3の第2りラッドが囲んで、
本実施例の偏波保持光ファイバー0が構成されている。
ここで、それぞれの屈折率n −n3は、n t >
n a > n 2なる関係を満足している。
第1クラツド6の厚さは、横断面において、2つのコア
8.9の中心を結ぶ方向すなわちX軸方向ではt であ
り、X軸に垂直なy軸方向には[Industrial Application Field] The present invention relates to a polarization-maintaining optical fiber in which coupling of two orthogonal polarization modes is reduced. [Prior Art] For applications such as optical fiber sensors that utilize the phase information of a light wave signal propagated through a fiber, a polarization system that prevents irregular coupling between two orthogonal polarization modes is required. A wave-maintaining optical fiber is required. Such an optical fiber has anisotropy in the refractive index distribution in the
It can be obtained by expanding the difference between and β. As for specific design methods, as described in "Optical Fiber" by Takanori Okoshi et al. (Ohmsha, 1982), there are two types of design methods: ■ The ``elliptical core type,'' in which the core shape is changed from a perfect circle to an ellipse.■ Two types of "stress application type" are known that utilize the photoelastic effect caused by application of anisotropic thermal stress. FIG. 4 is a cross-sectional view showing an example of an "elliptical core type" polarization maintaining optical fiber, in which an elliptical core 2 is provided in the center of a cladding 1. FIG. 5 is a cross-sectional view showing an example of a "stress-applying type" polarization-maintaining optical fiber, in which a perfectly circular core 3 is formed in the center of the cladding 1, and stress-applying parts 4.5 are added on both sides of the core 3. has been done. [Problem to be solved by the invention] In the case of an “elliptical core type” polarization-maintaining optical fiber,
The anisotropy of the directional refractive index distribution is caused by the difference in length between the major and minor axes of the elliptical core, but this degree of geometric anisotropy does not necessarily result in birefringence (compared to the stress-applied type). (difference in refractive index in the x and y directions) cannot be made large. Furthermore, it is not always possible to manufacture an elliptical core with the precision as designed. In other words, when drawing a preform to make an optical fiber, the irregularly shaped part in the cross section of the preform after melting tends to approach a perfect circle due to the surface tension of the liquefied glass. No matter how precisely an elliptical core is processed, the core of the optical fiber after drawing will approach a perfect circle. On the other hand, although stress-applied polarization-maintaining optical fibers can achieve a relatively large birefringence, the boron (B)-doped quartz material normally used for the stress-applying portion is expensive, so the entire optical fiber is used for normal communication purposes. It is more expensive than optical fiber. An object of the present invention is to solve these problems. [Means for Solving the Problems] In order to solve the above problems, the polarization-maintaining optical fiber of the present invention has a cross-sectional shape that includes a plurality of cores, surrounds these cores in common, and has a refractive index that 1st lower than core
and a second cladding surrounding the first cladding and having a refractive index that is intermediate between the refractive index of the core and the refractive index of the first cladding. The manufacturing method of the present invention also includes the step of drilling a plurality of holes in the axial direction of a cylindrical glass rod, and inserting a glass rod having a higher refractive index than the glass rod into the plurality of holes to melt and integrate the glass rod. a step of adding glass having a refractive index lower than that of the glass rod and higher than that of the glass rod around the glass rod into which the glass rod has been inserted and fused together to obtain a preform; The method includes a step of drawing the preform. [Operation] The waveguide formed by the plurality of cores has a high average refractive index in the X polarization mode, and a low average refractive index in the Y polarization mode. As a result, there is a difference in the refractive index corresponding to both wave components, resulting in birefringence. That is, the propagation constant β8 in the X direction and the propagation constant β8 in the y direction no longer match, and both polarization modes cannot be combined and are propagated without mutual interference. Furthermore, since the thickness of the portion where the refractive index of the first clad falls is different in the XsY directions, the anisotropy in the Xs and X directions is further expanded. [Embodiment] FIG. 1 is a perspective view showing an embodiment of the present invention. A circular core 8.9 with a refractive index n1 is arranged in a circular first cladding 6 with a refractive index n, ). Furthermore, a second cladding having a refractive index n3 surrounds the first cladding 6,
A polarization maintaining optical fiber 0 of this embodiment is constructed. Here, each refractive index n − n3 is n t >
The relationship n a > n 2 is satisfied. In the cross section, the thickness of the first clad 6 is t in the direction connecting the centers of the two cores 8.9, that is, in the X-axis direction, and in the y-axis direction perpendicular to the X-axis.
【 となるが、t はコ
ア8.9の直径dに比べx
て十分小さく、t は十分大きくなっている。
ここで、偏波保持光ファイバーoの中心を通るx、y軸
に沿う屈折率分布を考える。第4図(A)は、X軸方向
の屈折率分布を示すものであり、同図(B)はy軸方向
の屈折率分布を示すものである。
X軸方向には屈折率の高いコア8.9が2個連続し、そ
の外側に屈折率が低く薄い第1クラツド6を介して中間
屈折率を有する第2クラツド7が囲んでいる。一方、y
軸方向にはコア8.9と第2クラツド7の間に第1クラ
ツド6が厚く存在するので、従来からWF、あるいはデ
イプレストクラッド型などと呼ばれている先ファイバ構
造に近くなる。
偏波保持光ファイバー0がこのような屈折率分布を有す
るので、伝搬する光エネルギは第4図の破線11.12
で示すように、ファイバ中心近傍に紡錘形に分布する。
そのため、この偏波保持光ファイバ】0によって形成さ
れる導波部は、X偏波モードでは平均的に屈折率が高く
、y偏波モードでは平均的な屈折率が低くなる。その結
果、両偏波成分に対応する屈折率に差異が生じ複屈折が
発生する。すなわち、X方向の伝搬定数β とy方向の
伝搬定数β とが一致しなくなり、両偏波モードは結合
することができず、相互に干渉し合うことなく伝搬され
る。
このような、x、、y方向の異方性は、2つのコアを並
列したことによる異方性の他に、第1クラツド6の屈折
率の落ち込み部分の厚さをx、y方向で異ならせている
ことにより一層拡大されている。
ここで、2つのコアを並列したことによる効果を、従来
の楕円コア型光ファイバとの関係で考える。そのために
、本実施例の光ファイバに相当する従来の楕円コア型光
ファイバを、x、y方向へのコアの屈折率の2次モーメ
ントが等しい光ファイバとして定義すると、この楕円コ
アの長袖の長さ2a と短軸の長さ2b は、
eq eqとなる。
したがって、たとえば、本実施例の偏波保持光ファイバ
がdmwであるとすると、この偏波保持光ファイバは、
(b /a )−0,24eq eq
の楕円コア型偏波保持光ファイバに相当するといえる。
2つのコア間隔を調整することにより簡単に楕円率の大
きな楕円コア型偏波保持光フアイバ相当の光ファイバを
得ることができる。
さて、本実施例の偏波保持光ファイバ10は、次のよう
に製造する。まず、第1クラツド′6に相当するガラス
ロッドを用意し、コア8.9の位置に相当する部分に軸
方向に沿っt=穴を開ける。ついで、その穴にコア材質
のガラス棒を挿入して全体を溶融し一体化する。その後
、第2クラツド7に相当するガラス材質を周囲に付加し
てプリフォームを得、線引きして偏波保持光ファイバと
すればよい。
コア8.9、第1クラツド6、第2クラツド7の材質と
しては、n > rl 3 > n 2の関係を満た
す組み合わせとして、主としてG e 02を添加した
石英をコア8.9に、主として弗素を添加した石英を第
1クラツド6に、純石英を第2クラツド7に用いるとよ
い。
上述のプリフォームの製造では、第1クラツド6に相当
する部分とコア8.9に相当する部分を一体化した後、
第1クラヅド6の厚さを調整するための外周の研削を必
要に応じて行う。
本実施例では、コア8.9が真円であり、第1クラツド
も円形となっているが、本発明はこれに限定されるもの
ではなく、不定形でよい。たとえば、第3図に示すよう
に、コア20.21および第1クラツド22がそれぞれ
丸みを帯びた方形であってもよい。
つぎに、第1図に示す本実施例の偏波保持光ファイバー
0を試作し、特性試験を行った結果を示す。試作した偏
波保持光ファイバのパラメータは以下のようである。
d−2,4μm
wssl、 6μm
Δn−0.6% (コアと第2クラツドの比屈折率差)
Δn’ mO,7% 備1クラッドと第2クラツドの比
屈折率力D−7,2am (Jilクラッドの直It=
0.4μm
t −2,4μm
クラッド径−125μm
被 覆 径−400μm(ウレタン・アクリルレート樹
脂)試作にあたっては、前述したように弗素を添加して
屈折率を石英よりも0.7%低下させた直径15鰭の石
英ガラスロッドに直径6m1lの穴をIII長手方向に
沿って開け、この穴の中に、G e O2を添加して屈
折率を石英よりも0.6%高くした直径4.6■−の石
英ガラス棒を挿入して溶融一体化した。その後、このガ
ラスロッドの外周を研削して第1クラツドの厚さ1 .
1 を調整した後、y
このガラスロッドを第2クラツドとなる中空石英バイブ
中に挿入して延伸、溶融一体化を行う。この延伸、中空
石英バイブへのロッドイン溶融一体化を2回繰り返して
最終的に前述した光フアイバ構造パラメータに相似なプ
リフォームを得た。
この試作光ファイバを計測した結果、伝送損失は波長1
.3μmと波長1.55μmの光に対、して、それぞれ
0.43dBl廊、0.32dB/3cmであった。こ
のように、本試作光ファイバは、低損失、特に波長1.
55μmの光に対して低損失であることが確認された。
このように伝送損失が低いことの理由としては、応力付
与型偏波保持光ファイバで使用される赤外吸収の大きな
り203添加石英からなる応力付与部を全く使用してい
ないことが挙げられる。また%X13’両偏波の正規化
複屈折率としては1.9xlO”−’が得られ、十分な
偏波保持特性が確認された。
なお、第1図の本実施例のコア8.9内の屈折率分布は
ステップ型であるが、分布型であっても良い。
さらに、第1クラツドのx、y方向の異方性を適当に選
ぶと、y方向偏波の実効屈折率を第2クラツドの屈折率
、と等しいかそれ以下に小さくできるので、このときに
はy偏波は漏洩モードとなり、長距離伝搬不可能となる
。その結果、光ファイバを伝搬するモードはX偏波のみ
となり、単一偏波光ファイバとなる。
〔発明の効果〕
以上説明したように、本発明の偏波保持光ファイバによ
れば、複数のコアを適当な間隔離して一列に配列し、こ
れを屈折率の互いに異なる第1および第2クラツドで2
層状に囲むという極めて簡単な構造で、導波構造の幾何
学的異方性による複屈折を実現し、偏波保持作用を達成
している。すなわち、本発明の偏波保持光ファイバによ
れば、コア間隔などを調整するだけで、楕円コア型光フ
ァイバにおけるコアの楕円度に相当するパラメータを正
確にかつ容易に1s整することが可能なので、従来はそ
の製作が困難であった大きな楕円度の楕円コア型光ファ
イバに相当する偏波保持光ファイバを容易に実現できる
。また、第1クラツドの厚さの異方性を旨く設定すると
、一方の偏波を漏洩モードにして単一偏波光ファイバと
することが可能である。
しかも、従来の応力付与型偏波保持光ファイバで用いら
れているような高価なり203添加石英の応力付与部を
必要としないので、安価に作製することが可能となると
共に、B2O3の赤外吸収の影響がないことから、1.
3μm以上の波長で低損失な光ファイバを得ることがで
きる。
また、本発明の製造方法によれば、本発明の偏波保持光
ファイバを容易に製造することができる。[However, t is sufficiently smaller than x compared to the diameter d of the core 8.9, and t is sufficiently large. Here, consider the refractive index distribution along the x and y axes passing through the center of the polarization-maintaining optical fiber o. FIG. 4(A) shows the refractive index distribution in the X-axis direction, and FIG. 4(B) shows the refractive index distribution in the y-axis direction. Two cores 8.9 having a high refractive index are continuous in the X-axis direction, and are surrounded by a second cladding 7 having an intermediate refractive index via a thin first cladding 6 having a low refractive index. On the other hand, y
Since the first clad 6 is thick between the core 8.9 and the second clad 7 in the axial direction, the structure is similar to that of a fiber tip conventionally called a WF or depressed clad type. Since the polarization-maintaining optical fiber 0 has such a refractive index distribution, the propagating optical energy is as shown by the broken line 11.12 in Fig. 4.
As shown in , it is distributed in a spindle shape near the fiber center. Therefore, the waveguide formed by the polarization-maintaining optical fiber 0 has a high average refractive index in the X polarization mode, and a low average refractive index in the Y polarization mode. As a result, there is a difference in the refractive index corresponding to both polarization components, resulting in birefringence. That is, the propagation constant β in the X direction and the propagation constant β in the y direction no longer match, and both polarization modes cannot be combined and are propagated without mutual interference. Such anisotropy in the x, y directions is caused not only by the anisotropy caused by arranging the two cores in parallel, but also by making the thickness of the portion where the refractive index of the first cladding 6 falls different in the x and y directions. It is further expanded by the fact that Here, the effect of arranging two cores in parallel will be considered in relation to a conventional elliptical core type optical fiber. For this purpose, if we define a conventional elliptical core optical fiber, which corresponds to the optical fiber of this example, as an optical fiber in which the second moments of the refractive index of the core in the x and y directions are equal, the length of the long sleeve of this elliptical core is The length 2a and the short axis length 2b are eq eq. Therefore, for example, if the polarization-maintaining optical fiber of this example is DMW, this polarization-maintaining optical fiber is
It can be said that it corresponds to an elliptical core polarization maintaining optical fiber of (b/a)-0.24 eq. By adjusting the distance between the two cores, it is possible to easily obtain an optical fiber equivalent to an elliptical core polarization maintaining optical fiber with a large ellipticity. Now, the polarization maintaining optical fiber 10 of this example is manufactured as follows. First, a glass rod corresponding to the first cladding '6 is prepared, and a hole t is drilled along the axial direction in a portion corresponding to the position of the core 8.9. Next, a core material glass rod is inserted into the hole, and the entire structure is melted and integrated. Thereafter, a glass material corresponding to the second cladding 7 is added to the periphery to obtain a preform, and the preform is drawn to form a polarization-maintaining optical fiber. As for the materials of the core 8.9, the first cladding 6, and the second cladding 7, as a combination that satisfies the relationship n > rl 3 > n 2, the core 8.9 is mainly made of quartz doped with Ge 02, and the material is mainly made of fluorine. It is preferable to use quartz doped with for the first cladding 6 and pure quartz for the second cladding 7. In manufacturing the above-mentioned preform, after the part corresponding to the first clad 6 and the part corresponding to the core 8.9 are integrated,
The outer periphery of the first cladding 6 is ground as necessary to adjust its thickness. In this embodiment, the core 8.9 is a perfect circle, and the first clad is also circular, but the present invention is not limited to this, and may have an irregular shape. For example, as shown in FIG. 3, the core 20.21 and the first cladding 22 may each have a rounded rectangular shape. Next, the polarization-maintaining optical fiber 0 of this example shown in FIG. 1 was fabricated as a prototype, and the results of characteristic tests are shown. The parameters of the prototype polarization-maintaining optical fiber are as follows. d-2,4μm wssl, 6μm Δn-0.6% (relative refractive index difference between core and second cladding)
Δn' mO, 7% Relative refractive index power of first cladding and second cladding D-7,2am (Direction of Jil cladding =
0.4μm t -2.4μm Cladding diameter - 125μm Coating diameter - 400μm (urethane/acrylate resin) In the prototype production, as mentioned above, fluorine was added to lower the refractive index by 0.7% than quartz. A hole with a diameter of 6 ml is drilled along the longitudinal direction of a quartz glass rod with a diameter of 15 fins, and into this hole is a 4.6 ml diameter glass rod with a refractive index 0.6% higher than that of quartz by adding G e O2. ■- A quartz glass rod was inserted and melted and integrated. Thereafter, the outer periphery of this glass rod is ground to a thickness of 1.
After adjusting 1, y, this glass rod is inserted into a hollow quartz vibrator, which will become the second cladding, and then stretched and melted and integrated. This stretching and rod-in melting and integration into a hollow quartz vibrator were repeated twice to finally obtain a preform with similar structural parameters to the optical fiber described above. As a result of measuring this prototype optical fiber, the transmission loss was
.. For light with wavelengths of 3 μm and 1.55 μm, the values were 0.43 dBl and 0.32 dB/3 cm, respectively. In this way, this prototype optical fiber has low loss, especially at wavelengths 1.
It was confirmed that the loss was low for light of 55 μm. The reason for such a low transmission loss is that the stress applying section made of 203-doped quartz, which has high infrared absorption and is used in stress applying type polarization maintaining optical fibers, is not used at all. In addition, the normalized birefringence of %X13' for both polarizations was 1.9xlO"-', confirming sufficient polarization-maintaining characteristics. Note that the core 8.9 of this example in FIG. The refractive index distribution within the cladding is a step type, but it may also be a distributed type.Furthermore, if the anisotropy of the first cladding in the x and y directions is appropriately selected, the effective refractive index of the y-direction polarization becomes Since the refractive index can be made equal to or less than the refractive index of the two-clad clad, in this case the y-polarized wave becomes a leaky mode and cannot be propagated over long distances.As a result, the only mode propagating through the optical fiber is the X-polarized wave. The result is a single polarization optical fiber. [Effects of the Invention] As explained above, according to the polarization maintaining optical fiber of the present invention, a plurality of cores are separated by an appropriate distance and arranged in a line, and the cores are arranged in a line with a refractive index. 2 with different first and second claddings
With an extremely simple structure of surrounding it in layers, it achieves birefringence due to the geometric anisotropy of the waveguide structure and achieves polarization maintaining effect. That is, according to the polarization-maintaining optical fiber of the present invention, it is possible to accurately and easily adjust the parameter corresponding to the ellipticity of the core in an elliptical core type optical fiber by just adjusting the core spacing etc. , it is possible to easily realize a polarization-maintaining optical fiber corresponding to an elliptical core type optical fiber with a large ellipticity, which has been difficult to manufacture in the past. Furthermore, if the anisotropy of the thickness of the first cladding is appropriately set, it is possible to make one polarized wave into a leaky mode to form a single polarized optical fiber. Furthermore, since there is no need for an expensive stress applying part made of 203-doped quartz, which is used in conventional stress applying type polarization maintaining optical fibers, it is possible to manufacture the fiber at a low cost, and the infrared absorption of B2O3 Since there is no influence of 1.
An optical fiber with low loss at wavelengths of 3 μm or more can be obtained. Further, according to the manufacturing method of the present invention, the polarization-maintaining optical fiber of the present invention can be easily manufactured.
第1図は、本発明の一実施例を示す斜視図、第2図は、
その屈折率分布図、第3図は、本発明の他の実施例を示
す横断面図、第4図及び第5図は、それぞれ従来の偏波
保持光ファイバを示す横断面図である。
6・・・第1クラツド、7・・・第2クラツド、8.9
・・・コア、10・・・偏波保持光ファイバ。
特許出願人 住友電気工業株式会社
代理人弁理士 長谷用 芳 樹間
塩 1) 辰 也実施例の屈接率分布
第2図
施
第1図
他の実施例
第3図FIG. 1 is a perspective view showing one embodiment of the present invention, and FIG. 2 is a perspective view showing an embodiment of the present invention.
In the refractive index distribution diagram, FIG. 3 is a cross-sectional view showing another embodiment of the present invention, and FIGS. 4 and 5 are cross-sectional views showing conventional polarization-maintaining optical fibers, respectively. 6...1st cladding, 7...2nd cladding, 8.9
...Core, 10...Polarization-maintaining optical fiber. Patent applicant: Sumitomo Electric Industries, Ltd. Representative patent attorney Yoshiki Hase
Salt 1) Refractive index distribution of Tatsuya Example Figure 2 Figure 1 Other Examples Figure 3
Claims (1)
イバにおいて、その横断面形状が、一方向に配列した複
数のコアと、これらのコアを共通に取り囲み屈折率がこ
れらのコアよりも低い第1のクラッドと、この第1のク
ラッドを取り囲み屈折率が前記コアの屈折率と前記第1
のクラッドの屈折率の中間の値である第2のクラッドと
で構成されていることを特徴とする偏波保持光ファイバ
。 2、コアと第1のクラッドの外周部との間隔が、コアの
配列方向では十分小さく、これに垂直な方向では十分に
大きいことを特徴とする請求項1記載の偏波保持光ファ
イバ。 3、コアの横断面が円形であり、第1のクラッドの横断
面の外周が円形であることを特徴とする請求項1記載の
偏波保持光ファイバ。 4、円筒状のガラスロッドの軸方向に複数の穴を開ける
工程と、 前記複数の穴の中に屈折率が前記ガラスロッドよりも高
いガラス棒を挿入して溶融一体化する工程と、 前記ガラス棒が挿入され溶融一体化された前記ガラスロ
ッドの周囲に屈折率が前記ガラス棒よりも低く前記ガラ
スロッドよりも高いガラスを付加してプリフォームを得
る工程と、前記プリフォームを線引きする工程と を有する偏波保持光ファイバの製造方法。 5、ガラスロッドが主として弗素を添加した石英ガラス
であり、前記ガラスロッドの周囲に付加されるガラスが
純石英ガラスであり、前記ガラスロッド中に挿入される
ガラス棒が主としてGeO_2を添加した石英ガラスで
ある請求項4記載の偏波保持光ファイバの製造方法。[Claims] 1. In a polarization-maintaining optical fiber that propagates only the HE_1_1 mode, its cross-sectional shape includes a plurality of cores arranged in one direction, and a refractive index that surrounds these cores in common. a first cladding surrounding the first cladding having a refractive index lower than the refractive index of the core;
and a second cladding having a refractive index intermediate between the cladding and the second cladding. 2. The polarization-maintaining optical fiber according to claim 1, wherein the distance between the core and the outer circumference of the first cladding is sufficiently small in the direction in which the cores are arranged and sufficiently large in the direction perpendicular thereto. 3. The polarization-maintaining optical fiber according to claim 1, wherein the core has a circular cross section, and the first cladding has a circular cross section. 4. Drilling a plurality of holes in the axial direction of a cylindrical glass rod; inserting a glass rod with a higher refractive index than the glass rod into the plurality of holes and melting and integrating the glass; A step of obtaining a preform by adding glass having a refractive index lower than that of the glass rod and higher than that of the glass rod around the glass rod into which the rod is inserted and melted and integrated; and a step of drawing the preform. A method of manufacturing a polarization-maintaining optical fiber having the following. 5. The glass rod is mainly fluorine-doped quartz glass, the glass added around the glass rod is pure silica glass, and the glass rod inserted into the glass rod is mainly GeO_2-doped quartz glass. The method for manufacturing a polarization-maintaining optical fiber according to claim 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63176354A JPH0225806A (en) | 1988-07-15 | 1988-07-15 | Polarization maintaining optical fiber and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63176354A JPH0225806A (en) | 1988-07-15 | 1988-07-15 | Polarization maintaining optical fiber and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0225806A true JPH0225806A (en) | 1990-01-29 |
Family
ID=16012140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63176354A Pending JPH0225806A (en) | 1988-07-15 | 1988-07-15 | Polarization maintaining optical fiber and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0225806A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0637762A1 (en) * | 1993-02-25 | 1995-02-08 | Fujikura Ltd. | Polarized wave holding optical fiber, production method therefor, connection method therefor, optical amplifier, laser oscillator and polarized wave holding optical fiber coupler |
US5993719A (en) * | 1994-09-08 | 1999-11-30 | Idemitsu Petrochemical Co., Ltd. | Method of producing a laminated molding |
US6572808B1 (en) | 1998-12-17 | 2003-06-03 | Idemitsu Petrochemical Co., Ltd. | Method for producing a molded laminate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5921537A (en) * | 1982-07-29 | 1984-02-03 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of single polarization type optical fiber |
JPS59137330A (en) * | 1983-01-20 | 1984-08-07 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of optical fiber sustaining polarization |
JPS61174135A (en) * | 1985-01-29 | 1986-08-05 | Sumitomo Electric Ind Ltd | Production of constant polarization fiber |
JPS61200509A (en) * | 1985-03-01 | 1986-09-05 | Sumitomo Electric Ind Ltd | Constant polarization fiber with absolute single polarization band |
-
1988
- 1988-07-15 JP JP63176354A patent/JPH0225806A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5921537A (en) * | 1982-07-29 | 1984-02-03 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of single polarization type optical fiber |
JPS59137330A (en) * | 1983-01-20 | 1984-08-07 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of optical fiber sustaining polarization |
JPS61174135A (en) * | 1985-01-29 | 1986-08-05 | Sumitomo Electric Ind Ltd | Production of constant polarization fiber |
JPS61200509A (en) * | 1985-03-01 | 1986-09-05 | Sumitomo Electric Ind Ltd | Constant polarization fiber with absolute single polarization band |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0637762A1 (en) * | 1993-02-25 | 1995-02-08 | Fujikura Ltd. | Polarized wave holding optical fiber, production method therefor, connection method therefor, optical amplifier, laser oscillator and polarized wave holding optical fiber coupler |
EP0637762A4 (en) * | 1993-02-25 | 1995-07-05 | Fujikura Ltd | Polarized wave holding optical fiber, production method therefor, connection method therefor, optical amplifier, laser oscillator and polarized wave holding optical fiber coupler. |
US5993719A (en) * | 1994-09-08 | 1999-11-30 | Idemitsu Petrochemical Co., Ltd. | Method of producing a laminated molding |
US6572808B1 (en) | 1998-12-17 | 2003-06-03 | Idemitsu Petrochemical Co., Ltd. | Method for producing a molded laminate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1320372C (en) | Non-adiabatically-tapered connector | |
JPH06235841A (en) | Manufacture of 1xn achromatic coupler, fiber optic coupler and 1xn fiber optic coupler | |
CN102103228B (en) | Double waveguide parallel polarization maintaining fiber and manufacturing method thereof | |
JPH0225806A (en) | Polarization maintaining optical fiber and manufacture thereof | |
JPS60154215A (en) | Fiber type directional coupler | |
Zheng et al. | Novel torsion sensor based on the interaction between modal interference and polarization interference | |
JP3875567B2 (en) | Polarization-maintaining photonic crystal fiber | |
JPH0627010B2 (en) | Method of manufacturing polarization-maintaining optical fiber | |
CN104678487A (en) | Gas-clad polarization-maintaining optical fiber | |
JPH0316929A (en) | Production of polarization-keeping optical fiber | |
JPS60242406A (en) | Single polarization optical fiber | |
JPS58110439A (en) | Manufacture of constant polarization type optical fiber | |
JPS62148333A (en) | Preparation of constant polarization optical fiber | |
JPH01279211A (en) | Polarized wave maintaining optical fiber | |
JPH04107511A (en) | Production of polarization maintaining optical fiber coupler | |
JPH0223306A (en) | Polarization maintaining optical fiber | |
JPWO2022172910A5 (en) | ||
JPH0350505A (en) | Single polarization optical fiber | |
JPS60246239A (en) | Manufacture of polarization stabilized optical fiber | |
JPH0439605A (en) | Elliptic core type polarization plane maintaining optical fiber and optical fiber polarizer | |
JPS63206710A (en) | Absolute single polarization optical fiber and its production | |
JPH01222208A (en) | Polarization maintaining optical fiber and fiber base material for producing said fiber | |
JP2827231B2 (en) | Manufacturing method of polarization maintaining optical fiber coupler | |
JPS63159230A (en) | Production of optical fiber preform having preserved plane of polarization | |
JPH06242336A (en) | Optical fiber |