JPH0350505A - Single polarization optical fiber - Google Patents

Single polarization optical fiber

Info

Publication number
JPH0350505A
JPH0350505A JP1184719A JP18471989A JPH0350505A JP H0350505 A JPH0350505 A JP H0350505A JP 1184719 A JP1184719 A JP 1184719A JP 18471989 A JP18471989 A JP 18471989A JP H0350505 A JPH0350505 A JP H0350505A
Authority
JP
Japan
Prior art keywords
core
refractive index
cladding
optical fiber
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1184719A
Other languages
Japanese (ja)
Inventor
Yuji Kubo
祐二 久保
Hiroshi Suganuma
寛 菅沼
Shigeru Tanaka
茂 田中
Yutaka Sasaki
豊 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1184719A priority Critical patent/JPH0350505A/en
Publication of JPH0350505A publication Critical patent/JPH0350505A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To propagate light in one of two orthogonal polarization modes by equalizing the refractive index of strain inducing parts, which face each other in a 2nd clad across a core at right angles to the axis, to the refractive index of the 2nd clad. CONSTITUTION:The core 11 of the part of a radius (a) from the center has a refractive index n0 and the 1st clad 12 of the outside part of a radius (b) has a refractive index n1 smaller than n0. Further, the 2nd clad 13 and the strain inducing parts 14a and 14b provided in the 2nd clad have the refracting index n2, which is between n0 and n1. Then the single-mode fiber in double-clad structure is provided with the strain inducing parts 14a and 14b to give the core 11 high birefringence, and then light in one of two orthogonal polarization modes is propagated while its propagation constant becomes larger than that of the clad. Consequently, the optical fiber can be manufactured so that the wavelength range where only the single-polarization mode is propagated is as designed.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は、光ファイバ応用計測器やコヒーレント光伝送
方式等で要求される傷波を、その特性を保持したまま伝
送させる傷波保持ファイバであって、特に単一傷波面の
みが伝搬される波長帯を有する単一傷波光ファイバに関
する。
[Detailed description of the invention] Industrial application field> The present invention is a damaged wave-maintaining fiber that transmits damaged waves required for optical fiber applied measuring instruments, coherent optical transmission systems, etc. while maintaining its characteristics. In particular, the present invention relates to a single-fault optical fiber having a wavelength band in which only a single-fault wavefront is propagated.

く従来の技術〉 光通信技術の進展に伴い、現在、種々の装置に光ファイ
バが使用されている。その中で、各種通信装置に用いら
れている光m積回路(光IC)では、光ファイバからの
出力が指定された方向の直線傷波であることが前提とさ
れ、また、各種の測定装置では、光ファイバを伝搬する
光が直I4I傷波であることが要求されていろ。そこで
、傷波面を保持したまま直!S傷波を伝搬させろ偏波保
持光ファイバが開発されていろ。
2. Description of the Related Art With the advancement of optical communication technology, optical fibers are currently being used in various devices. Among these, optical ICs used in various communication devices assume that the output from the optical fiber is a linear damaged wave in a specified direction, and various measurement devices Then, the light propagating through the optical fiber is required to be a direct I4I damaged wave. Therefore, fix it while preserving the damaged wave surface! Polarization-maintaining optical fibers should be developed to propagate S-scarred waves.

第5図及び第6図には、乙の偏波保持光ファイバの従来
の例を示してあり、第5図及び第6図はそれぞれ楕円コ
アファイバ50及び非軸対称応力付与型ファイバ60の
断面を示す。
5 and 6 show conventional examples of polarization maintaining optical fibers, and FIGS. 5 and 6 show cross sections of an elliptical core fiber 50 and a non-axisymmetric stress-applying fiber 60, respectively. shows.

第5図に示すように楕円コアファイバ50では、コア5
1の断面が楕円形をしており、電界が長軸に平行(X軸
方向)な場合と、垂直(y軸方向)な場合とで伝の定数
が異なり、これら2方向の間の複屈折率Bは、 Boc(楕円偏平率)×(比屈折率Δ)2という関係を
有する。但し、比屈折率Δはコア51の屈折率n1及び
クラッド52の屈折率n2により、 の式で表わされる。
As shown in FIG. 5, in the elliptical core fiber 50, the core 5
1 has an elliptical cross section, and the electric field constant differs depending on whether the electric field is parallel to the long axis (X-axis direction) or perpendicular to the long axis (Y-axis direction), and birefringence between these two directions. The index B has the following relationship: Boc (elliptic oblateness)×(relative refractive index Δ)2. However, the relative refractive index Δ is expressed by the following formula using the refractive index n1 of the core 51 and the refractive index n2 of the cladding 52.

したがって、楕円コアファイバ50では、コア51とク
ラツド52との屈折率n,,n2並びにコア51の楕円
偏平率を操作するととにより、高い複屈折率Bを得てx
,y2方向の直交傷波に複屈折性を与え、これらのエネ
ルギー結合を抑制することができろ。
Therefore, in the elliptical core fiber 50, by manipulating the refractive indexes n, , n2 of the core 51 and the cladding 52 as well as the elliptic oblateness of the core 51, a high birefringence B can be obtained x
, it is possible to give birefringence to the orthogonal scratch waves in the y2 direction and suppress their energy coupling.

一方、第6図に示す非軸対称応力付与型ファイバ60で
は、コア61の断面は円形であるが、クラッド62中に
設けた一対の応力付与部材63によってコア61に一方
向(X軸方向)の応力が加えられており、これによって
コア61の内部に歪が生じて本来は等方性の物体であっ
たコア61が異方性となり、上記楕円コアファイバ50
のコア51と同様に高い複屈折率を得るものである。
On the other hand, in the non-axisymmetric stress-applying fiber 60 shown in FIG. stress is applied, and this causes strain inside the core 61, causing the core 61, which was originally an isotropic object, to become anisotropic, causing the elliptical core fiber 50 to become anisotropic.
Similar to the core 51 of , a high birefringence is obtained.

乙のように従来の偏波保持ファイバは、縮退している2
つの直交傷波モードHE,L”及びHE1iFに対して
複屈折性を与え、これらのモード間のエネルギー結合を
抑制することにより、唯一つの傷波面を保存するもので
あり、一般に複屈折ファイバと呼ばれている。
Conventional polarization-maintaining fibers, as shown in Part B, have degenerate 2
By imparting birefringence to the two orthogonal flawed wave modes HE,L'' and HE1iF and suppressing the energy coupling between these modes, a single flawed wavefront is preserved, and it is generally called a birefringent fiber. It is.

く発明が解決しようとする課題〉 しかし、前述したような従来の複屈折率ファイバでは所
定の偏波が保存されると共に、この偏波とは直交する偏
波が速度,損失等で異なる状態ではあるが同時に伝搬さ
れる。したがって、かかる複屈折率ファイバを例えば測
定装置として適用するには、不必要な直交偏波成分を除
去して所定の偏波成分のみを抽出するための検光子等が
必要となるという問題がある。
Problems to be Solved by the Invention> However, in the conventional birefringent fiber as described above, a predetermined polarization is preserved, and if the polarization orthogonal to this polarization differs due to speed, loss, etc. However, they are propagated at the same time. Therefore, in order to apply such a birefringence fiber as a measurement device, for example, there is a problem that an analyzer or the like is required to remove unnecessary orthogonal polarization components and extract only a predetermined polarization component. .

本発明はこのような事情に鑑み、受光側に検光子などの
所定偏波抽出手段を必要としないように、直交する2つ
の偏波モードのうち一方の偏波モードのみを伝搬させろ
単一個波光ファイバを提供することを目的とする。
In view of these circumstances, the present invention provides a single individual wave light that propagates only one polarization mode out of two orthogonal polarization modes so that a predetermined polarization extraction means such as an analyzer is not required on the light receiving side. The purpose is to provide fiber.

く課題を解決するための手段〉 前記目的を達成する本発明にかかる単一偏波光ファイバ
は、コアと、このコアの外周に形成されて当該コアより
も低屈折率の第1クラッドと、この第1クラッドの外側
に形成されて当該第1クラッドよりも高屈折率であり且
つ前記コアの中心部よりも低屈折率であろ第2クラッド
とを備える光ファイバであって、前記第2クラッド中に
前記コアを軸と直交する方向に挾んで対向して配置され
当該コアに複屈折を与える応力付与部を有し、少なくと
もこの応力付与部と前記第2クラッドとの屈折率を一致
させたことを特徴とする。
Means for Solving the Problems> A single polarization optical fiber according to the present invention that achieves the above object includes a core, a first cladding formed around the outer periphery of the core and having a lower refractive index than the core, and a first cladding having a refractive index lower than that of the core. and a second cladding formed outside the first cladding and having a higher refractive index than the first cladding and a lower refractive index than the center of the core, the optical fiber comprising: a second cladding formed outside the first cladding and having a refractive index lower than the center of the core; has a stress applying part which is arranged to sandwich the core in a direction perpendicular to the axis and face each other and gives birefringence to the core, and at least the stress applying part and the second cladding have the same refractive index. It is characterized by

上記構成を有する単一傷波保持光ファイバの一例の断面
及び屈折率分布を第1図及び第2図に示す。両図に示す
ようもと、中心から半径aの部分のコア11はn0の屈
折率を有し、その外側半径bまでの部分の第1クラッド
12はn0より小さいn,の屈折率を有し、さらにその
外側の第2クラッド13及びこの第2クラッド13の中
に設けられた応力付与部14a,14bはn2の屈折率
を有しており、n2はn0とn1の間の値となっている
The cross section and refractive index distribution of an example of a single-flaw-maintaining optical fiber having the above configuration are shown in FIGS. 1 and 2. As shown in both figures, the core 11 at the radius a from the center has a refractive index of n0, and the first cladding 12 at the outer radius b has a refractive index of n, which is smaller than n0. , and the second cladding 13 on the outside thereof and the stress applying parts 14a and 14b provided in the second cladding 13 have a refractive index of n2, and n2 is a value between n0 and n1. There is.

乙のような屈折率分布を有する二重クラッド構造の単一
モードファイバでは、コア11中の電磁界エネルギーが
内側の第1クラッド12及び外側の第2クラッド13に
漏れやすく、コア11と第1クラッド12との外径比a
/b並びにコア11.第1クラッド12及び第2クラッ
ド13の屈折率n,, n2, n3間の比屈折率差に
より決まる波長においては、H E,,モードも漏れモ
ードになり、カットオフ状態となる。
In a single mode fiber with a double cladding structure having a refractive index distribution as shown in FIG. Outer diameter ratio a to cladding 12
/b and core 11. At the wavelength determined by the relative refractive index difference between the refractive indexes n, , n2, and n3 of the first cladding 12 and the second cladding 13, the HE mode also becomes a leaky mode and enters a cutoff state.

そして、かかる二重クラッド構造の単一モードファイバ
に応力付与部14a,14bを設けてコア11に高い複
屈折性を持たせろと、直交する2つの個波モード、すな
わちH E,,モードとHE  Yモードとのうち、−
4の傷波モードはその伝搬定数がクラッドの伝搬定数よ
りも大きくなり伝搬可能であるが、他方の偏波モードは
その伝搬定数がクラッドの伝搬定数よりも小さいか等し
くなってカットオフ状態となるような波長域が存在する
ようになる。つまり、この波長域が単一掃波領域となる
Then, in order to provide stress applying parts 14a and 14b to the single mode fiber with such a double clad structure, and to give the core 11 high birefringence, two orthogonal single wave modes, ie, H E, mode and HE mode, were proposed. Among Y mode, −
The propagation constant of the 4 damaged wave mode is larger than the propagation constant of the cladding and can be propagated, but the propagation constant of the other polarization mode becomes smaller than or equal to the propagation constant of the cladding and is in a cut-off state. There will now be such a wavelength range. In other words, this wavelength range becomes a single sweep wave range.

また、カットオフ波長は、クラッド部の屈折率分布に大
きく左右され、クラッド部に屈?率の段差等があると実
際のファイバのカットオフ波長が設計と異なることがあ
るが、本発明では第2クラッド13と応力付与部14a
,14bとの屈折率を一致させているので、設計通りの
製造が可能となる。
In addition, the cutoff wavelength is greatly influenced by the refractive index distribution of the cladding, and the cutoff wavelength depends on the refractive index distribution of the cladding. If there is a difference in ratio, etc., the cutoff wavelength of the actual fiber may differ from the design, but in the present invention, the second cladding 13 and the stress applying part 14a
, 14b, the refractive index is matched with that of the refractive index, so that manufacturing as designed is possible.

なお、本発明では、コア11の屈折率n0と応力付与部
14a,14bの屈折率n2とはできろたけ近づけtこ
方が望ましいが、コア11の材料に純枠石英又は徴料の
添加物を加えて屈折率を下げろことにより製造が容易と
なる。
In the present invention, it is desirable that the refractive index n0 of the core 11 and the refractive index n2 of the stress-applying parts 14a and 14b be as close as possible. Manufacturing becomes easier by adding a lower refractive index.

く実 施 例〉 第1図に示す構成と同様の単一個波光ファイバを製造し
た。
Example: A single wave optical fiber having the same configuration as shown in FIG. 1 was manufactured.

本実施例では、コア11を屈折率1.458の純SI0
2ガラス、このコア11の内包する第1クラッド12を
屈折率1.447のS i O2− Fガラス、第1ク
ラッド12を内包する第2クラッド13を屈折率1.4
51のSiO■−Fガラス、コア11を挾んで軸に直交
する方向両側に設けられた応力付与部14a, 14b
jtSin2−B,O,,ガラスで構成した。
In this example, the core 11 is a pure SI0 with a refractive index of 1.458.
2 glass, the first cladding 12 included in this core 11 is made of SiO2-F glass with a refractive index of 1.447, and the second cladding 13 containing the first cladding 12 is made of SiO2-F glass with a refractive index of 1.4.
51 SiO■-F glass, stress applying portions 14a, 14b provided on both sides of the core 11 in the direction orthogonal to the axis.
It was constructed from jtSin2-B, O, glass.

かかる単一偏波光ファイバを製造するには、第3図(a
lに示すように、まず、屈折率1,458,直径1。6
間の純Sin2ガラスN31,屈折率1.447,直径
4.8mmのS i O2− Fガラス層32,屈折率
1.451,直径40+wのSiO。一FガラスI?!
33からなるガラスロッド30をVAD法で形成する。
To manufacture such a single polarization optical fiber, the method shown in FIG.
As shown in l, first, the refractive index is 1,458 and the diameter is 1.6.
In between is pure Sin2 glass N31, a SiO2-F glass layer 32 with a refractive index of 1.447 and a diameter of 4.8 mm, and a SiO glass layer with a refractive index of 1.451 and a diameter of 40+w. 1st floor glass I? !
A glass rod 30 consisting of 33 is formed by a VAD method.

そして、第3図(blに示すように、ガラスロッド30
に、その断面において直径上で中心から9.4mの距離
の2点A,Bをそれぞれ中心とする直径11胴の孔35
a , 35bを形成する。次いで、第3図(clに示
すように、これら孔35a,35bの両面を火炎研磨し
、さらに10%濃度の硫酸液に30分間漬けて洗浄した
後、これら孔35a , 35bに、15重五%のB2
03を含む直径10間のS i O2− B20,ガラ
スロッド34a,34bをそれぞれ挿入して光ファイバ
用母材とする。そして、この母材をカーボン抵抗炉を用
いて謳度約2000℃,線引速度約30m/分で外径″
i25μmに線引することにより、コア径が5μmの偏
波保持ファイバを得た。
Then, as shown in FIG. 3 (bl), the glass rod 30
In the cross section, a hole 35 with a diameter of 11 mm is centered at two points A and B at a distance of 9.4 m from the center on the diameter.
a, forming 35b. Next, as shown in FIG. 3 (cl), both sides of these holes 35a and 35b were flame polished, and after cleaning by immersing them in a 10% sulfuric acid solution for 30 minutes, these holes 35a and 35b were polished with 15 layers of %B2
A glass rod 34a, 34b with a diameter of 10 mm including S.sub.iO2-B20 and glass rods 34a and 34b are respectively inserted to form an optical fiber base material. Then, this base material was drawn using a carbon resistance furnace at a temperature of about 2,000°C and a drawing speed of about 30 m/min.
A polarization-maintaining fiber with a core diameter of 5 μm was obtained by drawing to i25 μm.

このようにして作成された偏波保持ファイバは、波長1
.3μmに対する複屈折率Bが5 X 1 0−’であ
り、波長1,55μmに対するHE,,x%−ドの漏れ
損失が1. 0 dB/km pH E,,yモードの
漏れ損失が25.0dB/kmであった。
The polarization maintaining fiber created in this way has a wavelength of 1
.. The birefringence B for 3 μm is 5×10−′, and the leakage loss of HE,, x%− for a wavelength of 1.55 μm is 1. 0 dB/km pH E, y-mode leakage loss was 25.0 dB/km.

そして、この偏波保持ファイバは、第4図に示すような
損失波長特性を有している。
This polarization maintaining fiber has a loss wavelength characteristic as shown in FIG.

このように、本実施例の傷波保持ファイバは、HE,,
Yモードの漏れ損失がHE,,”モードに比べて明らか
に大きく、単一傷波光ファイバであることが判かろ。
In this way, the damaged wave-maintaining fiber of this example is HE,...
It can be seen that the leakage loss of the Y mode is clearly larger than that of the HE mode, indicating that it is a single-damaged optical fiber.

く発明の効果〉 以上説明したように、本発明にかかる単一偏波光ファイ
バは、H E”,,モードとHE’,,モードの何れか
一方がカットオフ状態となる波長域を有し、この波長域
において唯一の偏波モードのみを伝搬することができる
ので例えばファイバセンサに適用されると非常に感度を
高め、さらに受光側に検光子などの所定傷波抽出手段が
不必要となり、計測,光通信などの分野で非常に有用で
ある。
Effects of the Invention> As explained above, the single polarization optical fiber according to the present invention has a wavelength range in which either the HE'' mode or the HE' mode is in a cut-off state, Since only one polarization mode can be propagated in this wavelength range, when applied to a fiber sensor, for example, the sensitivity is greatly increased, and furthermore, a predetermined means for extracting flawed waves such as an analyzer on the light receiving side is unnecessary, and measurement is possible. , very useful in fields such as optical communications.

また、本発明の単一傷波光ファイバでは、第2クラッド
内に設けた応力付与部と第2クラッドとの屈折率を一致
させることにより、単一掃波モードのみが伝搬する波長
域を設計通りに製造することが可能となる。
In addition, in the single-flaw optical fiber of the present invention, by matching the refractive index of the stress applying part provided in the second cladding with the second cladding, the wavelength range in which only the single-swept wave mode propagates can be adjusted as designed. It becomes possible to manufacture.

【図面の簡単な説明】[Brief explanation of drawings]

第lrI!Jは本発明にかかる単一備波光ファイバの一
例を示す断面図、第2図はその屈折率分布図、第3図(
al〜{e)は実施例にかかる単一偏波光ファイバの製
造工程を示す説明図、第4図は実施例にかかる単一傷波
光ファイバの損失波長特性を示すグラフ、第5図及び第
6図はそれぞれ従来技術にかかる偏波保持ファイバを示
す断面図である。 図面中、 11はコア、 12は第1クラッド、 13は第2クラッド、 14m,14bば応力付与部、 31は純Sin2ガラス層、 32はSiO2−Fガラス層、 33はS i O2− Fガラス層、 34 a,34 bはS i O2−B20,ガラスロ
ッ35a,35bは孔である。 ド、
No.lrI! J is a cross-sectional view showing an example of a single wave optical fiber according to the present invention, FIG. 2 is its refractive index distribution diagram, and FIG.
al to {e) are explanatory diagrams showing the manufacturing process of the single-polarized optical fiber according to the example, FIG. 4 is a graph showing the loss wavelength characteristics of the single-polarization optical fiber according to the example, and FIGS. 5 and 6 Each figure is a sectional view showing a polarization maintaining fiber according to the prior art. In the drawings, 11 is a core, 12 is a first cladding, 13 is a second cladding, 14m and 14b are stress applying parts, 31 is a pure Si2 glass layer, 32 is a SiO2-F glass layer, and 33 is a SiO2-F glass. The layers 34a and 34b are SiO2-B20, and the glass rods 35a and 35b are holes. Do,

Claims (2)

【特許請求の範囲】[Claims] (1)コアと、このコアの外周に形成されて当該コアよ
りも低屈折率の第1クラッドと、この第1クラッドの外
側に形成されて当該第1クラッドよりも高屈折率であり
且つ前記コアの中心部よりも低屈折率である第2クラッ
ドとを備える光ファイバであつて、 前記第2クラッド中に前記コアを軸と直交する方向に挾
んで対向して配置され当該コアに複屈折を与える応力付
与部を有し、少なくともこの応力付与部と前記第2クラ
ッドとの屈折率を一致させたことを特徴とする単一偏波
光ファイバ。
(1) a core, a first cladding formed on the outer periphery of the core and having a lower refractive index than the core, and a first cladding formed outside the first cladding and having a higher refractive index than the first cladding; An optical fiber comprising a second cladding having a lower refractive index than a central portion of the core, the core being disposed in the second cladding so as to sandwich the core in a direction perpendicular to the axis and facing each other, and having birefringence in the core. What is claimed is: 1. A single-polarized optical fiber comprising a stress-applying portion that provides a stress-applying portion, and at least the stress-applying portion and the second cladding have the same refractive index.
(2)コアの材料は、添加物を含まない純粋石英又は屈
折率を小さくする作用を有する添加物を添加した石英で
ある請求項1記載の単一偏波光ファイバ。
(2) The single polarization optical fiber according to claim 1, wherein the material of the core is pure quartz containing no additives or quartz added with an additive having the effect of reducing the refractive index.
JP1184719A 1989-07-19 1989-07-19 Single polarization optical fiber Pending JPH0350505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1184719A JPH0350505A (en) 1989-07-19 1989-07-19 Single polarization optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1184719A JPH0350505A (en) 1989-07-19 1989-07-19 Single polarization optical fiber

Publications (1)

Publication Number Publication Date
JPH0350505A true JPH0350505A (en) 1991-03-05

Family

ID=16158170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1184719A Pending JPH0350505A (en) 1989-07-19 1989-07-19 Single polarization optical fiber

Country Status (1)

Country Link
JP (1) JPH0350505A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5829768A (en) * 1995-04-28 1998-11-03 Toyota Jidosha Kabushiki Kaisha Arm and process for forging the same
WO2001002904A1 (en) * 1999-06-30 2001-01-11 The Furukawa Electric Co., Ltd. Optical fiber
KR20060108179A (en) * 2005-04-12 2006-10-17 현대자동차주식회사 Radius rod structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5829768A (en) * 1995-04-28 1998-11-03 Toyota Jidosha Kabushiki Kaisha Arm and process for forging the same
WO2001002904A1 (en) * 1999-06-30 2001-01-11 The Furukawa Electric Co., Ltd. Optical fiber
KR20060108179A (en) * 2005-04-12 2006-10-17 현대자동차주식회사 Radius rod structure

Similar Documents

Publication Publication Date Title
Kaminow Polarization in optical fibers
KR0172600B1 (en) Single-mode, single polarization optical fiber
EP0319319B1 (en) Single-polarization optical fiber
EP1486804B1 (en) Polarization preserving optical fiber
JP2007536578A (en) Solid single polarization fiber and equipment
AU774273B2 (en) Polarization-maintaining optical fiber and polarization- maintaining optical fiber component
JPH0350505A (en) Single polarization optical fiber
JPS61200509A (en) Constant polarization fiber with absolute single polarization band
JPS59164505A (en) Single-polarization single-mode optical fiber
JPS636507A (en) Optical fiber with constant polarized wave
JPS61267707A (en) Side tunnel type constant polarization optical fiber
JP2828276B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JPH02187706A (en) Single polarization optical fiber
JPH03206405A (en) Absolute single polarization fiber
JPH0350506A (en) Absolute single-polarization optical fiber
JPS59139005A (en) Fiber for maintaining linearly polarized light
WO2022172910A1 (en) Polarization maintaining optical fiber and polarization maintaining optical fiber manufacturing method
JPS61228404A (en) Optical fiber for constant polarized wave
JPH0380207A (en) Absolute single polarization optical fiber
JPS6054644B2 (en) Single polarization fiber for very long wavelengths
JPH0467105A (en) Polarization maintaining optical fiber
JPS62276510A (en) Stress imparting type polarized wave maintaining optical fiber
JP2003084160A (en) Polarization maintaining optical fiber
JPH04119938A (en) Production of absolute single polarization fiber
JPS59135402A (en) Single polarization optical fiber