JPH0467105A - Polarization maintaining optical fiber - Google Patents

Polarization maintaining optical fiber

Info

Publication number
JPH0467105A
JPH0467105A JP2179588A JP17958890A JPH0467105A JP H0467105 A JPH0467105 A JP H0467105A JP 2179588 A JP2179588 A JP 2179588A JP 17958890 A JP17958890 A JP 17958890A JP H0467105 A JPH0467105 A JP H0467105A
Authority
JP
Japan
Prior art keywords
core
optical fiber
softening point
clad
maintaining optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2179588A
Other languages
Japanese (ja)
Inventor
Katsusuke Tajima
克介 田嶋
Masaharu Ohashi
正治 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2179588A priority Critical patent/JPH0467105A/en
Publication of JPH0467105A publication Critical patent/JPH0467105A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the optical fiber which can be easily produced, can be reduced in cost and mass produced and has small crosstalks by constituting the fiber of a core having an elliptic sectional shape and a clad enclosing the core and lowering the softening point temp. of the clad lower than the softening point temp. of the core. CONSTITUTION:This optical fiber consists of the core 11 having the elliptic sectional shape and the clad 12 enclosing the core. The softening point temp. of the clad 12 is set lower than the softening point temp. of the core 11. Such optical fiber is formed by drawing a fiber base material consisting of the elliptic core material and the clad material. Since the softening point temp. of the core material is higher than the softening point temp. of the clad material, the axial stress remains in the core 11. Stress anisotropy is induced in the section of the optical fiber from this axial residual stress, by which the double refractive index of modes is generated. The optical fiber which can be easily produced, can be reduced in cost and mass produced and has the small crosstalks is obtd. in this way.

Description

【発明の詳細な説明】 〈産業上の利用分針〉 本発明は、コヒーレント光伝送方式用の伝送媒体、超高
速の伝送方式用の伝送媒体、m波特性を有する光回路素
子の間の結合等に必要な偏波保持光ファイバに関する。
[Detailed Description of the Invention] <Industrial Application Minute Hand> The present invention is directed to a transmission medium for a coherent optical transmission system, a transmission medium for an ultrahigh-speed transmission system, and a coupling between optical circuit elements having m-wave characteristics. The present invention relates to polarization-maintaining optical fibers required for applications such as polarization maintaining optical fibers.

〈従来の技術〉 従来より知られている偏波保持光ファイバの構造を第4
図に示す。同図に示すように、この偏波保持光ファイバ
は、コア1とクラッド2とからなり、咳コ11の両側の
該コ11と中心対象の位置に応力付与部3を有し、これ
ら応力付与部3により、コア1及びコア1近傍に応力を
与えて屈折率の異方性を持たせるものである。この構造
の偏波保持光ファイバにライては、Y、 5asaki
他によるrDe+tign andFabricati
on of Low−Loss and Low Cr
oggtalk Polarization−Main
taining 0ptical Fibers」と題
する論文(IEEELightwave techno
logy、 LT−4,No、 4.1097−110
2頁、1986年)に記載されている。
<Conventional technology> The structure of the conventionally known polarization-maintaining optical fiber is
As shown in the figure. As shown in the figure, this polarization-maintaining optical fiber consists of a core 1 and a cladding 2, and has stress-applying parts 3 on both sides of a cough 11 at positions symmetrical to the core 11, and these stress-applying parts The portion 3 applies stress to the core 1 and the vicinity of the core 1 to impart anisotropy in the refractive index. In the polarization maintaining optical fiber of this structure, Y, 5asaki
rDe+tign and Fabricati by et al.
on of Low-Loss and Low Cr
oggtalk Polarization-Main
The paper entitled “taining 0ptical fibers” (IEEE Lightwave technology
logic, LT-4, No, 4.1097-110
2, 1986).

このような偏波保持光ファイバを作製するためには、第
5図に示すように、コア材IAとクラツド材2Aとから
なるファイバ母材4に孔4aを形成し、この孔4a中に
応力付与部材3Aを挿入し、一体化した後、線引きする
必要がある。
In order to produce such a polarization-maintaining optical fiber, as shown in FIG. After inserting and integrating the applying member 3A, it is necessary to draw the wire.

〈発明が解決しようとする課題〉 前述したように第4図及び第5図に示す従来の偏波保持
光ファイバは、ファイバ母材4への穿設、研磨等の加工
が必要であり、加工費が高くなるため、光ファイバの低
価格化が開離であり、また、穿設、研磨等の加工が難し
いため、歩留りよく特性の良い偏波保持光ファイバを得
るのが難かしかった。さらに、モード複屈折率を高めて
クロストークを小すくするためには、応力付与部に熱膨
張係数の高い材料を用いる必要があるが、このように熱
膨張係数の高い材料は容易には得られないという問題も
ある。
<Problems to be Solved by the Invention> As mentioned above, the conventional polarization-maintaining optical fibers shown in FIGS. 4 and 5 require processing such as drilling and polishing into the fiber base material 4. Due to the high cost, it has been difficult to obtain a polarization-maintaining optical fiber with good characteristics at a high yield because it is difficult to cut the price of the optical fiber, and processing such as drilling and polishing is difficult. Furthermore, in order to increase the modal birefringence and reduce crosstalk, it is necessary to use a material with a high coefficient of thermal expansion for the stress applying part, but such a material with a high coefficient of thermal expansion is difficult to obtain. There is also the problem of not being able to do so.

一方、上述した応力付与部を設けないで、コアの断面形
状を楕円形とした光ファイバも偏波保持性があるとして
知られているが、全く実用に供することができるもので
はない。
On the other hand, an optical fiber whose core has an elliptical cross-sectional shape and is not provided with the above-mentioned stress applying portion is also known to have polarization-maintaining properties, but it cannot be put to practical use at all.

本発明はこのような事情に鑑み、作製が容易で低価格化
、量産化が可能で、且つり四ストークの小さい惰波保持
光ファイバを提供することを目的とする。
In view of these circumstances, it is an object of the present invention to provide an inertia wave-maintaining optical fiber that is easy to manufacture, can be manufactured at low cost, can be mass-produced, and has a small four-stoke.

く課題を解法するための手段〉 前記目的を達成する本発明に係る鵠波保持光ファイバは
、断面形状が楕円状のコアと該コアを囲むクラッドとか
らなる光ファイバであって、上記クラッドの軟化点温度
が上記コアの軟化点温度より低いことを特徴とする。
A wave-maintaining optical fiber according to the present invention that achieves the above object is an optical fiber comprising a core having an elliptical cross-sectional shape and a cladding surrounding the core. It is characterized in that its softening point temperature is lower than that of the core.

く作   用〉 断面形状が楕円状のコア材と、このコア材を囲むと共に
その軟化点温度がコア材の軟化点温度よりも低いクラツ
ド材とからなるファイバ母材を線引きすると、線引き時
にコアに張力が加わり、線引き後にはコアに軸方向応力
が残留する。これによりコアの形状の異方性が強調され
て、モード複屈折率が大きくなる。
Effect> When a fiber base material consisting of a core material with an elliptical cross-sectional shape and a clad material surrounding this core material and whose softening point temperature is lower than that of the core material is drawn, the core material is Tension is applied, and axial stress remains in the core after drawing. This emphasizes the anisotropy of the core shape and increases the mode birefringence.

く実 施 例〉 す下、本発明を実施例に基づいて説明する。Example of implementation Below, the present invention will be explained based on examples.

第1図には一実施例に係る偏波保持光ファイバの断面を
示す。同図に示すように、この偏波保持光ファイバは、
断面形状が楕円形のコ111と、これを囲むクラッド1
2とからな9、コア11の軟化点温度よりクラッド12
の軟化点温度の方が低いものである。
FIG. 1 shows a cross section of a polarization maintaining optical fiber according to one embodiment. As shown in the figure, this polarization maintaining optical fiber is
A 111 with an elliptical cross-sectional shape and a cladding 1 surrounding it
2 and Karana 9, cladding 12 from the softening point temperature of core 11
has a lower softening point temperature.

かかる偏波保持光ファイバは、楕円コア材とクラツド材
とからなるファイバ母材を線引きしたものであるが、コ
ア材の軟化点温度がクラツド材の軟化点温度より高いこ
とにより、コ111に軸方向応力が残留することになる
Such a polarization-maintaining optical fiber is made by drawing a fiber base material consisting of an elliptical core material and a cladding material. Directional stress will remain.

すなわち、第2図に示すように、コア11の断面積をA
1.クラッド12の断面積をA2゜線引き時の張力をT
とすると、クラッド12における光フアイバ軸方向応力
σ2は、σ、=T/ (A、十A、) コア11における光フアイバ軸方向応力σ、は、c1=
 cr、XA2/A。
That is, as shown in FIG. 2, the cross-sectional area of the core 11 is A.
1. The cross-sectional area of cladding 12 is A2°, and the tension when drawing is T
Then, the optical fiber axial stress σ2 in the cladding 12 is σ,=T/ (A, 10A,) The optical fiber axial stress σ, in the core 11 is c1=
cr, XA2/A.

となり、コア11の面積A1がクラッド12の面積A2
に比べて非常に小さいため、線引き後にコア11に大部
分の応力が残留することになる。そして、この軸方向残
留応力から、光フアイバ断面において応力異方性が誘起
され、モード複屈折率が生じる。
Therefore, the area A1 of the core 11 is the area A2 of the cladding 12.
Since the stress is very small compared to , most of the stress remains in the core 11 after the wire is drawn. This axial residual stress induces stress anisotropy in the cross section of the optical fiber, resulting in mode birefringence.

本発明において、コアの断面形状が楕円状とは、円形以
外のもの、っまゆ非軸対称形のものをいい、上述した楕
円形に限定されない。
In the present invention, the elliptical cross-sectional shape of the core refers to a core other than a circular shape and a non-axisymmetric shape, and is not limited to the above-mentioned elliptical shape.

なお、好ましくは楕円形のように、直交する2本の線対
称軸がある形状がよい。
Preferably, the shape has two axes of symmetry that are perpendicular to each other, such as an ellipse.

(実施例1) コア11としてS i O2、クラッド12としてF−
3iO□を用い、コア11の比屈折率差を0.3%とし
た。また、楕円形のコア11の長軸は8μm、短軸は1
.6μmとし、光ファイバの外径は125μmとした。
(Example 1) S i O2 as the core 11 and F- as the cladding 12
3iO□ was used, and the relative refractive index difference of the core 11 was set to 0.3%. The long axis of the elliptical core 11 is 8 μm, and the short axis is 1 μm.
.. The outer diameter of the optical fiber was 125 μm.

作製した偏波保持光ファイバは、光フアイバ線引き時の
張力が20gのときに、モード複屈折率が5 X 10
−’となった。また、クロストークは一30dB、損失
は0.3dB/に−となり、従来の偏波保持光ファイバ
と同程度の偏波保持特性が得られた。
The produced polarization-maintaining optical fiber has a mode birefringence of 5 x 10 when the tension at the time of drawing the optical fiber is 20 g.
-' became. Further, the crosstalk was -30 dB and the loss was -0.3 dB/-, and polarization maintaining characteristics comparable to those of conventional polarization maintaining optical fibers were obtained.

(実施例2) 楕円形のコア11の長軸を8μm、短軸を2.5μmと
した以外は実施例1と同様な条件とした。
(Example 2) The conditions were the same as in Example 1 except that the long axis of the elliptical core 11 was 8 μm and the short axis was 2.5 μm.

作製した偏波保持光ファイバは、モード複屈折率が4 
X 10−’となり、線引き張力を同じにした場合のモ
ード被屈折率が実施例1より小さい値となった。
The produced polarization-maintaining optical fiber has a mode birefringence of 4.
X 10-', and the mode refractive index was smaller than that of Example 1 when the drawing tension was the same.

(実施例3) 楕円形のコア11の長軸を8μm、短軸を4μmとした
以外は実施例1と同様な条件としたところ、モード複屈
折率は実施例2よしさらに小さい値となった。
(Example 3) When the conditions were the same as in Example 1 except that the long axis of the elliptical core 11 was 8 μm and the short axis was 4 μm, the mode birefringence was as good as Example 2 and an even smaller value. .

以上説明した実施例以外でも、例えばコア11がAj、
O,・S i O2でクラッド12がF−Si02゜コ
ア11がS i O2でクラッド12がB2O3・Si
O2゜コア11がAj203でクラッド12がB2O3
・SiO2としても、コア11の軟化点温度がクラッド
12の軟化点温度より高くなり、光フアイバ線引き後に
コア11に線引き時の張力が残留し、同様の効果が期待
できる。
In addition to the embodiments described above, for example, the core 11 is Aj,
O,・S i O2 and cladding 12 is F-Si02° Core 11 is S i O2 and cladding 12 is B2O3・Si
O2゜Core 11 is Aj203, cladding 12 is B2O3
- Even with SiO2, the softening point temperature of the core 11 is higher than the softening point temperature of the cladding 12, and the tension at the time of drawing remains in the core 11 after the optical fiber is drawn, and a similar effect can be expected.

また、上述した実施例1〜3の偏波保持光ファイバにお
けるコア11中の光フアイバ軸方向応力とモード被屈折
率との関係を第3図に示す。同図は有限要素法により応
力解析を行ったものである。
Further, FIG. 3 shows the relationship between the optical fiber axial stress in the core 11 and the mode refractive index in the polarization maintaining optical fibers of Examples 1 to 3 described above. The figure shows stress analysis performed using the finite element method.

なお、有限要素法については、K、 Okamot。Regarding the finite element method, see K. Okamot.

他(こよる、rStress Analysiffof
 Optiem!Fibers by a Finit
e Element MethocJと題する論文(I
EEE Journal of Quantum El
ectroniesQE−17,2123−2129頁
、1981年)に記載されている。
Others (Koyoru, rStress Analysis of
Optiem! Fibers by a Finit
e Element Method J (I
EEE Journal of Quantum El
electronics QE-17, pages 2123-2129, 1981).

実施例1の光ファイバでは、軸方向応力が5 kg/ 
mm’のときに6X10 ’のモード複屈折率が得られ
たが、一方、実施例2,3のように楕円率を下げると、
軸方向応力が同じ5 kg/mm’としてもモード複屈
折率は4.3 X 10−’3.3 X 10−’と小
さ(なった。実施例1〜8では線引き張力が20gの場
合の軸方向応力が5 kg / mm”程度になるため
、線引きによる残留応力により高いモード複屈折率を得
るとができる。
In the optical fiber of Example 1, the axial stress was 5 kg/
mm', a mode birefringence of 6X10' was obtained, but on the other hand, when the ellipticity was lowered as in Examples 2 and 3,
Even if the axial stress was the same at 5 kg/mm', the mode birefringence was as small as 4.3 x 10-'3.3 x 10-'.In Examples 1 to 8, when the drawing tension was 20 g, Since the axial stress is about 5 kg/mm'', a high modal birefringence can be obtained due to residual stress due to wire drawing.

このように本発明の偏波保持光ファイバは、線引き時の
張力を適当に選ぶことにより高いモード被屈折率とする
ことができる。
As described above, the polarization maintaining optical fiber of the present invention can be made to have a high mode refractive index by appropriately selecting the tension during drawing.

〈発明の効果〉 以上説明したように、本発明の偏波保持光ファイバは、
楕円状のコアとこれを囲むクラッドからなると共にクラ
ッドの軟化点温度がコアの軟化点温度より低いので、線
引き時の張力がコアに加わって残留し、これによりコア
の形状の異方性が強調されて、モード複屈折率が大きく
なる。また、本発明の偏波保持光ファイバは、従来のよ
うに応力付与部材を挿入する工程もないので、量産化、
低価格化が容易なものである。
<Effects of the Invention> As explained above, the polarization maintaining optical fiber of the present invention has the following effects:
It consists of an elliptical core and a cladding surrounding it, and the softening point temperature of the cladding is lower than that of the core, so tension remains on the core during drawing, which emphasizes the anisotropy of the core shape. As a result, the mode birefringence increases. In addition, the polarization-maintaining optical fiber of the present invention does not require the step of inserting a stress applying member unlike the conventional method, so it can be mass-produced.
It is easy to reduce the price.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例に係る偏波保持光ファイバの断面図、
第2図は本発明の偏波保持光ファイバの原理を示す説明
図、第3図はコアにおける軸方向応力とモード複屈折率
との関係を示すグラフ、第4図は従来技術に係る偏波保
持光ファイバを示す断面図、第5図はその製造工程を示
す説明図である。 図面中、 11はコア、 12はクラッドである。
FIG. 1 is a cross-sectional view of a polarization-maintaining optical fiber according to one embodiment;
Fig. 2 is an explanatory diagram showing the principle of the polarization-maintaining optical fiber of the present invention, Fig. 3 is a graph showing the relationship between axial stress in the core and mode birefringence, and Fig. 4 is a polarization diagram according to the prior art. A cross-sectional view showing the holding optical fiber, and FIG. 5 are explanatory views showing the manufacturing process thereof. In the drawing, 11 is a core, and 12 is a cladding.

Claims (2)

【特許請求の範囲】[Claims] (1)断面形状が楕円状のコアと該コアを囲むクラッド
とからなる光ファイバであって、上記クラッドの軟化点
温度が上記コアの軟化点温度より低いことを特徴とする
偏波保持光ファイバ。
(1) A polarization-maintaining optical fiber comprising a core having an elliptical cross-sectional shape and a cladding surrounding the core, wherein the softening point temperature of the cladding is lower than the softening point temperature of the core. .
(2)請求項1において、コアがSiO_2でクラッド
がF・SiO_2、コアがAl_2O_3・SiO_2
でクラッドがF・SiO_2、コアがSiO_2でクラ
ッドがB_2O_3・SiO_2、又はコアがAl_2
O_3でクラッドがB_2O_3・SiO_2であるこ
とを特徴とする偏波保持光ファイバ。
(2) In claim 1, the core is SiO_2, the cladding is F.SiO_2, and the core is Al_2O_3.SiO_2.
The cladding is F.SiO_2, the core is SiO_2 and the cladding is B_2O_3.SiO_2, or the core is Al_2.
A polarization-maintaining optical fiber characterized in that it is O_3 and its cladding is B_2O_3·SiO_2.
JP2179588A 1990-07-09 1990-07-09 Polarization maintaining optical fiber Pending JPH0467105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2179588A JPH0467105A (en) 1990-07-09 1990-07-09 Polarization maintaining optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2179588A JPH0467105A (en) 1990-07-09 1990-07-09 Polarization maintaining optical fiber

Publications (1)

Publication Number Publication Date
JPH0467105A true JPH0467105A (en) 1992-03-03

Family

ID=16068358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2179588A Pending JPH0467105A (en) 1990-07-09 1990-07-09 Polarization maintaining optical fiber

Country Status (1)

Country Link
JP (1) JPH0467105A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597847B2 (en) 2001-07-11 2003-07-22 Fujikura Ltd. Optical fiber for preserving plane of polarization
JP2007246532A (en) * 1997-10-10 2007-09-27 Pfizer Inc Prostaglandin agonist and its use for treating bone disorder
JP2011510354A (en) * 2008-01-22 2011-03-31 コーニング インコーポレイテッド Aluminum doped optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246532A (en) * 1997-10-10 2007-09-27 Pfizer Inc Prostaglandin agonist and its use for treating bone disorder
US6597847B2 (en) 2001-07-11 2003-07-22 Fujikura Ltd. Optical fiber for preserving plane of polarization
JP2011510354A (en) * 2008-01-22 2011-03-31 コーニング インコーポレイテッド Aluminum doped optical fiber

Similar Documents

Publication Publication Date Title
JPH0467105A (en) Polarization maintaining optical fiber
JPS6228098B2 (en)
JP2762571B2 (en) Manufacturing method of polarization maintaining optical fiber
JPH0685005B2 (en) Constant polarization fiber and manufacturing method thereof
JP2895758B2 (en) Polarization-maintaining optical fiber
JPH0212887B2 (en)
JP4578733B2 (en) Long-period optical fiber grating using polarization-maintaining optical fiber
JPS636507A (en) Optical fiber with constant polarized wave
JP2828276B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JPH0350505A (en) Single polarization optical fiber
JP2003084160A (en) Polarization maintaining optical fiber
JPS61228404A (en) Optical fiber for constant polarized wave
JPH01314209A (en) Constant polarization optical fiber
JPH01279211A (en) Polarized wave maintaining optical fiber
JPS62276510A (en) Stress imparting type polarized wave maintaining optical fiber
JP2001051150A (en) Manufacture of polarization retaining optical fiber coupler
JPS6283708A (en) Constant polarization optical fiber
JPS62148333A (en) Preparation of constant polarization optical fiber
JPH0225806A (en) Polarization maintaining optical fiber and manufacture thereof
JPS59135402A (en) Single polarization optical fiber
JPH0439605A (en) Elliptic core type polarization plane maintaining optical fiber and optical fiber polarizer
JP2827231B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JPH0427905A (en) Polarization keeping optical fiber
JPS5834405A (en) Polarization preserving optical fiber
JPS61279810A (en) Polarization maintaining optical fiber