JPS636507A - Optical fiber with constant polarized wave - Google Patents
Optical fiber with constant polarized waveInfo
- Publication number
- JPS636507A JPS636507A JP61149676A JP14967686A JPS636507A JP S636507 A JPS636507 A JP S636507A JP 61149676 A JP61149676 A JP 61149676A JP 14967686 A JP14967686 A JP 14967686A JP S636507 A JPS636507 A JP S636507A
- Authority
- JP
- Japan
- Prior art keywords
- core
- fiber
- glass
- stress
- polarization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims description 16
- 239000011521 glass Substances 0.000 claims abstract description 25
- 230000010287 polarization Effects 0.000 claims abstract description 24
- 238000005253 cladding Methods 0.000 claims description 14
- 239000000835 fiber Substances 0.000 abstract description 42
- 238000005452 bending Methods 0.000 abstract description 8
- 238000004804 winding Methods 0.000 abstract description 6
- 230000006866 deterioration Effects 0.000 abstract description 2
- 230000035882 stress Effects 0.000 description 17
- 230000003287 optical effect Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/105—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01211—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
- C03B37/01217—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/30—Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
- C03B2203/31—Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres by use of stress-imparting rods, e.g. by insertion
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、コヒーレント光通信用伝送路、光ファイバ・
センサ、光デバイス及び光ICの結合等に用いられる定
偏波光ファイバに関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to transmission lines for coherent optical communication, optical fibers,
The present invention relates to polarization-controlled optical fibers used for coupling sensors, optical devices, optical ICs, and the like.
光通信技術の進展に伴って、現在種々の装置に光ファイ
バが使用されている。その中で、各糧通信装置に用いら
れている光ICや光ヘテロダイン検波方式では、光ファ
イバからの出力が指定された方向の直線偏波であること
が前提とされ、また、各種の光フアイバーセンサでは、
光ファイバを伝搬する光が直線偏波であることが要求さ
れている。そこで、偏波面を保持したまま直線偏波を伝
搬させる定偏波ファイバが開発されている。With the advancement of optical communication technology, optical fibers are currently used in various devices. Among these, the optical ICs and optical heterodyne detection methods used in various communication devices assume that the output from the optical fiber is linearly polarized in a specified direction. In the sensor,
It is required that the light propagating through the optical fiber be linearly polarized. Therefore, polarization constant fibers have been developed that propagate linearly polarized waves while maintaining the plane of polarization.
従来提案されている定偏波光ファイバは、第5図に示す
構造をしている。第3図において1はコア、2はコア1
の外周にあってコア1より低屈折率であるクラッドであ
り、応力付与部3aおよび3bはクラッド2内のコア1
とは別異の位置にあり、クラッド2よシ熱膨張係数の大
きなガラスよシなっている。このため、ファイバ線引後
の冷却時に、ファイバ内には第3図中矢印にて示すよう
な異方性の熱応力が残留し、これによってコア1には複
屈折が生じる。通常シングルモードファイバでは基底モ
ード(HE、、x、 HE、、アモード)のうちの−方
のみを励振(すなわち直線偏波)しても、もう−方のモ
ードへのエネルギ結合が生じてしまい、偏波面の回転が
生ずる。しかし、複屈折を有する定偏波光ファイバでは
、HE + 、xモードとHE、、アモードの間のエネ
ルギ結合が生じ難く、偏波面を保持することが可能とな
る。A conventionally proposed polarization-constant optical fiber has a structure shown in FIG. In Figure 3, 1 is the core, 2 is the core 1
The stress applying parts 3a and 3b are located on the outer periphery of the core 1 and have a lower refractive index than the core 1.
It is located in a different position than the cladding 2, and the glass has a higher coefficient of thermal expansion than the cladding 2. Therefore, when the fiber is cooled after drawing, anisotropic thermal stress remains in the fiber as indicated by the arrow in FIG. 3, and this causes birefringence in the core 1. Normally, in a single mode fiber, even if only one of the fundamental modes (HE, x, HE, a mode) is excited (i.e., linearly polarized), energy coupling to the other mode will occur. Rotation of the plane of polarization occurs. However, in a polarization constant optical fiber having birefringence, energy coupling between the HE + , x mode and the HE , a mode is difficult to occur, and the plane of polarization can be maintained.
この種の定偏波光ファイバでは、例えばファイバ・ジャ
イロ、ファイバ音響センサ、ポーラライザ等に用いる場
合ファイバをコイル状に巻いて用いられることが多い。When using this type of polarization-controlled optical fiber in, for example, a fiber gyro, a fiber acoustic sensor, a polarizer, etc., the fiber is often wound into a coil.
このとき、ファイバには巻き張力によシ側圧が加わる。At this time, side pressure is applied to the fiber due to the winding tension.
このような状況では、
■ ファイバ内に生じている応力をキャンセルするよう
な方向から側圧が加わると、ファイバの複屈折が低下し
、偏波保持能力が劣下する、
■ ファイバ内の応力の軸以外の方向から側圧が加わる
と、ファイバ内に新たな応力の軸が形成されることにな
るが、この時、それまでは軸と一致していた直線偏波が
軸ずれを起こしたことくなり、伝搬光の偏光度が劣化す
る、という問題が生じる。In such a situation, ■ If lateral pressure is applied from a direction that cancels the stress occurring within the fiber, the birefringence of the fiber will decrease and the polarization maintaining ability will deteriorate; ■ The axis of stress within the fiber If lateral pressure is applied from any other direction, a new axis of stress will be formed within the fiber, but at this time, the linearly polarized wave, which was previously aligned with the axis, will become misaligned. , a problem arises in that the degree of polarization of the propagating light deteriorates.
本発明は上記の問題を解決して、コイル状に巻いて用い
ても直線偏波の軸ずれや、偏光度劣化のない新規な構造
の定偏波ファイバを提供することを目的とするものであ
る。The object of the present invention is to solve the above-mentioned problems and provide a polarization constant fiber with a new structure that does not cause axis deviation of linearly polarized waves or deterioration of polarization degree even when used in a coiled manner. be.
本発明はコア、コアより低屈折率のクラッドおよび応力
付与部から成る定偏波光ファイバにおいて、応力付与部
以外のクラッド内に中空部分を有し、かつ応力付与部の
ガラスはクラッドのガラスよシ熱膨張係数が大きく、か
つ屈折率が低いことを特徴とする定偏波光ファイバでち
ゃ、これにより上記の問題点を解決するものである。本
発明において、応力付与部はコアを中心とする軸対称位
置に存在し、かつ中空部分もコアを中心とする地対称位
置に存在することが好ましく、特に応力付与部中心とコ
アを結ぶ軸と、中空部中中心とコアを結ぶ軸とが直交し
ていることが好ましい。The present invention provides a constant polarization optical fiber consisting of a core, a cladding with a refractive index lower than the core, and a stress-applying portion, in which a hollow portion is provided in the cladding other than the stress-applying portion, and the glass of the stress-applying portion is made of a glass material that is different from the glass of the cladding. A polarization constant optical fiber characterized by a large coefficient of thermal expansion and a low refractive index can solve the above problems. In the present invention, it is preferable that the stress-applying part exists in an axially symmetrical position with the core as the center, and that the hollow part also exists in a geo-symmetrical position with the core as the center. It is preferable that the center of the hollow portion and the axis connecting the core are perpendicular to each other.
以下図面を参照して本発明を説明する。The present invention will be explained below with reference to the drawings.
第1図は本発明の一具体例の定偏波ファイバの断面図で
あって、1はコア、2はクラッド、3aおよび3bは応
力付与部、さらに4aおよび4bは中空部である。コア
1はクラッド用ガラスより屈折率の高いガラスからなり
、応力付与部3aおよび3bはクラッド用ガラスより屈
折率が低く、かつ熱膨張係数が高いガラスより成る。応
力付与部3aおよび3bならびに中空部4aおよび4b
は、それぞれコア1を中心とする軸対称位置にあシ、か
つ応力付与部3aおよび3bの中心とコア1を結ぶ軸な
らびに、中空部4aおよび4bの中心とコア1を結ぶ軸
とは、互に直交する位置に配されている。FIG. 1 is a sectional view of a polarization constant fiber according to a specific example of the present invention, in which 1 is a core, 2 is a cladding, 3a and 3b are stress applying parts, and 4a and 4b are hollow parts. The core 1 is made of glass having a higher refractive index than the cladding glass, and the stress applying parts 3a and 3b are made of glass having a lower refractive index and a higher coefficient of thermal expansion than the cladding glass. Stress applying parts 3a and 3b and hollow parts 4a and 4b
are located at axially symmetrical positions with respect to the core 1, and the axes connecting the centers of the stress applying parts 3a and 3b and the core 1 and the axis connecting the centers of the hollow parts 4a and 4b and the core 1 are mutually It is placed perpendicular to the
本発明においてコアおよびクラッドのガラスとしては、
例えば300.−3i0.コアと5iOzクラツドの組
合せ、Si0gコアとS工○、−Fクラッドの組合せ等
が挙げられるが、これに限定されるところはなか。また
本発明における応力付与部としてはクラッドガラスより
屈折率が低く熱膨張係数の高いガラスが用いられ、例え
ばsio、にB、 Ge。In the present invention, the core and cladding glasses include:
For example, 300. -3i0. Examples include a combination of a core and a 5iOz cladding, a combination of a Si0g core and a S engineering ○, -F cladding, but the combination is not limited to these. Further, as the stress applying portion in the present invention, a glass having a lower refractive index and a higher coefficient of thermal expansion than clad glass is used, such as sio, B, Ge, etc.
At、 P、 F、 Tiのうちの1種以上を添加した
ガラス等が挙げられる。Examples include glasses to which one or more of At, P, F, and Ti are added.
本発明の定偏波ファイバを得る具体的方法については、
後記の実施例のように行うことができる。Regarding the specific method of obtaining the polarization constant fiber of the present invention,
This can be carried out as in Examples described later.
上記のように構成された本発明のファイバでは、中空部
4aおよび4bの存在のためにファイバを曲げる方向て
よシ、曲げるのに必要なモーメントに差が生じる。第5
図は本発明ファイバの曲げ方向とモーメントの関係を示
す図であって、例えばファイバをp −p’軸を中心に
、すすなわ同図中イの矢印で示すように曲げるのに必要
なモーメントをMp、 Q −Q’軸を中心に口の矢印
で示すように曲げるのに必要なモーメントをMqとした
場合、常にMp(Mqの関係が成り立つ。したがって、
本発明の定偏波ファイバはファイバの曲げ易さにより、
ファイバ断面の軸を判定することが可能であり、また、
−旦曲げ易い方向に巻き始められたファイバはファイバ
の軸ずれ(巻き方向の変化)を生ずることなく、巻き続
けることが可能である。これにより、巻きにより、ファ
イバて加わる側圧の方向を一方向に限定でき、長手方向
での応力軸の変化をなくすことができる。In the fiber of the present invention configured as described above, the presence of the hollow portions 4a and 4b causes a difference in the moment required for bending the fiber depending on the direction in which the fiber is bent. Fifth
The figure shows the relationship between the bending direction and the moment of the fiber of the present invention. Mp, Q If the moment required to bend as shown by the arrow at the mouth around the Q-Q' axis is Mq, the relationship Mp(Mq always holds true. Therefore,
Due to the ease of bending of the fiber, the constant polarization fiber of the present invention has
It is possible to determine the axis of the fiber cross section, and
- It is possible to continue winding the fiber, which has been started in the bendable direction, without causing the fiber axis to shift (change in the winding direction). Thereby, by winding, the direction of lateral pressure applied to the fiber can be limited to one direction, and changes in the stress axis in the longitudinal direction can be eliminated.
更に、第2図のようK、応力付与部中心軸と中空部中心
軸が直交する場合、ファイバ巻き軸は、応力付与部中心
軸と平行になるので、1)側圧がファイバ内の応力をキ
ャンセルしない、2)側圧の向きとファイバ内応力の向
きが−致し、応力軸の乱れが生じない、という利点があ
り、前記問題((対し効果がある。Furthermore, as shown in Figure 2, when the central axis of the stress-applying part and the central axis of the hollow part are perpendicular to each other, the fiber winding axis becomes parallel to the central axis of the stress-applying part, so 1) the lateral pressure cancels the stress in the fiber. 2) There is an advantage that the direction of the lateral pressure and the direction of the stress in the fiber match, and no disturbance of the stress axis occurs, which is effective against the above problem.
また、この中空部は、コア部に対し、圧縮応力を加える
効果があり、引張応力を加える応力付与部と、直交する
位置に配置することによシ、よ抄大きな複屈折をコアに
与える効果もある。In addition, this hollow part has the effect of applying compressive stress to the core part, and by placing it in a position perpendicular to the stress applying part that applies tensile stress, it has the effect of giving a much larger birefringence to the core. There is also.
実施例
MAD法により中心が5102ガラスコアで、外周がS
in、 −Fガラスからなる直径30mのガラスロッド
を作製した。該ガラスロッドのコアの両側でコアを中心
とする対称位置に直径8fiの孔を2個超音波開孔器で
設けた。その後、この孔内に、直径7.8mの810.
− B、 O,ガラスのロッドを挿入し、加熱−体化し
た。得られたガラスロッドに、再び超音波間孔器を用い
て、直径5−の孔を設けた。このとき、応力付与部用S
i(%−BxOsガラスの中心軸と孔の中心軸が直交す
るように孔位置を設定した。以上で得られたプリフォー
ムを抵抗炉を用いて、直径125 μmに線引きし、本
発明の定偏波光ファイバを得た。Example: By MAD method, the center is 5102 glass core and the outer periphery is S.
A glass rod with a diameter of 30 m made of in, -F glass was produced. Two holes with a diameter of 8 fi were made using an ultrasonic hole drill at symmetrical positions on both sides of the core of the glass rod with the core as the center. Thereafter, 810.
- B, O, A glass rod was inserted and heated. A hole with a diameter of 5 mm was made in the obtained glass rod using the ultrasonic hole drill again. At this time, S for stress applying part
The hole position was set so that the central axis of the i(%-BxOs glass and the central axis of the hole were perpendicular to each other).The preform obtained above was drawn to a diameter of 125 μm using a resistance furnace, and A polarized optical fiber was obtained.
但し、線引中に、中空部用孔が変形しないよう、孔内に
N2ガスを流し、内圧を制御しながら線引きを行った。However, in order to prevent the hole for the hollow part from being deformed during the wire drawing, N2 gas was flowed into the hole and the wire was drawn while controlling the internal pressure.
得られた7アイパでは、ファイバの曲げ易さから、ファ
イバ軸を容易に判定することが可能であった。このファ
イバを直径20mのボビン’IC5m巻きつけ、クロス
トークの測定を行ったところ、−40dBと良好な偏波
保持特性を示した。In the obtained 7-eyeper, it was possible to easily determine the fiber axis from the ease of bending the fiber. When this fiber was wound around a 5 m bobbin IC with a diameter of 20 m and crosstalk was measured, it was found to be -40 dB, indicating good polarization maintaining characteristics.
本発明の定偏波ファイバは、ファイバ断面の軸を容易に
判別することが可能であり、また、曲げた状態でも、軸
ずれ等がなく、良好な偏波保持特性を有する優れた定偏
波ファイバであり、かつその製造も容易である。The constant polarization fiber of the present invention allows the axis of the fiber cross section to be easily determined, and even when bent, there is no axis deviation, and the fiber has excellent polarization maintaining characteristics. It is a fiber and is easy to manufacture.
第1図は本発明の定偏波ファイバの一具体例の径方向断
面図、
第2図は本発明の定偏波ファイバにおける曲げ方向によ
るモーメントの差を説明する図、第5図は従来の定偏波
ファイバの径方向断面図である。FIG. 1 is a radial cross-sectional view of a specific example of the polarization constant fiber of the present invention, FIG. 2 is a diagram illustrating the difference in moment depending on the bending direction in the polarization constant fiber of the present invention, and FIG. FIG. 2 is a radial cross-sectional view of a polarization constant fiber.
Claims (3)
与部から成る定偏波光ファイバにおいて、応力付与部以
外のクラッド内に中空部分を有し、かつ応力付与部のガ
ラスはクラッドのガラスより熱膨張係数が大きく、かつ
屈折率が低いことを特徴とする定偏波光ファイバ。(1) In a polarized optical fiber consisting of a core, a cladding with a lower refractive index than the core, and a stress-applying part, there is a hollow part in the cladding other than the stress-applying part, and the glass in the stress-applying part is heated more than the glass in the cladding. A polarization-constant optical fiber characterized by a large expansion coefficient and a low refractive index.
し、かつ中空部分もコアを中心とする軸対称位置に存在
する特許請求の範囲第(1)項記載の定偏波光ファイバ
。(2) The polarization constant optical fiber according to claim (1), wherein the stress applying portion is located at an axially symmetrical position with respect to the core, and the hollow portion is also located at an axially symmetrical position with respect to the core.
心とコアとを結ぶ軸が、直交してなる特許請求の範囲第
(2)項記載の定偏波光ファイバ。(3) A polarization-constant optical fiber according to claim (2), wherein the axis connecting the center of the stress applying part and the core and the axis connecting the center of the hollow part and the core are perpendicular to each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61149676A JPS636507A (en) | 1986-06-27 | 1986-06-27 | Optical fiber with constant polarized wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61149676A JPS636507A (en) | 1986-06-27 | 1986-06-27 | Optical fiber with constant polarized wave |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS636507A true JPS636507A (en) | 1988-01-12 |
Family
ID=15480392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61149676A Pending JPS636507A (en) | 1986-06-27 | 1986-06-27 | Optical fiber with constant polarized wave |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS636507A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5184898A (en) * | 1992-05-18 | 1993-02-09 | Thk Co., Ltd. | Ball retainer for linear bearings |
FR2683053A1 (en) * | 1991-10-29 | 1993-04-30 | Thomson Csf | OPTICAL FIBER AND METHOD OF MANUFACTURE. |
WO2002039161A1 (en) * | 2000-11-09 | 2002-05-16 | University Of Southampton | Dispersion tailoring in optical fibres |
WO2003065089A1 (en) * | 2002-01-29 | 2003-08-07 | Mitsubishi Cable Industries, Ltd. | Polarization retaining photonic crystal fiber |
US8218931B2 (en) | 2008-11-04 | 2012-07-10 | Dsm Ip Assets B.V. | D 1413 HT radiation curable coatings for optical fiber |
WO2024053252A1 (en) * | 2022-09-07 | 2024-03-14 | 住友電気工業株式会社 | Polarization maintaining optical fiber and method for manufacturing polarization maintaining optical fiber |
-
1986
- 1986-06-27 JP JP61149676A patent/JPS636507A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2683053A1 (en) * | 1991-10-29 | 1993-04-30 | Thomson Csf | OPTICAL FIBER AND METHOD OF MANUFACTURE. |
US5309540A (en) * | 1991-10-29 | 1994-05-03 | Thomson-Csf | Optical fiber sensor and a manufacturing process for making same |
US5184898A (en) * | 1992-05-18 | 1993-02-09 | Thk Co., Ltd. | Ball retainer for linear bearings |
WO2002039161A1 (en) * | 2000-11-09 | 2002-05-16 | University Of Southampton | Dispersion tailoring in optical fibres |
WO2003065089A1 (en) * | 2002-01-29 | 2003-08-07 | Mitsubishi Cable Industries, Ltd. | Polarization retaining photonic crystal fiber |
US8218931B2 (en) | 2008-11-04 | 2012-07-10 | Dsm Ip Assets B.V. | D 1413 HT radiation curable coatings for optical fiber |
WO2024053252A1 (en) * | 2022-09-07 | 2024-03-14 | 住友電気工業株式会社 | Polarization maintaining optical fiber and method for manufacturing polarization maintaining optical fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7430353B2 (en) | Polarization-maintaining optical fiber and optical fiber gyro | |
US7308173B2 (en) | Optical fiber coupler with low loss and high coupling coefficient and method of fabrication thereof | |
US7289687B2 (en) | Polarization-maintaining optical fiber | |
US8958677B2 (en) | Polarization-maintaining optical fiber | |
JP2007536578A (en) | Solid single polarization fiber and equipment | |
JPS636507A (en) | Optical fiber with constant polarized wave | |
US20180088360A1 (en) | Polarization Maintaining Optical Fiber With Non-Symmetric Stress Applying Parts | |
JPS59166810A (en) | Fiber optical rotary sensor | |
JP2007506980A (en) | Optical fiber sensing coil with isotropic characteristics | |
JPS60154215A (en) | Fiber type directional coupler | |
JPH0316929A (en) | Production of polarization-keeping optical fiber | |
JPH01314209A (en) | Constant polarization optical fiber | |
JPS62275205A (en) | Optical fiber with constant polarization | |
JPH0350505A (en) | Single polarization optical fiber | |
JPS61228404A (en) | Optical fiber for constant polarized wave | |
JPS62299918A (en) | Method for fixing polarized wave maintaining optical fiber | |
JPS6018042B2 (en) | polarization maintaining optical fiber | |
JPS62148333A (en) | Preparation of constant polarization optical fiber | |
JPS6054644B2 (en) | Single polarization fiber for very long wavelengths | |
JP2003029072A (en) | Plane-of-polarization preservation type optical fiber | |
JPH01279211A (en) | Polarized wave maintaining optical fiber | |
JP2828467B2 (en) | Absolute polarization fiber | |
JPH01156702A (en) | Base material for constant polarization optical fiber | |
JPS62276510A (en) | Stress imparting type polarized wave maintaining optical fiber | |
JPH0350506A (en) | Absolute single-polarization optical fiber |