JPS636507A - Optical fiber with constant polarized wave - Google Patents

Optical fiber with constant polarized wave

Info

Publication number
JPS636507A
JPS636507A JP61149676A JP14967686A JPS636507A JP S636507 A JPS636507 A JP S636507A JP 61149676 A JP61149676 A JP 61149676A JP 14967686 A JP14967686 A JP 14967686A JP S636507 A JPS636507 A JP S636507A
Authority
JP
Japan
Prior art keywords
core
fiber
glass
stress
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61149676A
Other languages
Japanese (ja)
Inventor
Hiroshi Suganuma
寛 菅沼
Hiroshi Yokota
弘 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61149676A priority Critical patent/JPS636507A/en
Publication of JPS636507A publication Critical patent/JPS636507A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • C03B2203/31Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres by use of stress-imparting rods, e.g. by insertion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To prevent axial shift of a linearly polarized wave and deterioration of degree of polarization, by providing a hollow part in a clad except for a stress applying part. CONSTITUTION:A core 1 consists of glass whose refractive index is higher than that of glass for clad, and a stress applying part 3a and 3b consist of glass whose refractive index is lower than that of the glass for clad and also, whose coefficient of thermal expansion is high. The applying parts 3a, 3b and hollow parts 4a, 4b are in an axial symmetry position centering around the core 1, and also, an axis for connecting the center of the applying parts 3a, 3b and the core 1 and an axis for connecting the center of the hollow parts 4a, 4b and the core 1 are provided in positions being orthogonal to each other. In this state, due to existence of the hollow part 4a and 4b, a difference is generated in the moment required for bending, depending on the direction for bending the fiber. Accordingly, by bending easiness of the fiber, an axis of a fiber section can be decided, and also, the fiber which has been started to be wound in the easily bendable direction once generates no axial shift (variation in the winding direction).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コヒーレント光通信用伝送路、光ファイバ・
センサ、光デバイス及び光ICの結合等に用いられる定
偏波光ファイバに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to transmission lines for coherent optical communication, optical fibers,
The present invention relates to polarization-controlled optical fibers used for coupling sensors, optical devices, optical ICs, and the like.

〔従来の技術〕[Conventional technology]

光通信技術の進展に伴って、現在種々の装置に光ファイ
バが使用されている。その中で、各糧通信装置に用いら
れている光ICや光ヘテロダイン検波方式では、光ファ
イバからの出力が指定された方向の直線偏波であること
が前提とされ、また、各種の光フアイバーセンサでは、
光ファイバを伝搬する光が直線偏波であることが要求さ
れている。そこで、偏波面を保持したまま直線偏波を伝
搬させる定偏波ファイバが開発されている。
With the advancement of optical communication technology, optical fibers are currently used in various devices. Among these, the optical ICs and optical heterodyne detection methods used in various communication devices assume that the output from the optical fiber is linearly polarized in a specified direction. In the sensor,
It is required that the light propagating through the optical fiber be linearly polarized. Therefore, polarization constant fibers have been developed that propagate linearly polarized waves while maintaining the plane of polarization.

従来提案されている定偏波光ファイバは、第5図に示す
構造をしている。第3図において1はコア、2はコア1
の外周にあってコア1より低屈折率であるクラッドであ
り、応力付与部3aおよび3bはクラッド2内のコア1
とは別異の位置にあり、クラッド2よシ熱膨張係数の大
きなガラスよシなっている。このため、ファイバ線引後
の冷却時に、ファイバ内には第3図中矢印にて示すよう
な異方性の熱応力が残留し、これによってコア1には複
屈折が生じる。通常シングルモードファイバでは基底モ
ード(HE、、x、 HE、、アモード)のうちの−方
のみを励振(すなわち直線偏波)しても、もう−方のモ
ードへのエネルギ結合が生じてしまい、偏波面の回転が
生ずる。しかし、複屈折を有する定偏波光ファイバでは
、HE + 、xモードとHE、、アモードの間のエネ
ルギ結合が生じ難く、偏波面を保持することが可能とな
る。
A conventionally proposed polarization-constant optical fiber has a structure shown in FIG. In Figure 3, 1 is the core, 2 is the core 1
The stress applying parts 3a and 3b are located on the outer periphery of the core 1 and have a lower refractive index than the core 1.
It is located in a different position than the cladding 2, and the glass has a higher coefficient of thermal expansion than the cladding 2. Therefore, when the fiber is cooled after drawing, anisotropic thermal stress remains in the fiber as indicated by the arrow in FIG. 3, and this causes birefringence in the core 1. Normally, in a single mode fiber, even if only one of the fundamental modes (HE, x, HE, a mode) is excited (i.e., linearly polarized), energy coupling to the other mode will occur. Rotation of the plane of polarization occurs. However, in a polarization constant optical fiber having birefringence, energy coupling between the HE + , x mode and the HE , a mode is difficult to occur, and the plane of polarization can be maintained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この種の定偏波光ファイバでは、例えばファイバ・ジャ
イロ、ファイバ音響センサ、ポーラライザ等に用いる場
合ファイバをコイル状に巻いて用いられることが多い。
When using this type of polarization-controlled optical fiber in, for example, a fiber gyro, a fiber acoustic sensor, a polarizer, etc., the fiber is often wound into a coil.

このとき、ファイバには巻き張力によシ側圧が加わる。At this time, side pressure is applied to the fiber due to the winding tension.

このような状況では、 ■ ファイバ内に生じている応力をキャンセルするよう
な方向から側圧が加わると、ファイバの複屈折が低下し
、偏波保持能力が劣下する、 ■ ファイバ内の応力の軸以外の方向から側圧が加わる
と、ファイバ内に新たな応力の軸が形成されることにな
るが、この時、それまでは軸と一致していた直線偏波が
軸ずれを起こしたことくなり、伝搬光の偏光度が劣化す
る、という問題が生じる。
In such a situation, ■ If lateral pressure is applied from a direction that cancels the stress occurring within the fiber, the birefringence of the fiber will decrease and the polarization maintaining ability will deteriorate; ■ The axis of stress within the fiber If lateral pressure is applied from any other direction, a new axis of stress will be formed within the fiber, but at this time, the linearly polarized wave, which was previously aligned with the axis, will become misaligned. , a problem arises in that the degree of polarization of the propagating light deteriorates.

本発明は上記の問題を解決して、コイル状に巻いて用い
ても直線偏波の軸ずれや、偏光度劣化のない新規な構造
の定偏波ファイバを提供することを目的とするものであ
る。
The object of the present invention is to solve the above-mentioned problems and provide a polarization constant fiber with a new structure that does not cause axis deviation of linearly polarized waves or deterioration of polarization degree even when used in a coiled manner. be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はコア、コアより低屈折率のクラッドおよび応力
付与部から成る定偏波光ファイバにおいて、応力付与部
以外のクラッド内に中空部分を有し、かつ応力付与部の
ガラスはクラッドのガラスよシ熱膨張係数が大きく、か
つ屈折率が低いことを特徴とする定偏波光ファイバでち
ゃ、これにより上記の問題点を解決するものである。本
発明において、応力付与部はコアを中心とする軸対称位
置に存在し、かつ中空部分もコアを中心とする地対称位
置に存在することが好ましく、特に応力付与部中心とコ
アを結ぶ軸と、中空部中中心とコアを結ぶ軸とが直交し
ていることが好ましい。
The present invention provides a constant polarization optical fiber consisting of a core, a cladding with a refractive index lower than the core, and a stress-applying portion, in which a hollow portion is provided in the cladding other than the stress-applying portion, and the glass of the stress-applying portion is made of a glass material that is different from the glass of the cladding. A polarization constant optical fiber characterized by a large coefficient of thermal expansion and a low refractive index can solve the above problems. In the present invention, it is preferable that the stress-applying part exists in an axially symmetrical position with the core as the center, and that the hollow part also exists in a geo-symmetrical position with the core as the center. It is preferable that the center of the hollow portion and the axis connecting the core are perpendicular to each other.

以下図面を参照して本発明を説明する。The present invention will be explained below with reference to the drawings.

第1図は本発明の一具体例の定偏波ファイバの断面図で
あって、1はコア、2はクラッド、3aおよび3bは応
力付与部、さらに4aおよび4bは中空部である。コア
1はクラッド用ガラスより屈折率の高いガラスからなり
、応力付与部3aおよび3bはクラッド用ガラスより屈
折率が低く、かつ熱膨張係数が高いガラスより成る。応
力付与部3aおよび3bならびに中空部4aおよび4b
は、それぞれコア1を中心とする軸対称位置にあシ、か
つ応力付与部3aおよび3bの中心とコア1を結ぶ軸な
らびに、中空部4aおよび4bの中心とコア1を結ぶ軸
とは、互に直交する位置に配されている。
FIG. 1 is a sectional view of a polarization constant fiber according to a specific example of the present invention, in which 1 is a core, 2 is a cladding, 3a and 3b are stress applying parts, and 4a and 4b are hollow parts. The core 1 is made of glass having a higher refractive index than the cladding glass, and the stress applying parts 3a and 3b are made of glass having a lower refractive index and a higher coefficient of thermal expansion than the cladding glass. Stress applying parts 3a and 3b and hollow parts 4a and 4b
are located at axially symmetrical positions with respect to the core 1, and the axes connecting the centers of the stress applying parts 3a and 3b and the core 1 and the axis connecting the centers of the hollow parts 4a and 4b and the core 1 are mutually It is placed perpendicular to the

本発明においてコアおよびクラッドのガラスとしては、
例えば300.−3i0.コアと5iOzクラツドの組
合せ、Si0gコアとS工○、−Fクラッドの組合せ等
が挙げられるが、これに限定されるところはなか。また
本発明における応力付与部としてはクラッドガラスより
屈折率が低く熱膨張係数の高いガラスが用いられ、例え
ばsio、にB、 Ge。
In the present invention, the core and cladding glasses include:
For example, 300. -3i0. Examples include a combination of a core and a 5iOz cladding, a combination of a Si0g core and a S engineering ○, -F cladding, but the combination is not limited to these. Further, as the stress applying portion in the present invention, a glass having a lower refractive index and a higher coefficient of thermal expansion than clad glass is used, such as sio, B, Ge, etc.

At、 P、 F、 Tiのうちの1種以上を添加した
ガラス等が挙げられる。
Examples include glasses to which one or more of At, P, F, and Ti are added.

本発明の定偏波ファイバを得る具体的方法については、
後記の実施例のように行うことができる。
Regarding the specific method of obtaining the polarization constant fiber of the present invention,
This can be carried out as in Examples described later.

上記のように構成された本発明のファイバでは、中空部
4aおよび4bの存在のためにファイバを曲げる方向て
よシ、曲げるのに必要なモーメントに差が生じる。第5
図は本発明ファイバの曲げ方向とモーメントの関係を示
す図であって、例えばファイバをp −p’軸を中心に
、すすなわ同図中イの矢印で示すように曲げるのに必要
なモーメントをMp、 Q −Q’軸を中心に口の矢印
で示すように曲げるのに必要なモーメントをMqとした
場合、常にMp(Mqの関係が成り立つ。したがって、
本発明の定偏波ファイバはファイバの曲げ易さにより、
ファイバ断面の軸を判定することが可能であり、また、
−旦曲げ易い方向に巻き始められたファイバはファイバ
の軸ずれ(巻き方向の変化)を生ずることなく、巻き続
けることが可能である。これにより、巻きにより、ファ
イバて加わる側圧の方向を一方向に限定でき、長手方向
での応力軸の変化をなくすことができる。
In the fiber of the present invention configured as described above, the presence of the hollow portions 4a and 4b causes a difference in the moment required for bending the fiber depending on the direction in which the fiber is bent. Fifth
The figure shows the relationship between the bending direction and the moment of the fiber of the present invention. Mp, Q If the moment required to bend as shown by the arrow at the mouth around the Q-Q' axis is Mq, the relationship Mp(Mq always holds true. Therefore,
Due to the ease of bending of the fiber, the constant polarization fiber of the present invention has
It is possible to determine the axis of the fiber cross section, and
- It is possible to continue winding the fiber, which has been started in the bendable direction, without causing the fiber axis to shift (change in the winding direction). Thereby, by winding, the direction of lateral pressure applied to the fiber can be limited to one direction, and changes in the stress axis in the longitudinal direction can be eliminated.

更に、第2図のようK、応力付与部中心軸と中空部中心
軸が直交する場合、ファイバ巻き軸は、応力付与部中心
軸と平行になるので、1)側圧がファイバ内の応力をキ
ャンセルしない、2)側圧の向きとファイバ内応力の向
きが−致し、応力軸の乱れが生じない、という利点があ
り、前記問題((対し効果がある。
Furthermore, as shown in Figure 2, when the central axis of the stress-applying part and the central axis of the hollow part are perpendicular to each other, the fiber winding axis becomes parallel to the central axis of the stress-applying part, so 1) the lateral pressure cancels the stress in the fiber. 2) There is an advantage that the direction of the lateral pressure and the direction of the stress in the fiber match, and no disturbance of the stress axis occurs, which is effective against the above problem.

また、この中空部は、コア部に対し、圧縮応力を加える
効果があり、引張応力を加える応力付与部と、直交する
位置に配置することによシ、よ抄大きな複屈折をコアに
与える効果もある。
In addition, this hollow part has the effect of applying compressive stress to the core part, and by placing it in a position perpendicular to the stress applying part that applies tensile stress, it has the effect of giving a much larger birefringence to the core. There is also.

〔実施例〕〔Example〕

実施例 MAD法により中心が5102ガラスコアで、外周がS
in、 −Fガラスからなる直径30mのガラスロッド
を作製した。該ガラスロッドのコアの両側でコアを中心
とする対称位置に直径8fiの孔を2個超音波開孔器で
設けた。その後、この孔内に、直径7.8mの810.
− B、 O,ガラスのロッドを挿入し、加熱−体化し
た。得られたガラスロッドに、再び超音波間孔器を用い
て、直径5−の孔を設けた。このとき、応力付与部用S
i(%−BxOsガラスの中心軸と孔の中心軸が直交す
るように孔位置を設定した。以上で得られたプリフォー
ムを抵抗炉を用いて、直径125 μmに線引きし、本
発明の定偏波光ファイバを得た。
Example: By MAD method, the center is 5102 glass core and the outer periphery is S.
A glass rod with a diameter of 30 m made of in, -F glass was produced. Two holes with a diameter of 8 fi were made using an ultrasonic hole drill at symmetrical positions on both sides of the core of the glass rod with the core as the center. Thereafter, 810.
- B, O, A glass rod was inserted and heated. A hole with a diameter of 5 mm was made in the obtained glass rod using the ultrasonic hole drill again. At this time, S for stress applying part
The hole position was set so that the central axis of the i(%-BxOs glass and the central axis of the hole were perpendicular to each other).The preform obtained above was drawn to a diameter of 125 μm using a resistance furnace, and A polarized optical fiber was obtained.

但し、線引中に、中空部用孔が変形しないよう、孔内に
N2ガスを流し、内圧を制御しながら線引きを行った。
However, in order to prevent the hole for the hollow part from being deformed during the wire drawing, N2 gas was flowed into the hole and the wire was drawn while controlling the internal pressure.

得られた7アイパでは、ファイバの曲げ易さから、ファ
イバ軸を容易に判定することが可能であった。このファ
イバを直径20mのボビン’IC5m巻きつけ、クロス
トークの測定を行ったところ、−40dBと良好な偏波
保持特性を示した。
In the obtained 7-eyeper, it was possible to easily determine the fiber axis from the ease of bending the fiber. When this fiber was wound around a 5 m bobbin IC with a diameter of 20 m and crosstalk was measured, it was found to be -40 dB, indicating good polarization maintaining characteristics.

〔発明の効果〕〔Effect of the invention〕

本発明の定偏波ファイバは、ファイバ断面の軸を容易に
判別することが可能であり、また、曲げた状態でも、軸
ずれ等がなく、良好な偏波保持特性を有する優れた定偏
波ファイバであり、かつその製造も容易である。
The constant polarization fiber of the present invention allows the axis of the fiber cross section to be easily determined, and even when bent, there is no axis deviation, and the fiber has excellent polarization maintaining characteristics. It is a fiber and is easy to manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の定偏波ファイバの一具体例の径方向断
面図、 第2図は本発明の定偏波ファイバにおける曲げ方向によ
るモーメントの差を説明する図、第5図は従来の定偏波
ファイバの径方向断面図である。
FIG. 1 is a radial cross-sectional view of a specific example of the polarization constant fiber of the present invention, FIG. 2 is a diagram illustrating the difference in moment depending on the bending direction in the polarization constant fiber of the present invention, and FIG. FIG. 2 is a radial cross-sectional view of a polarization constant fiber.

Claims (3)

【特許請求の範囲】[Claims] (1)コア、コアより低屈折率のクラッドおよび応力付
与部から成る定偏波光ファイバにおいて、応力付与部以
外のクラッド内に中空部分を有し、かつ応力付与部のガ
ラスはクラッドのガラスより熱膨張係数が大きく、かつ
屈折率が低いことを特徴とする定偏波光ファイバ。
(1) In a polarized optical fiber consisting of a core, a cladding with a lower refractive index than the core, and a stress-applying part, there is a hollow part in the cladding other than the stress-applying part, and the glass in the stress-applying part is heated more than the glass in the cladding. A polarization-constant optical fiber characterized by a large expansion coefficient and a low refractive index.
(2)応力付与部はコアを中心とする軸対称位置に存在
し、かつ中空部分もコアを中心とする軸対称位置に存在
する特許請求の範囲第(1)項記載の定偏波光ファイバ
(2) The polarization constant optical fiber according to claim (1), wherein the stress applying portion is located at an axially symmetrical position with respect to the core, and the hollow portion is also located at an axially symmetrical position with respect to the core.
(3)応力付与部中心とコアとを結ぶ軸と、中空部分中
心とコアとを結ぶ軸が、直交してなる特許請求の範囲第
(2)項記載の定偏波光ファイバ。
(3) A polarization-constant optical fiber according to claim (2), wherein the axis connecting the center of the stress applying part and the core and the axis connecting the center of the hollow part and the core are perpendicular to each other.
JP61149676A 1986-06-27 1986-06-27 Optical fiber with constant polarized wave Pending JPS636507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61149676A JPS636507A (en) 1986-06-27 1986-06-27 Optical fiber with constant polarized wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61149676A JPS636507A (en) 1986-06-27 1986-06-27 Optical fiber with constant polarized wave

Publications (1)

Publication Number Publication Date
JPS636507A true JPS636507A (en) 1988-01-12

Family

ID=15480392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61149676A Pending JPS636507A (en) 1986-06-27 1986-06-27 Optical fiber with constant polarized wave

Country Status (1)

Country Link
JP (1) JPS636507A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184898A (en) * 1992-05-18 1993-02-09 Thk Co., Ltd. Ball retainer for linear bearings
FR2683053A1 (en) * 1991-10-29 1993-04-30 Thomson Csf OPTICAL FIBER AND METHOD OF MANUFACTURE.
WO2002039161A1 (en) * 2000-11-09 2002-05-16 University Of Southampton Dispersion tailoring in optical fibres
WO2003065089A1 (en) * 2002-01-29 2003-08-07 Mitsubishi Cable Industries, Ltd. Polarization retaining photonic crystal fiber
US8218931B2 (en) 2008-11-04 2012-07-10 Dsm Ip Assets B.V. D 1413 HT radiation curable coatings for optical fiber
WO2024053252A1 (en) * 2022-09-07 2024-03-14 住友電気工業株式会社 Polarization maintaining optical fiber and method for manufacturing polarization maintaining optical fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683053A1 (en) * 1991-10-29 1993-04-30 Thomson Csf OPTICAL FIBER AND METHOD OF MANUFACTURE.
US5309540A (en) * 1991-10-29 1994-05-03 Thomson-Csf Optical fiber sensor and a manufacturing process for making same
US5184898A (en) * 1992-05-18 1993-02-09 Thk Co., Ltd. Ball retainer for linear bearings
WO2002039161A1 (en) * 2000-11-09 2002-05-16 University Of Southampton Dispersion tailoring in optical fibres
WO2003065089A1 (en) * 2002-01-29 2003-08-07 Mitsubishi Cable Industries, Ltd. Polarization retaining photonic crystal fiber
US8218931B2 (en) 2008-11-04 2012-07-10 Dsm Ip Assets B.V. D 1413 HT radiation curable coatings for optical fiber
WO2024053252A1 (en) * 2022-09-07 2024-03-14 住友電気工業株式会社 Polarization maintaining optical fiber and method for manufacturing polarization maintaining optical fiber

Similar Documents

Publication Publication Date Title
US7430353B2 (en) Polarization-maintaining optical fiber and optical fiber gyro
US7308173B2 (en) Optical fiber coupler with low loss and high coupling coefficient and method of fabrication thereof
US7289687B2 (en) Polarization-maintaining optical fiber
US8958677B2 (en) Polarization-maintaining optical fiber
JP2007536578A (en) Solid single polarization fiber and equipment
JPS636507A (en) Optical fiber with constant polarized wave
US20180088360A1 (en) Polarization Maintaining Optical Fiber With Non-Symmetric Stress Applying Parts
JPS59166810A (en) Fiber optical rotary sensor
JP2007506980A (en) Optical fiber sensing coil with isotropic characteristics
JPS60154215A (en) Fiber type directional coupler
JPH0316929A (en) Production of polarization-keeping optical fiber
JPH01314209A (en) Constant polarization optical fiber
JPS62275205A (en) Optical fiber with constant polarization
JPH0350505A (en) Single polarization optical fiber
JPS61228404A (en) Optical fiber for constant polarized wave
JPS62299918A (en) Method for fixing polarized wave maintaining optical fiber
JPS6018042B2 (en) polarization maintaining optical fiber
JPS62148333A (en) Preparation of constant polarization optical fiber
JPS6054644B2 (en) Single polarization fiber for very long wavelengths
JP2003029072A (en) Plane-of-polarization preservation type optical fiber
JPH01279211A (en) Polarized wave maintaining optical fiber
JP2828467B2 (en) Absolute polarization fiber
JPH01156702A (en) Base material for constant polarization optical fiber
JPS62276510A (en) Stress imparting type polarized wave maintaining optical fiber
JPH0350506A (en) Absolute single-polarization optical fiber