JPS60154215A - Fiber type directional coupler - Google Patents

Fiber type directional coupler

Info

Publication number
JPS60154215A
JPS60154215A JP59009947A JP994784A JPS60154215A JP S60154215 A JPS60154215 A JP S60154215A JP 59009947 A JP59009947 A JP 59009947A JP 994784 A JP994784 A JP 994784A JP S60154215 A JPS60154215 A JP S60154215A
Authority
JP
Japan
Prior art keywords
glass part
fiber
directional coupler
core
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59009947A
Other languages
Japanese (ja)
Inventor
Masao Kawachi
河内 正夫
Morio Kobayashi
盛男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59009947A priority Critical patent/JPS60154215A/en
Publication of JPS60154215A publication Critical patent/JPS60154215A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2835Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain a low-loss coupler by covering a single-mode optical fiber with a core glass part, the 1st clad glass part, and further the 2nd clad glass part with a lower refractive index. CONSTITUTION:Two single-mode optical fibers 1-1a and 2-2a are composed of the 1st clad glass part 21b and the 2nd clad glass part 21c surrounding a center core glass part 21a. Light incident on the core glass part 21a at a fiber end 1 spreads gradually to the whole 1st clad glass part 21b because the core diameter 2A decreases in a taper shape, and then propagates in the single-mode waveguide consists of the 1st clad glass part 21b as the core part and the 2nd clad glass part 21c as the clad part; the ratio of the core diameter decreases much more at a heat-sealed and drawn part than at the fiber end, so the low-loss fiber type directional coupler is constituted without any etching process.

Description

【発明の詳細な説明】 (技術分計) 本発明は低損失なファイバ形方向性結合器に関するもの
である。 ツー (従来技術) 2本の単一モード光ファイバの一部を加熱融着した後、
融着部を延伸して構成されるファイバ形方向性結合器は
、光通信や光フアイバセンサ用の光回路を構成するのに
必要な重要な光部品である。゛第1図(atにその構造
例を示す。2本の単一モード光ファイバ1−1a 、2
−2aの一部が、融着・延伸されている。第1図(bl
は第1図(a)のA−A’における断面図で、4は融着
・延伸部所面形状を示す。
DETAILED DESCRIPTION OF THE INVENTION (Technical Summary) The present invention relates to a low-loss fiber type directional coupler. Two (prior art) After heating and fusing parts of two single mode optical fibers,
A fiber-type directional coupler constructed by stretching a fused portion is an important optical component necessary for constructing optical circuits for optical communications and optical fiber sensors.゛An example of its structure is shown in Fig. 1 (at).Two single mode optical fibers 1-1a and 2
A part of -2a is fused and stretched. Figure 1 (bl
1A is a sectional view taken along the line AA' in FIG.

例えば第1図(alに示すファイバ端IK入射した光1
゛は、融着・延伸部8で、光ファイバ2−2allJK
結合し、ファイバ端1a、2aに分割され出射される。
For example, light 1 incident on the fiber end IK shown in Figure 1 (al)
゛ is the fusion/stretching part 8, and the optical fiber 2-2allJK
The fibers are combined, split into fiber ends 1a and 2a, and emitted.

従来、この種の方向性結合器の構成には、長距離伝送用
の単一モード光ファイバが、そのまま使用されている。
Conventionally, in the construction of this type of directional coupler, a single mode optical fiber for long-distance transmission has been used as is.

第1図(c)はその単一モード光フINアイバの屈折率
分布図で、5はそ−の屈折率分布形を示す。直径2人の
屈折率の高いコアガラス部4aと、その周辺の外径りの
クラッドガラス部4bとから成っている。
FIG. 1(c) is a refractive index distribution diagram of the single mode optical fiber, and 5 indicates the refractive index distribution shape. It consists of a core glass part 4a with a high refractive index of two diameters, and a clad glass part 4b around the core glass part 4b having an outer diameter.

ところで方向性結合器の融着・延伸部8で、光・・の結
合・分割が生じるのであるが、同時に幾分か1の光は散
乱光として失なわれ、いわゆる過剰損失が発止し、この
過剰損失の大小がファイバ形方向性結合器の性能を決め
る。過剰損失は、用いる単一モード光ファイバの外径と
コア径の比すなわち5D//2Aの大きさに左右され、
一般に//2Aが小さいほど、過剰損失が小さくなるこ
とが知られでいる。
By the way, in the fusing/stretching section 8 of the directional coupler, light is coupled and split, but at the same time, some of the light is lost as scattered light, causing so-called excessive loss. The magnitude of this excess loss determines the performance of the fiber type directional coupler. The excess loss depends on the ratio of the outer diameter to the core diameter of the single mode optical fiber used, that is, the size of 5D//2A,
It is generally known that the smaller //2A, the smaller the excess loss.

コア径2Aは、単一モード条件を満たす必要上、むやみ
に大きくすることはできないので、Dを小さくする努力
がなされている。 10 通常、融着に先たち、ファイバ外径をエツチングにより
小さくする方法が用いられ、0.5 dB程度の過剰損
失の方向性結合器が作製されている。
Since the core diameter 2A cannot be increased unnecessarily because it is necessary to satisfy the single mode condition, efforts are being made to reduce D. 10 Usually, a method is used to reduce the outer diameter of the fiber by etching prior to fusion splicing, and a directional coupler with an excess loss of about 0.5 dB is fabricated.

しかしエツチングにより細くなったファイバを取り扱う
には、細心の注意を要するという問題点が15あった。
However, there was a problem in that careful attention was required when handling fibers made thinner by etching.

また0、5 dB程度以下の過剰損失を再現性良く実現
するには、融着や延伸の操作に高度の熟練を要し、生産
効藁上の問題となっていた。
In addition, in order to achieve an excess loss of about 0.5 dB or less with good reproducibility, a high degree of skill is required in the fusing and stretching operations, which has been a problem in terms of production efficiency.

(発明の目的) 本発明は従来のファイバ形方向性結合器作製上、。(Purpose of the invention) The present invention is a method for manufacturing a conventional fiber type directional coupler.

/R) の前記の問題を解決するため、通常の光伝送用と1異な
る構造の単一モード光ファイバから方向性結合器な構成
するもので、その目的はきわめて低損失なファイバ形方
向性結合器、偏波保持性ファイバ形方向性結合器を再現
性良く提供することにあ・る。以下図面によシ本発明の
詳細な説明する。
/R) In order to solve the above-mentioned problem, a directional coupler is constructed from a single mode optical fiber with a structure different from that for normal optical transmission, and its purpose is to achieve extremely low loss fiber-type directional coupling. The object of the present invention is to provide a polarization-maintaining fiber type directional coupler with good reproducibility. The present invention will be explained in detail below with reference to the drawings.

(発明の構成および作用) 第2図(alは本発明の一実施例の構成図であって、2
本の単一モード光ファイバ1−1’a 、 B−2aは
、中心のコアガラス部21aをとシ囲む第1クラッ1−
1トガラス部21b、第2クラッドガラス部21cから
成っている。第2図(b)は第2図fa)のB−B’に
おける断面図、第2図(clは第2図(a)の単一モー
ド光ファイバの屈折率分布図であって、5は単−モード
光ファイバの屈折率分布図であり、中心のコINアガラ
ス部(直径2ム)で屈折率値が最も高く、1”5y h
”lj5XW5(Me4″”ゝ・@ 2 p 5 y 
(Structure and operation of the invention) Fig. 2 (al is a block diagram of an embodiment of the present invention;
The single mode optical fibers 1-1'a and B-2a have a first clamp 1-1'a surrounding the central core glass part 21a.
It consists of a first cladding glass section 21b and a second cladding glass section 21c. FIG. 2(b) is a cross-sectional view taken along line BB' in FIG. 2fa), FIG. This is a refractive index distribution diagram of a single-mode optical fiber, where the refractive index value is highest at the central core glass part (diameter 2 mm), 1"5y h
"lj5XW5(Me4""ゝ・@2 p 5 y
.

トガラス部(直径D)と屈折率が低くなっている。The refractive index is lower than that of the glass portion (diameter D).

コア・第1クラッド間の屈折率差はΔn1第1クラッド
・第2クラッド間の屈折率差はΔnBである。1゜2人
とΔnは、使用波長で単一モード条件を満た ゛すよう
設定されている。例えばファイバ端1のコアガラス部2
1.aに入射した光は、融、着・延伸部8へ、と進むに
つれて、コア径8Aが5テーパ状に減少してい、る、の
で、次第に第1.クラッドガ、ラス部 521b全体に
広がり、やがて第1クラッドガラス部をコア部とし、第
2クラッドガラス部21cをクラッ、ド部とする単一モ
ード導−−中を伝搬することとな、るゴなわちファイバ
端1では、外径とコア径の比は’2Aであるが、融着・
、延伸部8で10は外径とコア径の比は、実質上、D/
2Bへと大幅に減少し、エツチングの工程を豐せずして
低損失なファイバ形方向性結合器を構成することができ
る。融着・延伸部8で分割された光がファイバ端la、
2aへと向かうにつれてテーパ構造が復帰しコラ光は再
び最も屈折高値の高いコアガラス部81aをコア部とし
て進行し、ファイバla、Bhから出射される。
The refractive index difference between the core and the first cladding is Δn1, and the refractive index difference between the first cladding and the second cladding is ΔnB. 1°2 people and Δn are set so as to satisfy the single mode condition at the wavelength used. For example, the core glass part 2 of the fiber end 1
1. The core diameter 8A decreases in a 5-tapered shape as the light incident on a passes through the melting, adhesion, and stretching section 8, so that it gradually changes to the first. The cladding glass spreads over the entire glass portion 521b, and eventually propagates through a single mode conductor with the first cladding glass portion as the core portion and the second cladding glass portion 21c as the cladding portion. At fiber end 1, the ratio of the outer diameter to the core diameter is 2A, but due to fusion and
, the ratio of the outer diameter to the core diameter is substantially D/
2B, and a low-loss fiber-type directional coupler can be constructed without the need for an etching process. The light split at the fusion/stretching section 8 is transmitted to the fiber end la,
2a, the tapered structure returns, and the collimated light again proceeds with the core glass portion 81a having the highest refraction value as the core portion, and is emitted from the fibers la and Bh.

本発明で用いている単一モード光ファイバの構造は、l
−以上もの長距離の光伝送に使用するの2゜(% ) は、第1クラッドガラス部21bをコア部とする。
The structure of the single mode optical fiber used in the present invention is l
The first clad glass part 21b is used as the core part for optical transmission over a long distance of -2° (%).

多モード光が一部励損されて望ましくないが、ファイバ
形方向性結合器の構成に必要な数m長では問題とならな
い。また必要に応じてファイバ端1゜la、g、2aに
、第1図に示した洒常の単一モ ゛−ド光ファイバを接
続して用いることもできる。
Although this is undesirable as part of the multimode light is excited, this is not a problem with a length of several meters required for the construction of a fiber-type directional coupler. Further, if necessary, the conventional single mode optical fiber shown in FIG. 1 can be connected to the fiber ends 1.la, 1.g, 2a.

次に具体的な作製例について説明する。単一モード光フ
ァ、イバとして、以下の構造のものを用りた。 。
Next, a specific example of production will be described. A single mode optical fiber with the following structure was used. .

約2.tx長の2本の上紀単−モード光ファイバの11
中央付近のプラスチック被覆材を除去した後、除去部を
平行に接触せしめ、酸素プロパン炎から成るミニトーチ
で局部的に加熱し、約2u長を融着。
Approximately 2. 11 of two Joki single-mode optical fibers of length tx
After removing the plastic covering near the center, the removed parts were brought into contact in parallel and heated locally with a mini-torch made of oxygen-propane flame to fuse approximately 2u length.

させた。つづいて加熱と同時に融着部を延伸して、融着
・延伸部を形成し、ファイバ形方向性結合器と2・・し
た。以上の工程中7アイパ端lから、波長1.81μm
のモニター光をコアガラス部21aに入射し、ファイバ
端1a lBaのコアガラス部からの出射光強度を監視
し、光結合比が所望の値(通常は50%、すなわち1:
1の等分割)になるように延伸5の度合を調節した。ま
た同時に、全出射光強度の変化から過剰損失をめた。こ
の結果、0.5 dB以下の低過剰損失の方向性結合器
が容易に得られ、0.2 dB以下の極低損失値を実現
することも困難ではなかった。なかには、0.0 cl
Bと過剰損失が10はとんど無いものも得られた。
I let it happen. Subsequently, the fused portion was stretched at the same time as heating to form a fused/stretched portion, and a fiber-type directional coupler 2 was formed. During the above process, the wavelength is 1.81 μm from the 7-eyeper end l.
The monitor light is input to the core glass part 21a, the intensity of the light emitted from the core glass part of the fiber end 1a lBa is monitored, and the optical coupling ratio is set to a desired value (usually 50%, that is, 1:
The degree of stretching 5 was adjusted so that the film was divided into equal parts of 1). At the same time, excessive loss was determined from changes in the total emitted light intensity. As a result, a directional coupler with a low excess loss of 0.5 dB or less was easily obtained, and it was not difficult to realize an extremely low loss value of 0.2 dB or less. Some contain 0.0 cl
B and excess loss of 10 were obtained.

なお比較参考のために、従来の第1図の構造の方向性結
合器を、以下の諸元の光ファイバを用いて作製してみた
ところ、 過剰損失はl −2dB程度と高く、0.5 dB程度
に低減化するためには、ファイバ外径をあらかじめHF
水溶液により60μm程度に減少しておく必2゜要があ
った。このように細い外径部分を含む光フ′アイバを精
度良く配列して融着するには、細心の注意が必要で、作
業動車は低下した。
For comparative reference, when a conventional directional coupler with the structure shown in Figure 1 was fabricated using an optical fiber with the following specifications, the excess loss was as high as l -2 dB, and was 0.5 In order to reduce the reduction to about dB, the outer diameter of the fiber must be HF
It was necessary to reduce the diameter to about 60 μm by using an aqueous solution. In order to accurately arrange and fuse optical fibers with such narrow outer diameter portions, great care was required, and the work vehicle was slowed down.

以上の構成は、直線偏波を主軸に沿って安定に保持する
複屈折性単一モード光ファイバを用い九5偏波保持性フ
ァイバ形方向性結合器にも拡張することができる。
The above configuration can be extended to a 95 polarization maintaining fiber type directional coupler using a birefringent single mode optical fiber that stably maintains linearly polarized waves along the principal axis.

第8図(a)は、低損失な偏波保持性ラアイバ形方向性
結合器の構成に用いることのできる複屈折性光ファイバ
の構造例を示し、第8図(b)はその屈折1【・率分布
形を示したものである。第8図(a)はいわゆる楕円ク
ラッド形の複屈折性光ファイバに対応する構造例であり
、81aはコアガラス部、81bは楕円形第1クラッド
ガラス部、81Cは第2クラッドガラス部である。Bl
bは大きな熱膨張係lj数をもつガラス組成を有し、コ
アガラス部81aの近傍に応力榛屈折を酵起する。第8
図(b)の屈折 1富分布形状5に示したように、第1
クラッド部は、第2クラッド部に比して大きな屈折率値
を有し、第2クラッド部に対しては、相対的にコア部と
し!・・(7) て働く。具体的な構造例を示すと以下の通りであする。
FIG. 8(a) shows an example of the structure of a birefringent optical fiber that can be used for constructing a low-loss polarization-maintaining liner type directional coupler, and FIG. 8(b) shows the refraction 1 [・This shows the rate distribution form. FIG. 8(a) is a structural example corresponding to a so-called elliptical clad birefringent optical fiber, in which 81a is a core glass portion, 81b is an elliptical first clad glass portion, and 81C is a second clad glass portion. . Bl
Glass b has a glass composition with a large thermal expansion coefficient lj number, and causes stress-induced refraction in the vicinity of the core glass portion 81a. 8th
As shown in refraction 1 wealth distribution shape 5 in figure (b), the first
The cladding part has a larger refractive index value than the second cladding part, and serves as a core part relatively to the second cladding part! ...(7) Work. A specific structural example is as follows.

この光ファイバはMOVD法により作製したものである
。 10 次に第8図(c)は、コアガラス部81aの両側に応力
付与部82aを有し、しかもコアガラス部81aは、第
1タラツドガラス部82b、第2クラッドガラス部82
cにとり囲まれている。具体的な構造例を示すと以下の
通りである。
This optical fiber was manufactured by the MOVD method. 10 Next, FIG. 8(c) shows that the core glass part 81a has stress applying parts 82a on both sides, and the core glass part 81a has a first cladding glass part 82b and a second cladding glass part 82.
It is surrounded by c. A specific structural example is shown below.

(8) 応力付与部と第2クラッド部間の比屈折率差=−0,1
%なお第8図(c)の光ファイバの屈折率分布形は第8
図(a)に示した。
(8) Relative refractive index difference between stress applying part and second cladding part = -0,1
%The refractive index distribution shape of the optical fiber in FIG. 8(c) is
It is shown in Figure (a).

この光ファイバは、VAD法により、コアガラス部、第
1クラッドガラス部から成るガラス母材を合成した後、
その周囲にさらにovpo法に第2クラッドガラス部を
堆積し、応力付与部位置を超音波加工により穴あけし、
穴あけ部に、VAD法で合用成した応力付与部ガラス−
を入れて、全体を線引きすることにより作製したもので
ある。
This optical fiber is produced by synthesizing a glass base material consisting of a core glass part and a first cladding glass part by the VAD method.
A second clad glass part is further deposited around it using the OVPO method, and a hole is drilled at the stress applying part position by ultrasonic machining.
Stress-applying glass synthesized by VAD method in the hole part
It was created by inserting a line and drawing the whole thing.

これらの偏波保持性の複屈折性光ファイバでは、方向性
結合器の構成に必要な融着・延伸工程に先だち、2本の
ファイバの複屈折主軸方向8Bを、1゛・館4図(a)
 # (blのように平行に整列させておくことにより
、融着・延伸部でも、主軸に沿った直線偏波状態が保存
される偏波保持性ファイバ形方向性結合器を構成するこ
とができる。なお41.42は複屈折性光ファイバであ
る。 !・・第4図(c)、 (d)はそれぞれ第4図
(a) 、 (b)の偏波保1持性ファイバ形方向性結
合器の融着・延伸部断面を示す。
In these polarization-maintaining birefringent optical fibers, prior to the fusion and stretching process necessary for configuring a directional coupler, the direction 8B of the birefringent principal axes of the two fibers is adjusted to 1゜. a)
# (By arranging them in parallel like bl, it is possible to construct a polarization-maintaining fiber-type directional coupler in which the linear polarization state along the main axis is preserved even in the fused/stretched part. Note that 41 and 42 are birefringent optical fibers. !...Figures 4(c) and 4(d) show the polarization-maintaining fiber shape orientation of Figures 4(a) and (b), respectively. A cross section of the fused/stretched part of the coupler is shown.

以上の構造例に示した複屈折性光ファイバからは、過剰
損失0.8 dB程度以下の方向性結合器が5再現性良
く得られ、直線偏波保存の良否を示す消光比は−15〜
−25dBと良好であった。これらの方向性結合器の入
出力ファイバ端には、光伝送用の従来の複屈折性光ファ
イバを接続して使用できることはもち論である。
From the birefringent optical fiber shown in the above structural example, a directional coupler with an excess loss of about 0.8 dB or less can be obtained with good reproducibility, and the extinction ratio, which indicates the quality of linear polarization preservation, is -15 to -15.
It was good at -25 dB. It goes without saying that conventional birefringent optical fibers for optical transmission can be connected to the input and output fiber ends of these directional couplers.

(発明の効果) 以上説明したように、本発明のファイバ形方向性結合器
は、第1クラッドガラス部の周囲に屈折率の低い第2ク
ラッドガラス部を有する単一モード光ファイバを用いて
方向性結合器を構成するの15で、きわめて低損失なフ
ァイバ形方向性結合器、偏波保持性ファイバ形方向性結
合器を再現性良く作製することができ、単一モード光フ
ァイバ通信や、光フアイバセンサの分野に応用して効用
が大である。 10 以上の実施例では、2本の単一モード光ファイ゛バを用
いた、いわゆる(2XB)形の方向性結合器について説
明したが、本発明は8本のファイバを用いた[8X8]
形方向性結合器の構成にも有効である。
(Effects of the Invention) As explained above, the fiber type directional coupler of the present invention uses a single mode optical fiber having a second clad glass portion with a low refractive index around a first clad glass portion. With 15 components of the optical coupler, extremely low-loss fiber-type directional couplers and polarization-maintaining fiber-type directional couplers can be manufactured with good reproducibility. It is highly effective when applied to the field of fiber sensors. 10 In the above embodiments, a so-called (2XB) type directional coupler using two single mode optical fibers was explained, but the present invention uses an [8X8] type directional coupler using eight fibers.
It is also effective in configuring a shaped directional coupler.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(alは従来のファイバ形方向性結合器の構成図
、第1図(blは第1図(a)のA−ム′における断面
図、第1図(c)は長距離伝送用の単一モード光ファイ
バの屈折率分布図、第2図(a)は本発明のファイ1υ
バ形方向性結合器の構成側図、第2図(blは第2図(
atのB−B’における断面図、第2図(clは第2図
(a)の単一モード光ファイバの屈折率分布図、第8図
(a) 、 (c)は本発明のファイバ形方向性結合器
の構成に用いる複屈折性光ファイバの構造側図、第8図
15(b) 、 (a)はそれぞれ第8図(al 、 
(clの屈折率分布図を示す図、第4図(a) * (
b)は偏波保持性方向性結合器 (の構成に必要な複屈
折主軸配列側図、第4図(C)。 (d)はそれぞれ第4図(a) 、 (blの偏波保持
性方向性結合器の融着・延伸部所面図である。 2・・
(11) 1−16.2−Fa・・・単一モード光ファイバ、 1
B・・・融着・延伸部、4a・・・コアガラス部、。 4b・・・クラッドガラス部、4・・・融着・延伸部断
面、ト・・単一モード光ファイバ屈折率分布形、21a
・・・コアガラス部、jlllb・・・第1クラツドガ
5ラス部、21c・・・第2クラッドガラス部、81a
・・・コアガラス部、81b・・・第1クラッドガラス
部、81c・・・第2クラッドガラス部、82a・・・
応力付与部、82b・・・第1クラッドガラス部、82
c・・・第2クラッドガラス部、8B・・・主1G軸方
向、41.42・・・複屈折性光ファイバ。 (1z ) E Kデ Oつ 74−−
Figure 1 (al is a configuration diagram of a conventional fiber-type directional coupler, Figure 1 (bl is a cross-sectional view taken along A-m' in Figure 1 (a), Figure 1 (c) is a diagram for long-distance transmission. Fig. 2(a) is a refractive index distribution diagram of a single mode optical fiber of the present invention.
Side view of the configuration of a bar-shaped directional coupler, Figure 2 (bl is Figure 2 (
2 (cl is a refractive index distribution diagram of the single mode optical fiber of FIG. 2 (a), and FIGS. 8 (a) and (c) are the fiber shapes of the present invention. Structure side views of the birefringent optical fiber used in the configuration of the directional coupler, FIG. 8(b) and (a) are respectively shown in FIG. 8(al,
(Figure showing the refractive index distribution map of cl, Figure 4(a) *(
b) is a side view of the birefringent principal axis arrangement required for the configuration of a polarization-maintaining directional coupler (Fig. 4 (C)). It is a top view of the fusion/stretching part of the directional coupler. 2.
(11) 1-16.2-Fa...single mode optical fiber, 1
B... Fusion/stretching part, 4a... Core glass part. 4b...Clad glass part, 4...Fusion/stretching part cross section, G...Single mode optical fiber refractive index distribution type, 21a
...Core glass part, jllllb...First clad glass 5 lath part, 21c...Second clad glass part, 81a
... Core glass part, 81b... First clad glass part, 81c... Second clad glass part, 82a...
Stress applying portion, 82b...first clad glass portion, 82
c... Second clad glass portion, 8B... Main 1G axis direction, 41.42... Birefringent optical fiber. (1z) E K de Otsu 74--

Claims (1)

【特許請求の範囲】 1 複数本の単一モード光ファイバの二部如融着・延伸
されて成るファイバ形方向性結合器5において、単一モ
ード光ファイバがコアガラス部とこれをとり囲む第1タ
ラツドガラス部と、さらに第1クラッドガラス部をとり
囲み、屈折率が第1クラッドガラス部より低い第2クラ
ッドガラス部とから成ることを特徴とすI。 るファイバ形方向性結合器。 2 単一モード光ファイバが、複屈折性光ファイバであ
り、その主軸方向が融着・延伸部で、互いに平行になる
ように融着・延伸されて成ることを特徴とする特許請求
の範囲第11iii記1′・載のファイバ形方向性結合
器。
[Scope of Claims] 1. In a fiber-type directional coupler 5 made up of a plurality of single-mode optical fibers fused and stretched in two parts, the single-mode optical fiber has a core glass part and a second part surrounding the core glass part. I is characterized by comprising a first clad glass part and a second clad glass part surrounding the first clad glass part and having a refractive index lower than that of the first clad glass part. A fiber type directional coupler. 2. Claim No. 2, characterized in that the single mode optical fiber is a birefringent optical fiber, which is fused and stretched so that its principal axis is parallel to each other at the fused and stretched portion. The fiber type directional coupler described in 11iii.1'.
JP59009947A 1984-01-25 1984-01-25 Fiber type directional coupler Pending JPS60154215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59009947A JPS60154215A (en) 1984-01-25 1984-01-25 Fiber type directional coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59009947A JPS60154215A (en) 1984-01-25 1984-01-25 Fiber type directional coupler

Publications (1)

Publication Number Publication Date
JPS60154215A true JPS60154215A (en) 1985-08-13

Family

ID=11734176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59009947A Pending JPS60154215A (en) 1984-01-25 1984-01-25 Fiber type directional coupler

Country Status (1)

Country Link
JP (1) JPS60154215A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108009A (en) * 1988-10-18 1990-04-19 Fujikura Ltd Optical fiber coupler
JPH02139504A (en) * 1988-11-21 1990-05-29 Fujikura Ltd Optical fiber and optical fiber tap using the same
US4983195A (en) * 1990-01-04 1991-01-08 Corning Incorporated Method of making fiber optic coupler with longitudinal protrusions
JPH04322207A (en) * 1991-04-23 1992-11-12 Japan Aviation Electron Ind Ltd Optical fiber coupler and its manufacture
EP0681196A1 (en) * 1994-05-05 1995-11-08 Corning Incorporated Fiber optic coupler exhibiting low nonadiabatic loss
FR2850170A1 (en) * 2003-01-21 2004-07-23 Fujikura Ltd Wavelength division multiplex fiber optic coupler, has optical fibers of different wavelengths assembled together at level of part elongated by fusion, where propagation constant difference between fibers has specified value
EP1533634A1 (en) * 2002-07-09 2005-05-25 Fujikura Ltd. Optical fiber, optical fiber coupler including the same, erbium loaded optical fiber amplifier and light guide
US7346258B2 (en) 2002-07-09 2008-03-18 Fujikura Ltd. Optical fiber and optical fiber coupler, erbium-doped optical fiber amplifier, and optical waveguide using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429656A (en) * 1977-08-10 1979-03-05 Hitachi Ltd Optical fiber directivity coupler
JPS57169719A (en) * 1981-04-14 1982-10-19 Toshiba Corp Molding method and device for optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429656A (en) * 1977-08-10 1979-03-05 Hitachi Ltd Optical fiber directivity coupler
JPS57169719A (en) * 1981-04-14 1982-10-19 Toshiba Corp Molding method and device for optical fiber

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108009A (en) * 1988-10-18 1990-04-19 Fujikura Ltd Optical fiber coupler
JPH02139504A (en) * 1988-11-21 1990-05-29 Fujikura Ltd Optical fiber and optical fiber tap using the same
US4983195A (en) * 1990-01-04 1991-01-08 Corning Incorporated Method of making fiber optic coupler with longitudinal protrusions
JPH04322207A (en) * 1991-04-23 1992-11-12 Japan Aviation Electron Ind Ltd Optical fiber coupler and its manufacture
USRE38586E1 (en) 1994-05-05 2004-09-14 Corning Incorporated Fiber optic coupler exhibiting low nonadiabatic loss
EP0681196A1 (en) * 1994-05-05 1995-11-08 Corning Incorporated Fiber optic coupler exhibiting low nonadiabatic loss
EP1533634A1 (en) * 2002-07-09 2005-05-25 Fujikura Ltd. Optical fiber, optical fiber coupler including the same, erbium loaded optical fiber amplifier and light guide
EP1533634A4 (en) * 2002-07-09 2006-11-15 Fujikura Ltd Optical fiber, optical fiber coupler including the same, erbium loaded optical fiber amplifier and light guide
US7346258B2 (en) 2002-07-09 2008-03-18 Fujikura Ltd. Optical fiber and optical fiber coupler, erbium-doped optical fiber amplifier, and optical waveguide using the same
US7406236B2 (en) 2002-07-09 2008-07-29 Fujikura Ltd. Optical fiber and optical fiber coupler, erbium-doped optical fiber amplifier, and optical waveguide using the same
US7711238B2 (en) 2002-07-09 2010-05-04 Fujikura Ltd. Optical fiber and optical fiber coupler, erbium-doped optical fiber amplifier, and optical waveguide using the same
FR2850170A1 (en) * 2003-01-21 2004-07-23 Fujikura Ltd Wavelength division multiplex fiber optic coupler, has optical fibers of different wavelengths assembled together at level of part elongated by fusion, where propagation constant difference between fibers has specified value
GB2397900B (en) * 2003-01-21 2006-05-24 Fujikura Ltd Optical fiber coupler and optical fiber therefor
CN100394233C (en) * 2003-01-21 2008-06-11 株式会社藤仓 Optical fibre coupler and optical fibre in it
US7450802B2 (en) 2003-01-21 2008-11-11 Fujikura Ltd. Optical fiber coupler and optical fiber therefor

Similar Documents

Publication Publication Date Title
US4083625A (en) Optical fiber junction device
JPH01237507A (en) Absolute single polarizing optical fiber
JP4129903B2 (en) Method for manufacturing fused mode division directional coupler
JPS60154215A (en) Fiber type directional coupler
JPS6053285B2 (en) Constant polarization optical fiber
JPH0574804B2 (en)
JPS63129307A (en) Star coupler and its manufacture
GB2199423A (en) Fibre optic transfer devices
US20240085618A1 (en) Polarization maintaining optical fiber and polarization maintaining optical fiber manufacturing method
JPS58110439A (en) Manufacture of constant polarization type optical fiber
JP2828276B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JP2828251B2 (en) Optical fiber coupler
JP2805533B2 (en) Fiber fusion type optical branch coupler
JPH0225806A (en) Polarization maintaining optical fiber and manufacture thereof
JPS61228404A (en) Optical fiber for constant polarized wave
JPH01148724A (en) Production of polarization retaining fiber
JPH01287603A (en) Absolute single mode polarization optical fiber
JPH04322207A (en) Optical fiber coupler and its manufacture
JPH0221563B2 (en)
JPS62148333A (en) Preparation of constant polarization optical fiber
JPS61279810A (en) Polarization maintaining optical fiber
JPH05150135A (en) Connecting structure of optical fiber and/or optical waveguide
JPS63216008A (en) Wide-wavelength region single-mode fused coupler
JPH03233411A (en) Optical fiber coupler
JPS6235307A (en) Optical coupler