JPS63129307A - Star coupler and its manufacture - Google Patents
Star coupler and its manufactureInfo
- Publication number
- JPS63129307A JPS63129307A JP27624886A JP27624886A JPS63129307A JP S63129307 A JPS63129307 A JP S63129307A JP 27624886 A JP27624886 A JP 27624886A JP 27624886 A JP27624886 A JP 27624886A JP S63129307 A JPS63129307 A JP S63129307A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- star coupler
- cores
- core
- core optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 239000013307 optical fiber Substances 0.000 claims abstract description 51
- 238000005253 cladding Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 5
- 238000005520 cutting process Methods 0.000 claims description 2
- 230000007423 decrease Effects 0.000 abstract description 2
- 230000000644 propagated effect Effects 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 9
- 239000010410 layer Substances 0.000 description 8
- 238000010168 coupling process Methods 0.000 description 7
- 230000008878 coupling Effects 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 239000000835 fiber Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000007526 fusion splicing Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/2804—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
- G02B6/2808—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/2804—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
- G02B6/2856—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers formed or shaped by thermal heating means, e.g. splitting, branching and/or combining elements
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は基本性能の高い新規なスターカプラとその製造
方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a novel star coupler with high basic performance and a method for manufacturing the same.
層重9退亘
先導波路により形成される非能動型光素子として最も重
要なもののひとつに光スターカプラが挙げられる。スタ
ーカプラは、通常複数の入射ポートと、この入射ボート
の何れかから入射された光を均一に伝播する光混合部と
、該光混合部の出射光を各々が均等に出射する複数の出
射ポートから形成され、入射ポートの何れかに注入され
た光信号を各出射ポートから均等な出力で出射するよう
に構成されている。An optical star coupler is one of the most important non-active optical devices formed by a nine-layer, receding waveguide. A star coupler usually has a plurality of input ports, a light mixing section that uniformly propagates the light incident from one of the input ports, and a plurality of output ports that each uniformly outputs the light emitted from the light mixing section. It is configured such that an optical signal injected into any of the input ports is outputted from each output port with equal output.
このようなスターカプラとしては、テーパファイバ間の
結合を利用する分布結合型と、光混合部材における光の
分配を利用する集中結合型とに大別できるが、現状では
、複数のテーパファイバを捩り合わせて融着したものが
よく利用されている。Such star couplers can be roughly divided into distributed coupling types that utilize coupling between tapered fibers and concentrated coupling types that utilize light distribution in an optical mixing member. Those fused together are often used.
これは、この型のものが挿入損失が低く作製が比較的容
易であることによる。This is because this type has low insertion loss and is relatively easy to manufacture.
第4図並びに第5図は、従来公知のスターカプラの一般
的な構成を示すものである。4 and 5 show the general configuration of a conventionally known star coupler.
第4図に示したスターカプラは、複数の光ファイバの中
央部を一体化して作製される。即ち、この構造のスター
カプラは、複数の独立した光ファイバaを平行にあるい
は互いにねじりを加えて束ねた後、中央部M1を加熱し
ながら延伸することにより、クラッドの一部を溶かして
コア間を自互の距;准を短くすることにより光混合部を
形成して作製される。The star coupler shown in FIG. 4 is manufactured by integrating the central portions of a plurality of optical fibers. That is, in the star coupler having this structure, a plurality of independent optical fibers a are bundled in parallel or with each other twisted, and then stretched while heating the central part M1, melting a part of the cladding and creating a gap between the cores. A light mixing section is formed by shortening the mutual distance between the two.
第5図は、やはり従来公知のスターカプラの異なる態様
の構成を示すものである。即ち、高屈折率層M2を低屈
折率層m、m’で挟んだスラブ型の光導波路の両端に、
各々複数本の光ファイバP、Qを結合して入射部並びに
出射部を形成する。FIG. 5 shows a different configuration of a conventionally known star coupler. That is, at both ends of a slab type optical waveguide in which a high refractive index layer M2 is sandwiched between low refractive index layers m and m',
A plurality of optical fibers P and Q are respectively coupled to form an input section and an output section.
これらの従来のスターカプラにおいては、一方の光ファ
イバのいずれかから入射された光は、中央の一体化部分
M1あるいはスラブ型導波路部分M2においてミキシン
グされてスラブ型光導波路内で強度分布が均一になり、
このミキシング部の他端に接続された複数の光ファイバ
のそれぞれに、理想的には均一な強度の光を送出する。In these conventional star couplers, light incident from one of the optical fibers is mixed in the central integrated part M1 or the slab waveguide part M2, and the intensity distribution is uniform within the slab waveguide. become,
Ideally, light of uniform intensity is transmitted to each of the plurality of optical fibers connected to the other end of the mixing section.
発明が解決しようとする問題点
スターカプラの特性について、最も重視されることは、
まず挿入損失が低いことであり、また、分岐比の制御性
に優れることである。更に、所定の諸元を安定に再現し
得る製造方法が確立されていること等である。Problems to be Solved by the Invention The most important characteristics of star couplers are:
First, the insertion loss is low, and the controllability of the branching ratio is excellent. Furthermore, a manufacturing method that can stably reproduce predetermined specifications has been established.
前述した従来のスターカプラについてこの点を検討する
と、第4図に示した複数の光ファイバを融着して製造す
るスターカプラでは、融着前の個々のファイバの相互位
置、延伸部の形状、長さ等1重々のパラメータによって
分岐比が左右されるため、分岐比の制御性が極めて悪い
という問題がある。Considering this point regarding the conventional star coupler mentioned above, in the star coupler manufactured by fusing a plurality of optical fibers as shown in FIG. Since the branching ratio is influenced by multiple parameters such as length, there is a problem in that the controllability of the branching ratio is extremely poor.
一方、第5図に示した構造のスターカプラでは、薄いス
ラブ型導波路M2に光フアイバ端部を結合させるため、
第6図に斜線にて示すように結合部での導波路とコアの
重なり面積が小さく、損失の少ない結合を実現すること
が難しい。このため、この形式のスターカプラは、実際
上は挿入損失が大きくなる。また、この構造におけるも
う1つの問題は、複数の入射ファイバ並びに出射ファイ
バを各光フアイバ毎にスラブ導波路へ接続する必要があ
り、融着接続が可能な光フアイバ同士の結合に比べると
製造工数が極めて多いことである。On the other hand, in the star coupler having the structure shown in FIG. 5, in order to couple the optical fiber end to the thin slab waveguide M2,
As shown by diagonal lines in FIG. 6, the overlapping area of the waveguide and core at the coupling portion is small, making it difficult to realize coupling with low loss. Therefore, this type of star coupler actually has a large insertion loss. Another problem with this structure is that it is necessary to connect multiple input fibers and output fibers to the slab waveguide for each optical fiber, which requires more man-hours to manufacture than connecting optical fibers that can be fusion spliced. This is extremely common.
そこで、本発明は上記従来技術の問題点を解決し、製造
が比較的容易であり且つ性能の安定した新規なスターカ
プラとこのスターカプラを製造する方法を提供すること
にある。SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to solve the problems of the prior art described above, and to provide a new star coupler that is relatively easy to manufacture and has stable performance, and a method for manufacturing this star coupler.
問題点を解決するための手段
即ち、本発明に従い、複数のコアを被覆してクラッド材
により一体とした所定長さの多芯コア光ファイバの両端
部をそれぞれ入射部並びに出射部とし、該多芯コア光フ
ァイバの中央部を延伸・減径して近接した前記各コアを
ミキシング部として構成されることを特徴とするスター
カプラが提供される。Means for solving the problem, that is, according to the present invention, both ends of a multi-core optical fiber of a predetermined length which is coated with a plurality of cores and integrated with a cladding material are used as an input part and an output part, respectively. A star coupler is provided, characterized in that the center portion of a core optical fiber is stretched and diameter-reduced, and each of the adjacent cores is configured as a mixing portion.
また、上記の本発明に従うスターカプラを製造する方法
として、複数のコアをクラッド材により被覆して一体と
して多芯コア光ファイバを形成し、所定長さに切断した
該多芯コア光ファイバの中央部を加熱・延伸し、該延伸
部分において前記各コアを相互に近接させることにより
ミキシング部を形成することを特徴とするスターカプラ
の製造方法が提供される。Further, as a method for manufacturing the star coupler according to the present invention, a plurality of cores are coated with a cladding material to form a multicore optical fiber integrally, and the center of the multicore optical fiber is cut into a predetermined length. There is provided a method for manufacturing a star coupler, characterized in that a mixing part is formed by heating and stretching a part and bringing the respective cores close to each other in the stretched part.
作用
本発明に従うスターカプラの製造方法は、複数のコアを
有する一体の多芯コア光ファイバを延伸してミキシング
部を形成することを最も主要な特徴としている。Function: The main feature of the method for manufacturing a star coupler according to the present invention is that a mixing section is formed by drawing an integral multi-core optical fiber having a plurality of cores.
こうして作製されたスターカプラは、第5図に示した従
来のスターカプラと基本的には同じであるが、従来のス
ターカプラが個別の光ファイバの一部を一体化して作製
しているのに対して、本発明に従う方法では、予め一体
に形成されている多芯コア光ファイバによりミキシング
部を形成する点が異なっている。The star coupler manufactured in this way is basically the same as the conventional star coupler shown in Fig. 5, but whereas the conventional star coupler is manufactured by integrating parts of individual optical fibers. On the other hand, the method according to the present invention is different in that the mixing section is formed by a multi-core optical fiber that is integrally formed in advance.
即ち、延伸前の多芯コア光ファイバは、従来公知の多芯
°コア光ファイバ製造技術によって、コア(自互の配置
がプリフォームの段階で高精度に決定できる。本発明に
よる製造方法では、これを加熱延伸して光ファイバのコ
ア間距離を近づけるので、分岐比を左右する条件は延伸
の条件のみとなり、製品の各特性の制御性およびその再
現性は著しく向上する。That is, the multi-core optical fiber before being drawn is manufactured using conventionally known multi-core optical fiber manufacturing technology, so that the arrangement of the cores (the mutual arrangement of the cores can be determined with high precision at the preform stage. In the manufacturing method according to the present invention, Since this is heated and stretched to bring the distance between the cores of the optical fiber closer, the only condition that affects the branching ratio is the stretching condition, and the controllability and reproducibility of each characteristic of the product is significantly improved.
また、本発明の方法により作製されるスターカプラは、
光ファイバの結合により形成するので・、スターカプラ
による挿入損失も極めて小さい。Furthermore, the star coupler produced by the method of the present invention is
Since it is formed by coupling optical fibers, the insertion loss due to the star coupler is also extremely small.
尚、このスターカプラの入射部あるいは出射部の形成に
ついては、各種の態様が考えられる。即ち、最初に形成
する多芯コア光ファイバが、単芯コア光ファイバを複数
束ねたのと同等のあるいはそれに近い径を有している場
合は、スターカプラの両端部で、それぞれが単一のコア
を含むように、伝播光軸に平行にクラッド層を切って分
割することが有利である。こうして分割して形成された
スターカプラの入出力部は、クラッド層の断面形状こそ
異なるものの、クラッド層はコア層との界面においてそ
の本来の機能を果たすので、クラッド層の断面形状が異
形であることに格別問題はない。Note that various forms can be considered for forming the entrance part or the exit part of this star coupler. In other words, if the initially formed multi-core optical fiber has a diameter equivalent to or close to that of a bundle of single-core optical fibers, each end of the star coupler has a single It is advantageous to cut and divide the cladding layer parallel to the propagation optical axis so as to contain the core. Although the input/output parts of the star coupler formed by dividing in this way have different cross-sectional shapes of the cladding layer, the cladding layer performs its original function at the interface with the core layer, so the cross-sectional shape of the cladding layer is irregular. There is no particular problem with that.
従って、融着接続等の取り扱いにおいて通常の単芯コア
光ファイバと同等に取り扱うことができる。Therefore, it can be handled in the same way as a normal single-core optical fiber in handling such as fusion splicing.
また、多芯コア光ファイバのままに、この端面に対して
光学的に縮小した光を入射し、また、出射光を光学的に
拡大して個別に取り扱うこともできる。更に、径の暫減
あるいは暫増する複数の先導波路を備え、この導波路の
径が小さい側での導波路入射端の間隔が多芯コア光ファ
イバと等しい光学部品を作製し、これを介して前述のス
ターカプラと通常の光ファイバとを接続することもでき
る。Further, it is also possible to input optically reduced light to the end face of the multi-core optical fiber as it is, and to optically enlarge the output light and handle it individually. Furthermore, an optical component is fabricated that includes a plurality of leading waveguides whose diameters gradually decrease or increase, and the spacing between the waveguide input ends on the smaller diameter side of the waveguide is equal to that of a multicore optical fiber. It is also possible to connect the star coupler described above to a normal optical fiber.
即ち、これらの各種態様は、従来多芯コア光ファイバに
対して適用された周知の結合技術をいずれも利用するこ
とができる。That is, these various aspects can utilize any of the well-known coupling techniques conventionally applied to multi-core optical fibers.
実施例
以下に図面を参照して本発明についてより具体的に詳述
するが、以下に示すものは本発明の一実施例に過ぎず、
本発明の技術的範囲を何等限定するものではない。EXAMPLES The present invention will be described in more detail below with reference to the drawings, but what is shown below is only one example of the present invention.
This is not intended to limit the technical scope of the present invention in any way.
第1図(a)は、本発明に従うスターカプラの一実施例
を示すものである。FIG. 1(a) shows an embodiment of a star coupler according to the present invention.
外観上は中央部が減径した所定長さの多芯コア光ファイ
バである。即ち、図中の手前側端面に見られるように、
複数の互いに平行なコアpをクラッドqによって一体に
形成した多芯コア光ファイバである。中央部では、外観
上は所定長さに亘って径が減縮しており、内部ではコア
pが減径していると同時に、コア相互の間隔も近接して
いる。In appearance, it is a multicore optical fiber of a predetermined length with a reduced diameter in the center. That is, as seen on the front end surface in the figure,
This is a multicore optical fiber in which a plurality of mutually parallel cores p are integrally formed with a cladding q. In the central part, the diameter is reduced and contracted over a predetermined length in appearance, and the cores p are reduced in diameter inside, and at the same time, the distance between the cores is close to each other.
従って、コアpの何れかに注入された光は、この中央部
においてコアpの相互に漏洩してコアpの各々に均一に
伝播するようになる。かくしてスターカプラの他端から
は、各コアに均一な光が出射される。Therefore, light injected into any of the cores p leaks from the cores p to each other at this central portion and propagates uniformly to each core p. Uniform light is thus emitted from the other end of the star coupler to each core.
第1図ら)は、第1図(a)に示したスターカプラを更
に加工したものであり、入射部および出射部が、各コア
毎に分割して形成されている。これは、後述するように
、第1図(a)に示したスターカプラの両端部を切開し
て分割したものであり、この入射部あるいは出射部の端
部を各々通常の光ファイバに通常に溶着することによっ
てシステムへの組み込みが可能である。The star coupler shown in FIGS. 1A and 1B is a further processed version of the star coupler shown in FIG. As will be described later, this is a star coupler shown in Figure 1(a) that is cut and divided at both ends, and the ends of the input section or output section are connected to ordinary optical fibers. It can be integrated into the system by welding.
これらのスターカプラは以下の工程で作製される。These star couplers are produced in the following steps.
まず、複数の平行なコアを均等に配列した多芯コア光フ
ァイバを作製する。これを作製する技術は、既に公知の
ものであるが、スターカプラの材料として作製する場合
は、通常の多芯コア光ファイバよりも径を大きく、即ち
、各コアの径が通常の光ファイバと同じ径であるような
多芯コア光ファイバとすれば、後述のように取り扱いが
容易である。First, a multi-core optical fiber in which a plurality of parallel cores are evenly arranged is produced. The technology for producing this is already known, but when producing it as a star coupler material, the diameter of each core is larger than that of a normal multi-core optical fiber, that is, the diameter of each core is the same as that of a normal optical fiber. Multi-core optical fibers with the same diameter are easy to handle, as will be described later.
次に、このような多芯コア光ファイバを所定の長さに切
り取り、その中央部を、第2図に示すようにアセチレン
バーナーで加熱して軟化し、これを両端から引っ張るこ
とにより中央部を延伸させる。こうして完成したのが、
第1図(a)に示したスターカプラである。Next, such a multi-core optical fiber is cut to a predetermined length, the central part is heated with an acetylene burner to soften it, and the central part is pulled from both ends as shown in Figure 2. Stretch. This is how it was completed.
This is the star coupler shown in FIG. 1(a).
また、第3図に点線で示すように、第1図(a)に示し
たスターカプラの各端部を、各々に1本ずつのコアが含
まれるように分割する。このときのクラッド層の切断は
、グイシングツ−を用いて高精度に行うことができる。Further, as shown by dotted lines in FIG. 3, each end of the star coupler shown in FIG. 1(a) is divided so that each end portion contains one core. At this time, the cladding layer can be cut with high precision using a cutting tool.
こうして完成したのが、第1図ら)に示したスターカプ
ラである。The star coupler shown in Figure 1, etc. was completed in this way.
発明の効果
本発明に従うスターカプラの製造方法は制御性、再現性
が良く、量産に適している。Effects of the Invention The method for manufacturing a star coupler according to the present invention has good controllability and reproducibility, and is suitable for mass production.
従って、この製造方法に従って作製されたスターカプラ
は、安定に高性能を維持している。Therefore, the star coupler manufactured according to this manufacturing method stably maintains high performance.
また、本発明に従うスターカプラは、その特徴的な製造
方法に基づき、光ファイバを元に作製しているので、挿
入損失も小さく、また外寸も小さい。Further, since the star coupler according to the present invention is manufactured based on an optical fiber based on its characteristic manufacturing method, the insertion loss is small and the outer size is also small.
また、取り扱いにおいても、従来のスターカプラと同様
に扱うことが可能な上に、従来多芯コア光ファイバに適
用できる各種の技術を応用することができる。In addition, it can be handled in the same way as a conventional star coupler, and various techniques that can be applied to conventional multi-core optical fibers can be applied.
かくして、本発明により、光通信等の分野で必要な多対
子の分岐素子を安価に供給できるようになる。Thus, the present invention makes it possible to supply multi-pair branching elements required in fields such as optical communications at low cost.
第1図(a)は、本発明に従うスターカプラの構成を示
す斜視図であり、
第1図ら)は、本発明に従うスターカプラの他の態様を
示す斜視図であり、
第2図は、第1図(a)に示したスターカプラの製造方
法を説明する図であり、
第3図は、第1図ら)に示したスターカプラの製造方法
を説明する図であり、
第4図は、従来用いられていたスターカプラの代表的な
構成の一例を示すものであり、第5図は、従来用いられ
ていたスターカプラの代表的な構成の他の一例を示すも
のであり、第6図は、第5図に示した従来のスターカプ
ラにおける光導波路と光ファイバとの接合状況を説明す
る図である。
〔主な参照符号〕
p・・コア、
q・・クラッド、
a・・単芯光ファイバ、
M 1、M2 ・・光混合部、
P・・入射側単芯光ファイバ、
Q・・出射側単芯光ファイバFIG. 1(a) is a perspective view showing the configuration of a star coupler according to the present invention, FIG. 1(a) is a perspective view showing another aspect of the star coupler according to the present invention, and FIG. 1(a); FIG. 3 is a diagram illustrating a method for manufacturing the star coupler shown in FIG. 1(a); FIG. This figure shows an example of a typical configuration of a star coupler that has been used in the past, and FIG. 5 shows another example of a typical configuration of a star coupler that has been used in the past. FIG. 6 is a diagram illustrating a state of joining of an optical waveguide and an optical fiber in the conventional star coupler shown in FIG. 5. [Main reference symbols] p...core, q...cladding, a...single-core optical fiber, M1, M2...light mixing section, P...single-core optical fiber on the input side, Q...single-core optical fiber on the output side core optical fiber
Claims (4)
た所定長さの多芯コア光ファイバの両端部をそれぞれ入
射部並びに出射部とし、該多芯コア光ファイバの中央部
を延伸・減径して近接した前記各コアをミキシング部と
して構成されることを特徴とするスターカプラ。(1) Both ends of a multi-core optical fiber of a predetermined length covered with a plurality of cores and integrated with a cladding material are used as an input part and an output part, respectively, and the central part of the multi-core optical fiber is stretched and reduced. A star coupler characterized in that each of the cores that are radially close to each other is configured as a mixing section.
ぞれが1本のコアを含むように分離されていることを特
徴とする特許請求の範囲第1項に記載のスターカプラ。(2) The star coupler according to claim 1, wherein the multi-core optical fiber is separated at both ends so that each end portion includes one core.
て多芯コア光ファイバを形成し、所定長さに切断した該
多芯コア光ファイバの中央部を加熱・延伸し、該延伸部
分において前記各コアを相互に近接させることによりミ
キシング部を形成することを特徴とするスターカプラの
製造法。(3) A multicore optical fiber is formed by covering a plurality of cores with a cladding material, and the central part of the multicore optical fiber cut into a predetermined length is heated and stretched, and the stretched part is A method for manufacturing a star coupler, characterized in that a mixing section is formed by bringing each core close to each other.
1本のコアを含むように前記クラッド層を切断して分離
することを特徴とする特許請求の範囲第3項に記載のス
ターカプラの製造法。(4) The star coupler according to claim 3, wherein both ends of the multi-core optical fiber are separated by cutting the cladding layer so that each end portion includes one core. manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27624886A JPS63129307A (en) | 1986-11-19 | 1986-11-19 | Star coupler and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27624886A JPS63129307A (en) | 1986-11-19 | 1986-11-19 | Star coupler and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63129307A true JPS63129307A (en) | 1988-06-01 |
Family
ID=17566771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27624886A Pending JPS63129307A (en) | 1986-11-19 | 1986-11-19 | Star coupler and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63129307A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5175779A (en) * | 1989-03-20 | 1992-12-29 | British Telecommunications Public Limited Company | Method of forming an optical fibre coupler and a coupler so formed |
US5231410A (en) * | 1989-08-03 | 1993-07-27 | Nippon Sheet Glass Co., Ltd. | Window glass antenna for a motor vehicle |
US5307076A (en) * | 1991-11-05 | 1994-04-26 | Nippon Sheet Glass Co., Ltd. | Window glass antenna device |
JPH0636007U (en) * | 1991-01-31 | 1994-05-13 | 京セラ株式会社 | Optical star coupler |
US5454057A (en) * | 1994-03-15 | 1995-09-26 | Fujitsu Limited | Method for fabricating star coupler for interconnecting optical fibers and a star coupler |
US7425926B2 (en) | 2004-07-21 | 2008-09-16 | Asahi Glass Company, Limited | High frequency wave glass antenna for an automobile |
-
1986
- 1986-11-19 JP JP27624886A patent/JPS63129307A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5175779A (en) * | 1989-03-20 | 1992-12-29 | British Telecommunications Public Limited Company | Method of forming an optical fibre coupler and a coupler so formed |
US5231410A (en) * | 1989-08-03 | 1993-07-27 | Nippon Sheet Glass Co., Ltd. | Window glass antenna for a motor vehicle |
JPH0636007U (en) * | 1991-01-31 | 1994-05-13 | 京セラ株式会社 | Optical star coupler |
US5307076A (en) * | 1991-11-05 | 1994-04-26 | Nippon Sheet Glass Co., Ltd. | Window glass antenna device |
US5454057A (en) * | 1994-03-15 | 1995-09-26 | Fujitsu Limited | Method for fabricating star coupler for interconnecting optical fibers and a star coupler |
US7425926B2 (en) | 2004-07-21 | 2008-09-16 | Asahi Glass Company, Limited | High frequency wave glass antenna for an automobile |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5782104B2 (en) | Method and apparatus for low loss, mode field matched coupling to multi-core fiber | |
CA1114661A (en) | Low-loss star couplers for optical fiber system | |
US4400055A (en) | Optical power distributor and method for manufacturing the same | |
CA2523930A1 (en) | Method of making fiber optic couplers with precise positioning of fibers | |
EP0840148B1 (en) | Optical fibre coupler and a fabrication method for the same | |
JPH0224607A (en) | Manufacture of optical multiplexer/demultiplexer | |
EP0486297A2 (en) | Optical fiber coupler | |
US5035480A (en) | Star-couplers with biconical mixing elements and methods for making the same | |
JPS63129307A (en) | Star coupler and its manufacture | |
EP0576299A2 (en) | Optical couplers | |
US5454057A (en) | Method for fabricating star coupler for interconnecting optical fibers and a star coupler | |
JPS60154215A (en) | Fiber type directional coupler | |
JP2879266B2 (en) | Broadband optical fiber coupler | |
JP3009746B2 (en) | Optical fiber coupler and manufacturing method thereof | |
JP2866487B2 (en) | Optical fiber coupler | |
JPH0193707A (en) | Optical fiber coupler | |
JPH0815556A (en) | Broad band optical fiber coupler and its production | |
US6839490B2 (en) | Method of making sequential coupler arrangements and resulting devices | |
JPH02242204A (en) | Optical fiber coupler | |
JPH11167041A (en) | Multi-branch optical coupler | |
JPH0667057A (en) | Optical fiber coupler maintaining plane of polarization | |
JPH03233411A (en) | Optical fiber coupler | |
JPS62164009A (en) | Production of optical distributor | |
JP2000206361A (en) | Optical fiber type multi-branch coupler, and manufacture thereof | |
JPS6232444B2 (en) |