JPH0685005B2 - Constant polarization fiber and manufacturing method thereof - Google Patents

Constant polarization fiber and manufacturing method thereof

Info

Publication number
JPH0685005B2
JPH0685005B2 JP60015195A JP1519585A JPH0685005B2 JP H0685005 B2 JPH0685005 B2 JP H0685005B2 JP 60015195 A JP60015195 A JP 60015195A JP 1519585 A JP1519585 A JP 1519585A JP H0685005 B2 JPH0685005 B2 JP H0685005B2
Authority
JP
Japan
Prior art keywords
refractive index
core
fiber
radius
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60015195A
Other languages
Japanese (ja)
Other versions
JPS61174135A (en
Inventor
寛 菅沼
弘 横田
俊雄 彈塚
徹 茗荷谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60015195A priority Critical patent/JPH0685005B2/en
Publication of JPS61174135A publication Critical patent/JPS61174135A/en
Publication of JPH0685005B2 publication Critical patent/JPH0685005B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • C03B2203/31Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres by use of stress-imparting rods, e.g. by insertion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光ファイバ応用計測器、コヒーレント光伝送な
どにおいて用いられる偏波特性を保持し、かつ絶対単一
偏波帯域を有する定偏波フアイバとその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is a constant polarization having the polarization characteristic used in an optical fiber application measuring instrument, coherent optical transmission, etc. and having an absolute single polarization band. The present invention relates to a fiber and its manufacturing method.

[従来の技術] 従来の定偏波フアイバは、たとえば第2図a,b,cにそれ
ぞれ断面構造を示すような楕円コア形ファイバ、楕円ク
ラッド形ファイバ、非軸対称応力付与形ファイバなどが
用いられている。これら従来の楕円コア形ファイバ、楕
円クラッド形ファイバ、非軸対称応力付与形ファイバ
は、いずれも縮退した二つの直交偏波モード(HE11、HE
11)に対して意図的に複屈折性を与え、二つのモードの
結合を抑制し、偏波特性の向上を図った複屈折ファイバ
である。
[Prior Art] For example, an elliptic core type fiber, an elliptical clad type fiber, a non-axisymmetric stress imparting type fiber whose cross-sectional structures are shown in FIGS. Has been. These conventional elliptical core type fiber, elliptical clad type fiber and non-axisymmetric stress imparting type fiber all have degenerate two orthogonal polarization modes (HE 11 , HE
This is a birefringent fiber that intentionally imparts birefringence to 11 ), suppresses coupling of two modes, and improves polarization characteristics.

直交する2つのモードがこれらの定偏波フアイバを伝播
するとき、伝播定数βx,βyが異なりその差に比例して
一方のモードが他のモードへの変換がされにくくなる。
When two orthogonal modes propagate through these constant polarization fibers, the propagation constants βx and βy are different and one mode is less likely to be converted to another mode in proportion to the difference.

従って、これらのファイバに一方のモードの光のみを入
射すればそのモードのみが伝播し、他のモードの光を入
射すればそのモードのみが出射される。また、両方のモ
ードの光を同時に入射すると一方のみが選択的に伝播さ
れることはなく、両方とも出射される。図において7、
7′はコア、8、8′はクラッド、9はジャケット、10
は応力付与部を示めす。
Therefore, if only light of one mode is incident on these fibers, only that mode propagates, and if light of another mode is incident, only that mode is emitted. Further, when light of both modes is simultaneously entered, only one is not selectively propagated and both are emitted. In the figure 7,
7'is a core, 8 and 8'is a clad, 9 is a jacket, 10
Indicates a stress applying part.

[発明が解決しようとする問題点] 複屈折ファイバで得らる複屈折率は、たかだか1×10-3
程度である。複屈折ファイバをファイバ・センサとして
利用した場合、センサの特性はほぼ複屈折率できまる
が、より高精度を要求されつつあるセンサの現状を考え
ると、複屈折ファイバでは限界がある。特性のより高い
センサを望む場合、絶対単一偏波ファイバの必要があ
る。また絶対単一偏波ファイバは、ファイバ・ポーララ
イザが実現できるなど大きなメリットがあり、絶対単一
偏波帯域を有し、かつ良好な偏波特性を有する定偏波フ
ァイバの実現がのぞまれている。
[Problems to be Solved by the Invention] The birefringence obtained with a birefringent fiber is at most 1 × 10 −3
It is a degree. When a birefringent fiber is used as a fiber sensor, the characteristics of the sensor can be almost birefringent. However, considering the current state of the sensor that requires higher accuracy, there is a limit in the birefringent fiber. If a higher quality sensor is desired, then an absolute single polarization fiber is needed. In addition, the absolute single polarization fiber has great advantages such as the realization of a fiber polarizer, and it is desired to realize a constant polarization fiber having an absolute single polarization band and good polarization characteristics. ing.

そこで本発明は、かかる問題点を解決するためH▲Ex
11▼、とH▲Ey 11▼を同時に入射しても一方のみしか
伝播しない絶対単一偏波帯域を有する定偏波ファイバと
その製造方法を提供するものである。
Therefore, the present invention solves this problem by using H ▲ E x
The present invention provides a constant polarization fiber having an absolute single polarization band in which only one propagates even when 11 and H HE y 11 are incident at the same time, and a method for manufacturing the same.

[問題を解決するための手段] 本発明の定偏波ファイバは、屈折率n2,半径a″のコア
の外側に屈折率n1,半径b″の内側クラッドを有し、そ
の外側に屈折率n0の外側クラッドを有し、コアの両側に
外側クラッドより熱膨張係数の大きいガラス部材を有し
コアに非軸対称の応力を与える定偏波ファイバであっ
て、それぞれの屈折率はn1<n0<n2であり、かつ0.001
<(n2−n1)/n0≦0.007の関係があり、コア半径a″、
内側クラッド半径b″は2≦b″/a″≦7の関係にある
ことを特徴とする。
[Means for Solving the Problem] The polarization maintaining fiber of the present invention has an inner clad having a refractive index n 1 and a radius b ″ on the outside of a core having a refractive index n 2 and a radius a ″ and refracting on the outside. A polarization-maintaining fiber that has an outer clad with a refractive index n 0 and has glass members with a coefficient of thermal expansion larger than those of the outer clad on both sides of the core, and applies non-axisymmetric stress to the core. 1 <n 0 <n 2 and 0.001
<(N 2 −n 1 ) / n 0 ≦ 0.007, and the core radius a ″,
The inner cladding radius b ″ is characterized in that 2 ≦ b ″ / a ″ ≦ 7.

また本発明に係わる定偏波ファイバの製造方法は、屈折
率n2のコア用GeO2−SiO2ガラス層の外周に屈折率n1の内
側クラッド用SiO2−Fガラス層を有し、前記SiO2−Fガ
ラス層の外周に屈折率n0の外側クラッド用SiO2ガラス層
を有する第1のガラスロッドを準備し、前記コア用ガラ
ス層の両側に軸対称に開孔し、前記孔内に前記外側クラ
ッド用ガラス層より熱膨張係数の大なる第2ガラスロッ
ドを挿入してフアイバ母材を形成し、しかる後、前記フ
アイバ母材をコラップスし、これを線引きしてコア半径
a″、内側クラッド半径b″の光ファイバを形成する各
工程を含む定偏波ファイバの製造方法であって、それぞ
れの屈折率はn1<n0<n2であり、かつ0.001<(n2
n1)/n0≦0.007の関係があり、コア半径a″、内側クラ
ッド半径b″は2≦b″/a″≦7の関係にあることを特
徴とする。
The method of manufacturing a polarization maintaining fiber according to the present invention has an inner cladding SiO 2 -F glass layer of refractive index n 1 on the outer periphery of the core GeO 2 -SiO 2 glass layer of refractive index n 2, wherein A first glass rod having an outer cladding SiO 2 glass layer having a refractive index n 0 on the outer circumference of the SiO 2 —F glass layer was prepared, and axially symmetrical holes were formed on both sides of the core glass layer. A second glass rod having a coefficient of thermal expansion larger than that of the glass layer for outer cladding is inserted into the fiber base material to form a fiber base material, and then the fiber base material is collapsed and drawn to draw a core radius a ″, A method of manufacturing a polarization-maintaining fiber, the method including the steps of forming an optical fiber having an inner cladding radius b ″, wherein the respective refractive indices are n 1 <n 0 <n 2 and 0.001 <(n 2
n 1 ) / n 0 ≦ 0.007, and the core radius a ″ and the inner cladding radius b ″ are 2 ≦ b ″ / a ″ ≦ 7.

[作用] 上記の構成によれば、本発明に係わる定偏波フアイバ
は、直交偏波モードH▲Ex 11▼あるいはH▲Ey 11▼の
いずれかについて光が伝播しない遮断領域が形成され、
一方のモードは伝播するが、他方は伝播しないという絶
対単一偏波フアイバを実現することができる。
[Operation] According to the above configuration, the constant polarization fiber according to the present invention is provided with a blocking region in which light does not propagate in either of the orthogonal polarization modes H ▲ E x 11 ▼ or H ▲ E y 11 ▼. ,
It is possible to realize an absolute single polarization fiber in which one mode propagates but the other does not.

[実施例] 本発明の実施例を説明する前に、本発明の基礎となる原
理について以下に述べる。
[Examples] Before describing the examples of the present invention, the principle underlying the present invention will be described below.

一般に第3図に示すようなコア部11、クラッド部12の屈
折率分布を有するシングルモード光ファイバにおいて、
HE11モードには遮断波長は存在せず、どのような波長の
光も、HE11モードの電磁界エネルギはコア中にとじこめ
られる。然し第4図に示すようなコア部13、クラッド部
14の屈折率分布を有するシングルモード光ファイバは、
コア中の電磁界エネルギがクラッドにもれやすい構造を
しているため、コア−クラッド径比、比屈折率差を適当
に設定することにより、ある波長以上の光のHE11モード
の電磁界エネルギがコア中に閉じこめられない状態、す
なわち、遮断状態(カットオフ)となる。たとえば、第
4図に示すような構造の光ファイバの洩れ損失を計算に
より求めた例として、“ディプレスドーインデクスクラ
ッディンク(W型クラッド)を有する単一モード光導波
路の“放射”漏洩モード損失”アイイイイ.ジェイ.オ
ブキュー.イ.QE18巻、第10号、1982年10月(““Radia
ting"Leaky−Mode Losses in Single Mode Lightg
uides With Deprussed−Index Cladding" IEEE.J.o
f Q.E.Vol.QE18、No.10、Oct.1982)における計算結果
を第5図に示す。第5図において、コアの半径がa′、
屈折率がn、内側クラッド部分の外半径がb′、屈折率
がn1、外側クラッド部分の屈折率がn0であり、rはコア
中心からの距離を示す。また、△、△′は夫々比屈折率
差であり、 △=(n−n0)/n0×100(%) △′=(n1−n0)/n0×100(%) である。
Generally, in a single mode optical fiber having a refractive index distribution of the core portion 11 and the cladding portion 12 as shown in FIG.
There is no cutoff wavelength in HE 11 mode, and for any wavelength of light, HE 11 mode electromagnetic energy is trapped in the core. However, the core 13 and the clad as shown in FIG.
A single mode optical fiber having a refractive index distribution of 14
Since the structure is such that the electromagnetic field energy in the core easily leaks to the clad, by setting the core-clad diameter ratio and relative refractive index difference appropriately, the HE 11 mode electromagnetic field energy of light of a certain wavelength or longer can be obtained. Is in a state where it cannot be confined in the core, that is, a cutoff state. For example, as an example of calculating the leakage loss of an optical fiber having a structure as shown in FIG. 4, "radiation" leakage mode loss of a single mode optical waveguide having a "depressed index cladding (W-type cladding)""Good. Jay. Obuki. B. QE Vol. 18, No. 10, October 1982 (““ Radia
ting "Leaky-Mode Losses in Single Mode Lightg
uides With Deprussed-Index Cladding "IEEE.Jo
f QEVol.QE18, No.10, Oct.1982) shows the calculation results. In FIG. 5, the radius of the core is a ′,
The refractive index is n, the outer radius of the inner cladding portion is b ′, the refractive index is n 1 , the outer cladding portion has a refractive index n 0 , and r represents the distance from the center of the core. Further, Δ and Δ ′ are the relative refractive index differences, and Δ = (n−n 0 ) / n 0 × 100 (%) Δ ′ = (n 1 −n 0 ) / n 0 × 100 (%) is there.

たとえば△=0.25%、b′/a′=6の場合、波長λ=1.
51μmでもれ損失が急増し、実効的に遮断状態となって
いることがわかる。このような構造の光ファイバにおい
て、コアに複屈折性を与えることにより、絶対単一偏波
が可能となる。
For example, when Δ = 0.25% and b ′ / a ′ = 6, the wavelength λ = 1.
It can be seen that the leakage loss suddenly increased even at 51 μm, effectively blocking the current. In the optical fiber having such a structure, by giving birefringence to the core, absolute single polarization is possible.

すなわち、第6図のような非軸対称応力付与形の光ファ
イバのモードH▲Ex 11▼,H▲Ey 11▼に対する屈折率分
布は第7図のようになる。第6図で15は屈折率n′のコ
ア、16はクラッド、17は応力付与部でいずれも屈折率は
nである。第7図の屈折率分布でnx−nyは光ファイバの
複屈折率Bで与えられる。なおnxおよびnyはそれぞれコ
ア中のx偏波モード、y偏波モードの感ずる屈折率であ
りnx−ny=Bである。図7に示されたnx、nyの夫々に対
応する比屈折率差△nx、△nyを求めることにより、第5
図と同じ手法により各H▲Ex 11▼モード,H▲Ey 11▼モ
ードの洩れ損失を求めることができる。
That is, the refractive index distribution of the non-axisymmetric stress imparting type optical fiber as shown in FIG. 6 with respect to the modes H ▲ E x 11 ▼ and H ▲ E y 11 ▼ is as shown in FIG. In FIG. 6, reference numeral 15 is a core having a refractive index n ', 16 is a clad, and 17 is a stress applying portion, each having a refractive index of n. In the refractive index distribution of FIG. 7, nx-ny is given by the birefringence B of the optical fiber. It should be noted that nx and ny are the refractive indices of the x polarization mode and the y polarization mode in the core, respectively, and nx-ny = B. By calculating the relative refractive index differences Δnx and Δny corresponding to nx and ny shown in FIG.
By the same method as shown in the figure, the leakage loss of each H ▲ E x 11 ▼ mode and H ▲ E y 11 ▼ mode can be obtained.

即ち、△nx=(nx−n0)/n0×100(%) △ny=(ny−n0)/n0×100(%) また、nx−ny=B>0であることから △nx=(B+ny−n0)/n0×100(%) =(B/n0)×100(%)+△nyとなる。That is, Δnx = (nx−n 0 ) / n 0 × 100 (%) Δny = (ny−n 0 ) / n 0 × 100 (%) Also, since nx−ny = B> 0, Δ nx = (B + ny−n 0 ) / n 0 × 100 (%) = (B / n 0 ) × 100 (%) + Δny.

一方、△nx、△nyは夫々第5図に示されているように△
nが大きくなると洩れ損失は小さくなる特性を有する。
On the other hand, Δnx and Δny are as shown in FIG.
It has the characteristic that the leakage loss decreases as n increases.

ところで、上記の△nx、△nyは△nx>△nyの関係にある
ことから、H▲Ey 11▼モードの洩れ損失は大きく、H
▲Ex 11▼モードの洩れ損失は小さい帯域、即ち、H▲
x 11▼モードのみが伝播可能な帯域(絶対単一偏波帯
域)が存在することになる。たとえば比屈折率差△=0.
23%、b′/a′=6、B=6.0×10-4の、第8図a,bに構
造および屈折率分布を示すような光ファイバにおいて
は、H▲Ex 11▼は、もれ損失α 1.6 =0dB/Kmに対し
てH▲Ey 11▼は、α 1.6 =40dB/Kmとなり、波長λ
=1.6μmの近辺ではH▲Ex 11▼のみ伝播可能な帯域が
存在することになる。
By the way, since the above Δnx and Δny have a relationship of Δnx> Δny, the leakage loss in the H ▲ E y 11 ▼ mode is large, and
▲ E x 11 ▼ Mode leakage loss is small band, that is, H ▲
Only E x 11 ▼ mode is that there is transmissible band (absolute single polarization band). For example, relative refractive index difference △ = 0.
In an optical fiber of 23%, b '/ a' = 6, B = 6.0 × 10 -4 and having the structure and refractive index distribution shown in FIGS. 8a and 8b, H ▲ E x 11 ▼ also becomes H ▲ E y 11 ▼ becomes α ( 1.6 ) = 40 dB / Km for the wavelength loss α ( 1.6 ) = 0 dB / Km, and the wavelength λ
In the vicinity of = 1.6 μm, there is a band in which only H ▲ E x 11 ▼ can propagate.

第8図で18はコア、19、20はそれぞれ内側および外側ク
ラッド、21は応力付与部を示す。
In FIG. 8, 18 is a core, 19 and 20 are inner and outer clads, respectively, and 21 is a stress applying portion.

本発明は上述した原理を基に絶対単一偏波帯域を有し、
かつ良好な偏波特性を有する定偏波ファイバおよびその
製造方法を提供するものである。本発明は、材質の異な
る三種類のガラスからなるガラスロッドを加工する工程
を含むことを特徴としている。また、本発明では絶対単
一偏波帯域を有するための屈折率分布を実現し、さらに
非軸対称応力付与効果を増大するために、コア用ガラス
にSiO2−GeO2を、内側クラッドにSiO2−Fを、外側クラ
ッドにSiO2をそれぞれ用いる。コア用ガラス成分のGeO2
はガラスの屈折率を増加し、内側クラッド用ガラス成分
のFはガラスの屈折率を下げる働きがあるため、本発明
の構造のガラスロッドは第4図に示したような屈折率分
布を有する。また内側クラッドを構成するSiO2−Fは、
従来クラッドに用いられており、本発明において外側ク
ラッドとして用いるSiO2より熱膨張係数が小さいため、
応力付与部とクラッドの熱膨張の差が大きくなり、応力
付与効果が増大し、その結果高い複屈折性が得られ、偏
波特性の向上も可能となる。
The present invention has an absolute single polarization band based on the above-mentioned principle,
A constant polarization fiber having good polarization characteristics and a method for manufacturing the same are provided. The present invention is characterized by including a step of processing a glass rod made of three types of glass having different materials. Further, in the present invention, in order to realize a refractive index distribution for having an absolute single polarization band and further increase the effect of applying non-axisymmetric stress, SiO 2 —GeO 2 is used for the core glass and SiO 2 is used for the inner cladding. 2- F and SiO 2 are used for the outer cladding. GeO 2 of glass component for core
Has the function of increasing the refractive index of the glass and F of the glass component for the inner cladding lowers the refractive index of the glass. Therefore, the glass rod having the structure of the present invention has a refractive index distribution as shown in FIG. In addition, SiO 2 -F that constitutes the inner cladding is
Conventionally used for cladding, because the thermal expansion coefficient is smaller than SiO 2 used as the outer cladding in the present invention,
The difference in thermal expansion between the stress-applying portion and the clad becomes large, the stress-applying effect is increased, and as a result, high birefringence is obtained and the polarization characteristics can be improved.

さらに本発明は、上に述べた構造の最内部にコア用のSi
O−GeO2ガラス、その外側に内側クラッド用のSiO2−F
ガラス、最外部に外側クラッド用SiO2からなるガラスロ
ッドのコア用SiO−GeO2ガラス層の両側の軸対称の位置
に開孔し、孔の内面を火炎研磨し、さらにガッラスロッ
ド全体を弗酸洗浄した後、孔内に熱膨張係数の大きいガ
ラスロッドを挿入してファイバ母材を形成し、ファイバ
母材を抵抗炉を用いてコラプスしさらに線引きする。
Furthermore, the present invention provides a Si for core in the innermost part of the structure described above.
O-GeO 2 glass with SiO 2 -F on the outside for the inner cladding
Glass, and opened in a position on either side of the axis of symmetry of the core SiO-GeO 2 glass layer of the glass rod consisting of an outer cladding SiO 2 at the outermost part, the inner surface of the hole is fire-polished, further hydrofluoric acid cleaning the entire Garrasuroddo After that, a glass rod having a large coefficient of thermal expansion is inserted into the hole to form a fiber preform, and the fiber preform is collapsed using a resistance furnace and further drawn.

上述の各工程により、屈折率n2の外側に屈折率n1(n1
n2)の内側クラッドを、さらに内側クラッドの外側に屈
折率n0(n1<n0<n2)の外側クラッドを有する光ファイ
バで、かつコアの両側に熱膨張係数の大きいガラス層を
有し、コアに対し非軸対称な応力を与える構造を有する
定偏波ファイバを製造することを特徴とする。
By the steps described above, the refractive index outside the refractive index n 1 of n 2 (n 1 <
n 2 ), an optical fiber having an inner cladding with a refractive index n 0 (n 1 <n 0 <n 2 ) outside the inner cladding, and a glass layer with a large thermal expansion coefficient on both sides of the core. The present invention is characterized in that a constant polarization fiber having a structure that applies a stress that is non-axisymmetric to the core is manufactured.

次に実施例に基づいて説明する。第1図a乃至dによる
定偏波ファイバの製造方法の主要工程を説明する図であ
る。屈折率n2、半径a″のSiO2−GeO2ガラス層1、屈折
率n1、半径b″のSiO2−Fガラス層2、屈折率n0、半径
c″のSiO2ガラス層3からなる3層構造のガラスロッド
(第1図a)に、外周相互の最短距離間の間隔2d,半径
rの孔41、42を軸対称に2個開孔し、孔41、42の内面を
火炎研磨した後、さらにHFで洗浄を行い、内面を鏡面仕
上げする(第1図b)。絶対単一偏波の機能を実現させ
るためには直交偏波モードH▲Ex 11▼とH▲Ey 11▼に
遮断波長(λCX、λCY)の存在することが必要であり、
本発明者等はパラメータb″/a″,(n2−n1)/n0によ
って有効な遮断波長を実現せしめることを実験的に見出
した。
Next, description will be made based on examples. It is a figure explaining the main process of the manufacturing method of the constant polarization fiber by FIGS. From the SiO 2 —GeO 2 glass layer 1 having a refractive index n 2 and a radius a ″, the SiO 2 —F glass layer 2 having a refractive index n 1 and a radius b ″, and the SiO 2 glass layer 3 having a refractive index n 0 and a radius c ″. In the three-layered glass rod (Fig. 1a), two holes 41 and 42 having a distance 2d and a radius r between the outer circumferences are axially symmetrically formed, and the inner surfaces of the holes 41 and 42 are flamed. After polishing, the inner surface is mirror-finished by further cleaning with HF (Fig. 1b) .To realize the function of absolute single polarization, orthogonal polarization modes H ▲ E x 11 ▼ and H ▲ E It is necessary that the cutoff wavelengths (λ CX , λ CY ) be present at y 11 ▼,
The present inventors have experimentally found that an effective cutoff wavelength can be realized by the parameters b ″ / a ″ and (n 2 −n 1 ) / n 0 .

第9図にb″/a″,(n2−n1)/n0によって決定される
絶対単一偏波の機能(△λ=λCX−λCY)の関係を示
す。
FIG. 9 shows the relationship between the functions of absolute single polarization (Δλ = λ CX −λ CY ) determined by b ″ / a ″ and (n 2 −n 1 ) / n 0 .

即ち、△λが大きい程広い波長域で絶対単一偏波領域が
実現され、安定に伝播できるためには△λ>100(nm)
であることが必要であり、これを満足するためには2≦
b″/a″≦7かつ0.001≦(n2−n1)/n0≦0.007であ
る。
That is, as Δλ increases, an absolute single polarization region can be realized in a wider wavelength range, and stable propagation is required for Δλ> 100 (nm).
It is necessary that, and to satisfy this, 2 ≦
b ″ / a ″ ≦ 7 and 0.001 ≦ (n 2 −n 1 ) / n 0 ≦ 0.007.

またSiO2−GeO2ガラス層1およびSiO2ガラス層3を形成
するSiO2−GeO2ガラスおよびSiO2ガラスに上記の関係を
満たす範囲で弗素Fを添加してもよい。
Further, fluorine F may be added to the SiO 2 —GeO 2 glass and the SiO 2 glass forming the SiO 2 —GeO 2 glass layer 1 and the SiO 2 glass layer 3 within a range satisfying the above relationship.

開孔した孔41、42に、B2O3,Al2O3,GeO2,P2O5,Fなどを複
数添加して熱膨張係数をSiO2より大としたガラスロッド
51、52を挿入してファイバ母材を形成する(第1図
c)。
A glass rod having a coefficient of thermal expansion larger than that of SiO 2 by adding a plurality of B 2 O 3 , Al 2 O 3 , GeO 2 , P 2 O 5 , and F to the opened holes 41 and 42.
Insert 51 and 52 to form the fiber preform (Fig. 1c).

第1図cのファイバ母材を抵抗炉、たとえば電気炉を用
いてコラプスしながら径0.10〜0.20mmφ程度に線引き
し、屈折率n2のコアの外側に屈折率n1の内側クラッドを
有し、さらに外側に屈折率n0の外側クラッドを有する光
ファイバで、コアの両側に熱膨張係数の大きいガラス層
を軸対称に有する構造の定偏波ファイバ6を得る(第1
図d)。
The fiber preform shown in FIG. 1c is drawn into a diameter of about 0.10 to 0.20 mmφ while collapsing it using a resistance furnace, for example, an electric furnace, and an inner clad having a refractive index n 1 is provided outside a core having a refractive index n 2. Further, an optical fiber having an outer clad having a refractive index n 0 on the outer side is obtained, and a polarization maintaining fiber 6 having a structure in which a glass layer having a large thermal expansion coefficient is axially symmetrical on both sides of the core is obtained.
Figure d).

次に本発明の具体的実施例を示す。屈折率1.4614、直径
1.0mmφのSiO−GeO2−Fガラス層を中心とし、その外周
に順次屈折率1.4541,直径6.0mmφのSiO2−Fガラス層お
よび屈折率1.4585、直径40.0mmφのSiO2ガラス層を有す
る3層構造のガラスロッドに、中心に軸対称に外周の最
短距離の間隔4.0mmで直径15.0mmφの孔を2個開孔し、
孔の内面を火炎研磨し、さらにガラスロッドを10%濃度
の弗酸液に30分浸積して洗浄した後、孔の中に15wt%の
B2O3を含む直径14.0mmφのSiO2−B2O3ガラスロッドを挿
入してファイバ母材を形成し、ファイバ母材をカーボン
抵抗炉を用いて、温度約2000℃、線引速度約30m/分で外
径150μmφに線引した。
Next, specific examples of the present invention will be shown. Refractive index 1.4614, diameter
Three layers centered on a 1.0 mmφ SiO-GeO 2 -F glass layer, and sequentially having an SiO 2 -F glass layer having a refractive index of 1.4541 and a diameter of 6.0 mmφ and an SiO 2 glass layer having a refractive index of 1.4585 and a diameter of 40.0 mmφ on the outer periphery thereof. On the glass rod of the structure, two holes with a diameter of 15.0 mmφ are opened at an interval of 4.0 mm with the shortest distance of the outer periphery in an axially symmetric manner,
The inner surface of the hole was flame-polished, and the glass rod was further immersed in a 10% hydrofluoric acid solution for 30 minutes for cleaning.
B Insert a SiO 2 -B 2 O 3 glass rod having a diameter 14.0mmφ to form a fiber preform comprising 2 O 3, a fiber preform with a carbon resistance furnace, the temperature of about 2000 ° C., the drawing speed of about The wire was drawn at an outer diameter of 150 μmφ at 30 m / min.

上述の工程で得られた光ファイバの複屈折率を波長0.85
μmのLEDを用いて測定した結果、複屈折率B=5.0×10
-4であった。またH▲Ex 11▼,H▲Ey 11▼について波長
λ=1.55μmのもれ損失を測定した結果、H▲Ex 11
ではもれ損失α=2dB/Km、H▲Ey 11▼ではα≧10dB/Km
であり、二つの直交偏波モードH▲Ex 11▼、H▲Ey 11
▼では明らかに洩れ損失の違いが見られた。この時の遮
断波長はλcx=1.7μm、λcy=1.58μmであり、△λ
=λcx−λcy=120nmであった。即ち、絶対単一偏波帯
域の存在が確認された。
The birefringence of the optical fiber obtained in the above process was measured at a wavelength of 0.85.
Birefringence B = 5.0 × 10 as a result of measurement using μm LED
It was -4 . The H ▲ E x 11 ▼, H ▲ E y 11 ▼ result of leakage loss of wavelength lambda = 1.55 .mu.m was measured, H ▲ E x 11
Leakage loss α = 2 dB / Km, H ▲ E y 11 ▼ α ≧ 10 dB / Km
And two orthogonal polarization modes H ▲ E x 11 ▼ and H ▲ E y 11
In ▼, the difference in leakage loss was clearly seen. The cutoff wavelengths at this time are λcx = 1.7 μm and λcy = 1.58 μm, and Δλ
= Λcx−λcy = 120 nm. That is, the existence of the absolute single polarization band was confirmed.

[発明の効果] 以上述べたように、本発明の定偏波ファイバは直交偏波
モードH▲Ex 11▼あるいはH▲Ey 11▼のいずれかにつ
いて光が伝播しない遮断領域が形成され、一方のモード
は伝播するが、他方は伝播しないという絶対単一偏波フ
アイバを実現することができる。かかる絶対単一偏波フ
アイバを光ファイバの応用計測あるいはコヒーレント光
伝送に適用すると外部雑音に影響されにくい伝送システ
ムを構成することができる。
[Advantages of the Invention] As described above, in the constant polarization fiber of the present invention, a blocking region in which light does not propagate is formed in either of the orthogonal polarization modes H ▲ E x 11 ▼ or H ▲ E y 11 ▼, It is possible to realize an absolute single polarization fiber in which one mode propagates but the other does not. When such an absolute single polarization fiber is applied to applied measurement of an optical fiber or coherent optical transmission, a transmission system that is hardly affected by external noise can be configured.

【図面の簡単な説明】[Brief description of drawings]

第1図a乃至dは本発明による定偏波ファイバの製造方
法の主要工程を説明する図、第2図a乃至cは従来の定
偏波ファイバ3種類の断面構造図、第3図および第4図
は通常のシングルモード光ファイバの2種類の屈折率分
布を説明する図、第5図は第4図の屈折率分布を有する
構造の光ファイバのもれ損失を算出した結果を示す図、
第6図は非軸対称応力付与形の光ファイバの断面構造
図、第7図は第6図の非軸対称応力付与形の光ファイバ
の屈折率分布を説明する図、第8図a,bは複屈折率性を
有する光ファイバの断面構造および屈折率分布を示す
図,第9図はb″/a″と(n2−n1)/n0によって決定さ
れる絶対単一偏波の機能の関係を示す図である。 1……GeO2−SiO2ガラス層、2……SiO2−Fガラス層、
3……SiO2ガラス層、41、42……孔、51、52……ガラス
ロッド、6……定偏波ファイバ、7、7′……コア、
8、8′……クラッド、9……ジャケット、10……応力
付与部、11……コア部、12……クラッド部、13……コア
部、14……クラッド部、15……コア、16……クラッド、
17……応力付与部、18……コア、19……内部クラッド、
20……外部クラッド、21……応力付与部
1 (a) to 1 (d) are views for explaining the main steps of the method of manufacturing a constant polarization fiber according to the present invention, and FIGS. FIG. 4 is a diagram for explaining two types of refractive index distributions of a normal single mode optical fiber, and FIG. 5 is a diagram showing results of calculating leakage loss of an optical fiber having a structure having the refractive index distribution of FIG.
FIG. 6 is a cross-sectional structural view of a non-axisymmetric stress imparting type optical fiber, FIG. 7 is a view for explaining a refractive index distribution of the non-axisymmetric stress imparting type optical fiber of FIG. 6, and FIGS. Is a diagram showing the cross-sectional structure and refractive index distribution of an optical fiber having birefringence, and FIG. 9 shows the absolute single polarization determined by b ″ / a ″ and (n 2 −n 1 ) / n 0 . It is a figure which shows the relationship of a function. 1 ...... GeO 2 -SiO 2 glass layer, 2 ...... SiO 2 -F glass layer,
3 ... SiO 2 glass layer, 41, 42 ... Hole, 51, 52 ... Glass rod, 6 ... Constant polarization fiber, 7, 7 '... Core,
8, 8 '... Clad, 9 ... Jacket, 10 ... Stress applying part, 11 ... Core part, 12 ... Clad part, 13 ... Core part, 14 ... Clad part, 15 ... Core, 16 ...... Clad,
17 …… Stress applying part, 18 …… Core, 19 …… Inner clad,
20 …… Outer clad, 21 …… Stress applying part

フロントページの続き (72)発明者 彈塚 俊雄 神奈川県横浜市戸塚区田谷町1番地 住友 電気工業株式会社横浜製作所内 (72)発明者 茗荷谷 徹 神奈川県横浜市戸塚区田谷町1番地 住友 電気工業株式会社横浜製作所内Front page continued (72) Inventor Toshio Tsuzuka, 1 Taya-cho, Totsuka-ku, Yokohama-shi, Kanagawa Sumitomo Electric Industries, Ltd. Yokohama Works (72) Inventor Toru Myogadani, 1 Taya-cho, Totsuka-ku, Yokohama, Kanagawa Sumitomo Electric Industries Yokohama Works Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】屈折率n2、半径a″のコアの外側に屈折率
n1、半径b″の内側クラッドを有し、その外側に屈折率
n0の外側クラッドを有し、コアの両側に外側クラッドよ
り熱膨張係数の大きいガラス部材を有しコアに非軸対称
の応力を与える定偏波ファイバであって、 それぞれの屈折率はn1<n0<n2であり、かつ0.001<(n
2−n1)/n0≦0.007の関係があり、コア半径a″,内側
クラッド半径b″は2≦b″/a″≦7の関係にあること
を特徴とする定偏波ファイバ。
1. A refractive index n 2 and a refractive index outside the core of radius a ″
It has an inner cladding with a radius of n 1 and a radius of b ″ and a refractive index on the outside.
an outer cladding of n 0, a polarization maintaining fiber core has a larger glass member of the heat expansion coefficient than the outer cladding on both sides of the core stressing of non-axisymmetric, the respective refractive index n 1 <N 0 <n 2 and 0.001 <(n
A constant polarization fiber having a relationship of 2 −n 1 ) / n 0 ≦ 0.007, and a core radius a ″ and an inner cladding radius b ″ of 2 ≦ b ″ / a ″ ≦ 7.
【請求項2】屈折率n2のコア用GeO2−SiO2ガラス層の外
周に屈折率n1の内側クラッド用SiO2−Fガラス層を有
し、前記SiO2−Fガラス層の外周に屈折率n0の外側クラ
ッド用SiO2ガラス層を有する第1のガラスロッドを準備
し、前記コア用ガラス層の両側に軸対称に開孔し、前記
孔内に前記外側クラッド用ガラス層より熱膨張係数の大
なる第2のガラスロッドを挿入してファイバ母材を形成
し、しかる後、前記ファイバ母材をコラップスし、これ
を線引きしてコア半径a″、内側クラッド半径b″の光
ファイバを形成する各工程を含む定偏波ファイバの製造
方法であって、 それぞれの屈折率はn1<n0<n2であり、かつ0.001<(n
2−n1)/n0≦0.007の関係があり、コア半径a″,内側
クラッド半径b″は2≦b″/a″≦7の関係にあること
を特徴とする定偏波ファイバの製造方法。
2. A core GeO 2 --SiO 2 glass layer having a refractive index n 2 is provided with an inner cladding SiO 2 --F glass layer having a refractive index n 1 , and the outer periphery of the SiO 2 --F glass layer is provided. A first glass rod having an outer cladding SiO 2 glass layer having a refractive index n 0 is prepared, and axially symmetrical holes are formed on both sides of the core glass layer. An optical fiber having a core radius a ″ and an inner cladding radius b ″ is formed by inserting a second glass rod having a large expansion coefficient to form a fiber preform, then collapsing the fiber preform, and drawing the fiber. A method for manufacturing a polarization-maintaining fiber including the steps of: forming a film having a refractive index of n 1 <n 0 <n 2 and 0.001 <(n
2− n 1 ) / n 0 ≦ 0.007, and the core radius a ″ and the inner cladding radius b ″ are 2 ≦ b ″ / a ″ ≦ 7. Method.
JP60015195A 1985-01-29 1985-01-29 Constant polarization fiber and manufacturing method thereof Expired - Lifetime JPH0685005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60015195A JPH0685005B2 (en) 1985-01-29 1985-01-29 Constant polarization fiber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60015195A JPH0685005B2 (en) 1985-01-29 1985-01-29 Constant polarization fiber and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS61174135A JPS61174135A (en) 1986-08-05
JPH0685005B2 true JPH0685005B2 (en) 1994-10-26

Family

ID=11882075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60015195A Expired - Lifetime JPH0685005B2 (en) 1985-01-29 1985-01-29 Constant polarization fiber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0685005B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200012041A1 (en) * 2017-03-22 2020-01-09 Fujikura Ltd. Polarization maintaining fiber, optical device, preform of polarization maintaining fiber, and manufacturing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287603A (en) * 1988-05-16 1989-11-20 Nippon Telegr & Teleph Corp <Ntt> Absolute single mode polarization optical fiber
JPH0225806A (en) * 1988-07-15 1990-01-29 Sumitomo Electric Ind Ltd Polarization maintaining optical fiber and manufacture thereof
JPH02187706A (en) * 1989-01-17 1990-07-23 Sumitomo Electric Ind Ltd Single polarization optical fiber
EP0630864A3 (en) * 1993-05-24 1995-05-24 Sumitomo Electric Industries Fabrication process of polarization-maintaining optical fiber.
US7116887B2 (en) * 2002-03-19 2006-10-03 Nufern Optical fiber
US8434330B2 (en) * 2009-10-22 2013-05-07 Ofs Fitel, Llc Techniques for manufacturing birefringent optical fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104035A (en) * 1981-12-14 1983-06-21 Nippon Telegr & Teleph Corp <Ntt> Preparation of optical fiber having single polarization diversity and single mode
JPS5992929A (en) * 1982-11-17 1984-05-29 Nippon Telegr & Teleph Corp <Ntt> Preparation of optical fiber maintaining polarization

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104035A (en) * 1981-12-14 1983-06-21 Nippon Telegr & Teleph Corp <Ntt> Preparation of optical fiber having single polarization diversity and single mode
JPS5992929A (en) * 1982-11-17 1984-05-29 Nippon Telegr & Teleph Corp <Ntt> Preparation of optical fiber maintaining polarization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200012041A1 (en) * 2017-03-22 2020-01-09 Fujikura Ltd. Polarization maintaining fiber, optical device, preform of polarization maintaining fiber, and manufacturing method

Also Published As

Publication number Publication date
JPS61174135A (en) 1986-08-05

Similar Documents

Publication Publication Date Title
US4549781A (en) Polarization-retaining single-mode optical waveguide
WO2005109055A2 (en) Long wavelength, pure silica core single mode fiber and method of forming the same
US3997241A (en) Optical waveguide transmitting light wave energy in single mode
JPH01237507A (en) Absolute single polarizing optical fiber
CA2121418A1 (en) Low loss coupler
JPS6237361B2 (en)
US4717225A (en) Form polarizing fibers and method of fabrication
JPH0685005B2 (en) Constant polarization fiber and manufacturing method thereof
US4711525A (en) Polarizing optical fiber with absorbing jacket
JPH0798418A (en) Optical waveguide fiber and formation of optical waveguide fiber
JPS6053285B2 (en) Constant polarization optical fiber
JPS61200509A (en) Constant polarization fiber with absolute single polarization band
JPS61267707A (en) Side tunnel type constant polarization optical fiber
JPS61228404A (en) Optical fiber for constant polarized wave
JPS6328857B2 (en)
JPS6033513A (en) Single linear polarization optical fiber
MacChesney et al. Depressed index substrate tubes to eliminate leaky-mode losses in single-mode fibers
JPS6367168B2 (en)
JPS63381B2 (en)
JPS61185703A (en) Constant polarizing optical fiber
JPH0644088B2 (en) Polarization-maintaining optical fiber
JPS59135402A (en) Single polarization optical fiber
JPS58214104A (en) Optical fiber for preserving plane of polarization
JPH0350505A (en) Single polarization optical fiber
JPH07281044A (en) Constant polarization optical fiber