JPS6328857B2 - - Google Patents

Info

Publication number
JPS6328857B2
JPS6328857B2 JP56200044A JP20004481A JPS6328857B2 JP S6328857 B2 JPS6328857 B2 JP S6328857B2 JP 56200044 A JP56200044 A JP 56200044A JP 20004481 A JP20004481 A JP 20004481A JP S6328857 B2 JPS6328857 B2 JP S6328857B2
Authority
JP
Japan
Prior art keywords
base material
core
stress
glass
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56200044A
Other languages
Japanese (ja)
Other versions
JPS58104035A (en
Inventor
Takao Edahiro
Yutaka Sasaki
Katsunari Okamoto
Tetsuo Mya
Masao Kawachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56200044A priority Critical patent/JPS58104035A/en
Priority to GB8200751A priority patent/GB2096788B/en
Priority to CA000394239A priority patent/CA1168488A/en
Priority to FR8200581A priority patent/FR2498339B1/en
Priority to NL8200149A priority patent/NL184924C/en
Priority to DE19823201342 priority patent/DE3201342C2/en
Publication of JPS58104035A publication Critical patent/JPS58104035A/en
Publication of JPS6328857B2 publication Critical patent/JPS6328857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明は、コヒーレント光伝送方式や光フアイ
バセンサ等に用いられる偏波保存性に優れた単一
偏波単一モード光フアイバの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a single-polarization, single-mode optical fiber with excellent polarization preservation properties used in coherent optical transmission systems, optical fiber sensors, and the like.

単一モード光フアイバにおいて、互いに直交し
て伝搬するモードの伝搬定数βx、βyに差を与え
ることにより、一定方向に偏光したモードのみを
伝える、いわゆる単一偏波単一モード光フアイバ
が形成される。従来のこの種の偏波保存性の良い
単一モード光フアイバの製造方法は、例えば米国
特許第4179189号に開示されている。ここでは、
慣例のMCVD法等により、ジヤケツト部として
の石英ガラス管内壁上にクラツド層とコア層を堆
積して円対称母材を得、次いでこの母材全体を加
熱して中実な母材とする。次に、この母材の相対
向する側面を機械研磨してから、母材を2000℃以
上の高温に加熱して光フアイバに線引きすること
により、母材の粘性係数は低下し、表面張力によ
り形状は円形になる。この結果、クラツドは外形
の変化に伴い楕円となり、楕円の非軸対称の応力
が付加された単一偏波単一モード光フアイバが得
られる。
In a single-mode optical fiber, by giving a difference in the propagation constants βx and βy of modes that propagate orthogonally to each other, a so-called single-polarized single-mode optical fiber that transmits only modes polarized in a certain direction is formed. Ru. A conventional method for manufacturing this type of single mode optical fiber with good polarization preservation property is disclosed in, for example, US Pat. No. 4,179,189. here,
A cladding layer and a core layer are deposited on the inner wall of a quartz glass tube as a jacket part using a conventional MCVD method to obtain a circularly symmetrical base material, and then the entire base material is heated to form a solid base material. Next, the opposite sides of this base material are mechanically polished, and then the base material is heated to a high temperature of 2000℃ or more and drawn into an optical fiber.The viscosity coefficient of the base material is reduced and the surface tension The shape will be circular. As a result, the cladding becomes an ellipse as the outer shape changes, and a single-polarized, single-mode optical fiber to which an elliptical non-axisymmetric stress is applied is obtained.

この製造方法を図面により説明すると、第1A
図に示すように、石英ガラス管1内にクラツド母
材2とコア母材3とを配置して円対称な母材を形
成し、次に第1B図に示すように、石英ガラス管
1の相対向する部分4(この部分4はクラツド母
材2まで入つてもよい)を研削により取除く。次
いで、このように研削した母材を高温に加熱する
と、ガラスは軟化し、表面張力により外側面が円
形になるように変化し、これによりクラツド母材
2は第1C図に示すように楕円形状になる。
To explain this manufacturing method with drawings, the first A
As shown in the figure, a clad base material 2 and a core base material 3 are arranged in a quartz glass tube 1 to form a circularly symmetrical base material, and then, as shown in FIG. The opposing portions 4 (this portion 4 may extend up to the clad base material 2) are removed by grinding. Next, when the base material ground in this way is heated to a high temperature, the glass softens and changes so that the outer surface becomes circular due to surface tension, so that the clad base material 2 has an elliptical shape as shown in FIG. 1C. become.

このような方法においては、母材を研削する工
程が入るため工程が複雑になるだけでなく、軟化
した母材の外側面が円形になる際にクラツドのみ
ならず、コアも同様に楕円になることが多い。そ
の結果、光フアイバの伝送特性上、損失が高くな
るのに加えて、コア形状が所定の形状にならな
い、すなわち楕円の程度も必ずしも一定にならな
いなどの欠点があつた。また、研削は長尺母材に
対して困難であるから、偏波保存性に優れた長尺
の単一モード光フアイバの製造には不適切であつ
た。さらに、光フアイバ中の光の15〜25%はクラ
ツド部分にも伝搬するが、この方法では研磨によ
つてクラツド部分が薄くなるのでジヤケツト部の
不純物の影響を受け易くなり、その結果低損失の
光フアイバを得にくいという欠点もあつた。
In such a method, not only is the process complicated due to the step of grinding the base material, but when the outer surface of the softened base material becomes circular, not only the cladding but also the core become elliptical. There are many things. As a result, in addition to high loss due to the transmission characteristics of the optical fiber, there were drawbacks such as the core shape not being in a predetermined shape, that is, the degree of ellipse not necessarily being constant. Furthermore, since grinding is difficult for long base materials, it is not suitable for manufacturing long single mode optical fibers with excellent polarization preservation properties. Additionally, 15-25% of the light in the optical fiber also propagates through the cladding, but with this method, the cladding becomes thinner due to polishing, making it more susceptible to impurities in the jacket, resulting in a low-loss fiber. Another drawback was that it was difficult to obtain optical fiber.

他方、楕円化したクラツドは互いに肉厚が異な
り、かつクラツドの熱膨張係数はジヤケツト部の
熱膨張係数より大きいので、コアに対して応力が
加わり偏波保持特性が実現される。しかし、第2
図に示すように、楕円クラツドの長軸および短軸
に沿つた熱膨張係数の分布から判るように、コア
は熱膨張係数の大きなクラツド層に直接に接触
し、コア中を伝搬する光はクラツドにも20%程度
拡がつて伝搬し、クラツド層の影響を受け易く低
損失になり難い。また、母材の側面を機械加工す
るので、大きな母材への適用が困難であるばかり
でなく、加工に伴う割れ等の危険性も大きいなど
の欠点があつた。また、熱膨張係数の大きなクラ
ツドは楕円化された短軸方向にも残留し、長軸方
向に存在する熱膨張係数の大きなクラツドによつ
て誘起される応力を一部相殺するように作用し、
その結果として、偏波保持性を劣化させる欠点も
あつた。
On the other hand, since the oval claddings have different wall thicknesses and the thermal expansion coefficient of the cladding is larger than that of the jacket, stress is applied to the core and polarization maintaining characteristics are realized. However, the second
As shown in the figure, the core is in direct contact with the cladding layer with a large thermal expansion coefficient, as seen from the distribution of thermal expansion coefficients along the major and minor axes of the elliptical cladding, and the light propagating through the core is It also spreads by about 20% and propagates, making it susceptible to the influence of the cladding layer and making it difficult to achieve low loss. Furthermore, since the side surface of the base material is machined, it is not only difficult to apply to large base materials, but also has drawbacks such as a high risk of cracking and the like due to machining. In addition, the cladding with a large coefficient of thermal expansion remains in the short axis direction of the oval, and acts to partially offset the stress induced by the cladding with a large coefficient of thermal expansion existing in the long axis direction.
As a result, there was also the drawback of deteriorating polarization maintaining properties.

そこで、本発明の目的は、上述した種々の欠点
を除去するため、光の伝搬に重要な役割を果たす
コア−クラツド母材は加工することなく、応力付
与母材を一緒にジヤケツトし、次いで線引きする
ことにより内部に応力分布を持つた低損失の単一
偏波単一モード光フアイバを製造する方法を提供
することにある。
SUMMARY OF THE INVENTION Therefore, in order to eliminate the various drawbacks mentioned above, an object of the present invention is to jacket the stress-applying base material together without processing the core-clad base material, which plays an important role in light propagation, and then wire-draw the base material. The object of the present invention is to provide a method for manufacturing a low-loss, single-polarization, single-mode optical fiber with internal stress distribution.

本発明の他の目的は、上述した従来の製造方法
の欠点を解決するため、コア母材およびクラツド
母材からなるコア−クラツド母材と応力付与母材
とを別個に形成し、これら両母材を合体させるこ
とにより、母材の大形化をはかり、しかも機械的
な研磨などの工程を取除くことにより、低損失か
つ安定な偏波保存性をもつ単一偏波単一モード光
フアイバを製造する方法を提供することにある。
Another object of the present invention is to separately form a core-clad base material and a stress-applying base material consisting of a core base material and a clad base material, and to solve the above-mentioned drawbacks of the conventional manufacturing method. By combining these materials, we are able to increase the size of the base material, and by eliminating processes such as mechanical polishing, we can create a single-polarization, single-mode optical fiber with low loss and stable polarization preservation. The purpose is to provide a method for manufacturing.

かかる目的を達成するために、本発明は、光フ
アイバの内部に応力分布を与え、コアに複屈折性
をもつ単一偏波単一モード光フアイバを製造する
にあたり、屈折率の高いコア母材と該コア母材の
屈折率よりも屈折率の低いクラツド母材からなる
コア−クラツド母材の外側に応力付与母材を配置
し、前記コア−クラツド母材の外側に、前記応力
付与母材の隙間を埋めるように前記クラツド母材
と同一材料による充填母材を配置し、前記応力付
与母材および前記充填母材の周囲をジヤケツト用
ガラス管でジヤケツトし、ジヤケツトした組立体
を線引きして光フアイバとすることを特徴とす
る。
In order to achieve such an object, the present invention provides stress distribution inside the optical fiber and uses a core base material with a high refractive index to produce a single-polarized single-mode optical fiber having birefringence in the core. and a clad base material having a refractive index lower than that of the core base material, and a stress-applying base material is arranged on the outside of the core-clad base material, and the stress-applying base material is placed on the outside of the core-clad base material. A filling base material made of the same material as the clad base material is arranged so as to fill the gap between the cladding base materials, and the surroundings of the stress applying base material and the filling base material are jacketed with a glass tube for jacketing, and the jacketed assembly is drawn. It is characterized by being an optical fiber.

コア、クラツドおよび前記コアに応力を作用さ
せる応力付与母材を有する単一偏波単一モード光
フアイバの製造方法において、コア用ガラスとク
ラツド用ガラスからなるコア−クラツド母材を、
前記クラツド用ガラスと同一ガラスで形成したジ
ヤケツト管に挿入し、前記コア−クラツド母材の
外周に沿つて、前記コア用ガラスの中心に対し
て、それぞれ、略々点対称の位置に、前記クラツ
ド用ガラスの熱膨張係数よりも大きな熱膨張係数
を有する第1の応力付与母材を複数本配置し、該
第1の応力付与母材の中心点を結ぶ方向に対し
略々直角の方向で、かつ前記コアの中心点にして
略々点対称の位置に、前記クラツド用ガラスの熱
膨張係数よりも小さな熱膨張係数を有する第2の
応力付与母材を複数本配置し、前記コアークラツ
ド母材と前記ジヤケツト管との間には、前記第1
および第2応力付与母材の間に生じる空隙を前記
クラツド用ガラスと同一ガラスの充填母材で埋
め、得られた母材組立体を線引きすることを特徴
とする。
In a method for manufacturing a single-polarization single-mode optical fiber having a core, a cladding, and a stress-applying base material that applies stress to the core, a core-cladding base material consisting of a glass for the core and a glass for the cladding,
The cladding glass is inserted into a jacket tube made of the same glass as the cladding glass, and the cladding cladding is inserted into a jacket tube made of the same glass as the cladding glass, and the cladding is inserted into a jacket tube made of the same glass as the cladding glass, and the cladding is placed at positions approximately symmetrical with respect to the center of the core glass along the outer periphery of the core-cladding base material. A plurality of first stress-applying base materials having a thermal expansion coefficient larger than that of the glass for use are arranged, and in a direction substantially perpendicular to the direction connecting the center points of the first stress-applying base materials, A plurality of second stress-applying base materials having a coefficient of thermal expansion smaller than that of the glass for cladding are disposed at positions approximately symmetrical with respect to the center point of the core, and between the jacket pipe and the first jacket pipe;
The gap created between the second stress-applying base material is filled with a filling base material made of the same glass as the glass for the cladding, and the obtained base material assembly is drawn.

以下に図面を参照して本発明を詳細に説明す
る。
The present invention will be described in detail below with reference to the drawings.

本発明においては、まず最初に、第3A図およ
び第3B図に示すように、中空厚肉の石英ガラス
管によるジヤケツト管10内にクラツド母材11
およびコア母材12、およびクラツド母材11の
外周に沿つて、コア母材12の中心から眺めて所
定角度θをもち、コア中心に対して点対称に相対
向するよう配置された応力付与母材13を挿入
し、応力付与母材13の挿入によつてクラツド母
材11とジヤケツト管10との間に生じる空隙を
充填母材14によつて埋めるように配置する。
In the present invention, first, as shown in FIGS. 3A and 3B, a clad base material 11 is placed inside a jacket tube 10 made of a hollow thick-walled quartz glass tube.
A stress-applying matrix is arranged along the outer periphery of the core base material 12 and the clad base material 11 to have a predetermined angle θ when viewed from the center of the core base material 12 and to face point-symmetrically with respect to the core center. The filler material 13 is inserted so that the gap created between the clad material 11 and the jacket tube 10 by the insertion of the stress applying material 13 is filled with the filler material 14.

ここで、コア母材12とクラツド母材11によ
るコア−クラツド母材、応力付与母材13および
ジヤケツト管10は、得られる光フアイバのコア
に基底モードHE11のみが伝搬するように設計す
る。すなわち、光フアイバのコアの半径をa、コ
アとクラツドとの間の比屈折率差をΔ、コアの屈
折率をnとするときに、 2π/λna√2≦2.405 の条件を満足するように各母材11,12および
13とジヤケツト管10を設計する。ここで、λ
は伝搬させる光の波長である。
Here, the core-clad base material consisting of the core base material 12 and the clad base material 11, the stress-applying base material 13, and the jacket tube 10 are designed so that only the fundamental mode HE 11 propagates to the core of the resulting optical fiber. That is, when the radius of the core of the optical fiber is a, the relative refractive index difference between the core and the cladding is Δ, and the refractive index of the core is n, the condition of 2π/λna√2≦2.405 is satisfied. Each of the base materials 11, 12 and 13 and the jacket tube 10 are designed. Here, λ
is the wavelength of the light to be propagated.

第3A図および第3B図に示すように、ジヤケ
ツトした母材組立体を2000℃以上の高温に加熱し
て線引きを行う。これにより、コア−クラツド母
材11,12、応力付与母材13、充填母材1
4、およびジヤケツト管10のお互いの間の間隙
はなめらかになると共に溶着して第4図に示すよ
うな光フアイバが形成される。第4図において、
20はコア、21はクラツド、22は応力付与部
である。
As shown in FIGS. 3A and 3B, the jacketed base material assembly is heated to a high temperature of 2000° C. or higher to draw the wire. As a result, the core-clad base materials 11 and 12, the stress-applying base material 13, and the filling base material 1
4 and jacket tube 10 are smoothed and welded together to form an optical fiber as shown in FIG. In Figure 4,
20 is a core, 21 is a cladding, and 22 is a stress applying portion.

ここで、応力付与母材13を配置する角度θと
得られた光フアイバのコア20に生じる複屈折率
との関係は第5図に示すようになる。第5図から
わかるように、θ=90゜のときに、応力付与部2
2によつてコア20に与えられる複屈折率は最大
となる。
Here, the relationship between the angle θ at which the stress-applying base material 13 is arranged and the birefringence produced in the core 20 of the obtained optical fiber is as shown in FIG. As can be seen from Fig. 5, when θ=90°, the stress applying part 2
The birefringence given to the core 20 by 2 is maximum.

次に本発明製造方法の実施例について述べる。 Next, examples of the manufacturing method of the present invention will be described.

応力付与母材13の材料としては、GeO2
B2O3、P2O5、F、ZrO2、Al2O3、Sb2O5、TiO2
から成る一群から選択した1つまたは複数のドー
パントを含むSiO2とすることができる。かかる
母材13として、SiO2−B2O3、SiO2−GeO2
B2O3、SiO2−B2O3−P2O5のようにB2O3を含む
場合、クラツド母材12の厚さはコア母材11を
伝搬する光が拡がつて、B−Oの吸収損失を受け
ない程度に定めるのが好ましく、それにより1.2μ
m以上の長い波長でも低損失になる。GeO2およ
びB2O3の添加量はそれぞれ1〜10モル%および
5〜30モル%とするのが好適である。
Materials for the stress-applying base material 13 include GeO 2 ,
B2O3 , P2O5 , F, ZrO2 , Al2O3 , Sb2O5 , TiO2
SiO 2 may include one or more dopants selected from the group consisting of: As such base material 13, SiO 2 −B 2 O 3 , SiO 2 −GeO 2
When B 2 O 3 is included, such as B 2 O 3 or SiO 2 −B 2 O 3 −P 2 O 5 , the thickness of the clad base material 12 is such that the light propagating through the core base material 11 spreads and - It is preferable to set the value to a level that does not suffer absorption loss of O, so that 1.2μ
Even at long wavelengths of m or more, the loss is low. The amounts of GeO 2 and B 2 O 3 added are preferably 1 to 10 mol % and 5 to 30 mol %, respectively.

また、応力付与母材13を挿入することによつ
て生じる空隙には母材14を充填するので、ジヤ
ケツトした組立体を光フアイバに線引きする際に
応力付与母材13の対称配置はくずれることがな
く、コア形状は円形に保たれるとともに、中心か
らのずれを生じない。かかる空隙を埋める母材1
4としては、例えば第7図に示すように、石英ガ
ラス管を縦割したもの、あるいは第7図に示す応
力付与母材13のように円柱状のものであつても
よい。また、応力付与母材13も円柱状に限定さ
れず、第6図示の母材14と同様の形状であつて
もその効果は同様に発揮される。
Furthermore, since the void created by inserting the stress-applying base material 13 is filled with the base material 14, the symmetrical arrangement of the stress-applying base material 13 will not be disrupted when the jacketed assembly is drawn into an optical fiber. Therefore, the core shape is kept circular and does not shift from the center. Base material 1 that fills such voids
4 may be, for example, a vertically divided quartz glass tube as shown in FIG. 7, or a cylindrical material like the stress-applying base material 13 shown in FIG. Furthermore, the stress-applying base material 13 is not limited to a cylindrical shape, and even if it has the same shape as the base material 14 shown in FIG. 6, the same effect will be exhibited.

実施例 1 本例では、第8図に示すように、VAD法で作
製したコアおよびクラツド母材12および11と
膨張係数の大きな値を有する応力付与母材13と
をジヤケツト管10内に配置し、コア−クラツド
母材11,12、応力付与母材13およびジヤケ
ツト管10の間に生じる空隙にガラス母材14を
配置する。ここで、コアおよびクラツド母材12
および11はそれぞれGeO2−SiO2ガラスおよび
SiO2ガラスからなり、コア母材12に添加され
たGeO2添加量は7モル%であり、それぞれの寸
法はコア母材12の外径0.8mm、クラツド母材1
1の外径4mmとした。また、応力付与母材13は
B2O3−GeO3−SiO2の組成をもち、B2O3:14モ
ル%、GeO2:3モル%を添加した。この応力付
与母材13の寸法は4mmとして、第8図に示すよ
うに4本の母材13を相対向する位置に配置し
た。次いで、母材11,12および13の組立体
を内径12.6mm、外径19mmのジヤケツト管としての
石英ガラス管10で被つた。このとき、クラツド
母材12およびジヤケツト管10を構成する
SiO2の熱膨張係数α1および応力付与母材13の
熱膨張係数α2は、それぞれ、 α1=5.5×10-7-1 α2=15×10-7-1 であつた。第8図に示すように構成配置した母材
を2100℃の温度において、外径125μmの光フア
イバに線引きした。このようにして得られた光フ
アイバはカツトオフ波長1.2μm、波長1.3μmでの
損失値0.7dB/Kmおよびコアに誘起された複屈折
率は約10-4であり、半径4mm程度の曲げに対して
も光フアイバ中を伝搬させた直線偏光は十分に保
たれた。
Example 1 In this example, as shown in FIG. 8, core and cladding base materials 12 and 11 produced by the VAD method and a stress-applying base material 13 having a large expansion coefficient are arranged in a jacket tube 10. A glass base material 14 is placed in the gap created between the core-clad base materials 11 and 12, the stress-applying base material 13, and the jacket tube 10. Here, the core and clad base material 12
and 11 are GeO 2 −SiO 2 glass and
It is made of SiO 2 glass, and the amount of GeO 2 added to the core base material 12 is 7 mol %.
The outer diameter of 1 was 4 mm. Moreover, the stress-applying base material 13 is
It had a composition of B2O3 - GeO3 - SiO2 , and B2O3 : 14 mol% and GeO2 : 3 mol% were added. The stress-applying base material 13 had a dimension of 4 mm, and four base materials 13 were arranged at opposing positions as shown in FIG. Next, the assembly of base materials 11, 12 and 13 was covered with a quartz glass tube 10 as a jacket tube having an inner diameter of 12.6 mm and an outer diameter of 19 mm. At this time, the clad base material 12 and the jacket tube 10 are constructed.
The thermal expansion coefficient α 1 of SiO 2 and the thermal expansion coefficient α 2 of the stress-applying base material 13 were α 1 =5.5×10 −7 ° C. −1 α 2 =15×10 −7 ° C. −1 , respectively. The base material configured and arranged as shown in FIG. 8 was drawn at a temperature of 2100° C. into an optical fiber having an outer diameter of 125 μm. The optical fiber obtained in this way has a cutoff wavelength of 1.2 μm, a loss value of 0.7 dB/Km at a wavelength of 1.3 μm, and a birefringence index of approximately 10 -4 induced in the core. However, the linearly polarized light propagated through the optical fiber was well maintained.

実施例 2 第8図示の応力付与母材13として、第9図に
示すように、大きな熱膨張係数値をもつB2O3
SiO2ガラス13Aが石英ガラス13Bによつて
覆われたものを用いることもできる。例えば、光
フアイバの製造法として知られているMCVD法
によつて、B2O3を14モル%添加したSiO2ガラス
をガラス管内に堆積して中実化した後、中実化し
た母材を延伸し、ガラス棒13Aの外径4mmおよ
びガラス管13Bの外径2.9mmとしたものを用い
た場合、得られた光フアイバの断面構造は第10
図に示すようになつた。この場合、応力付与部2
2の面積が実効的に減少するので、応力によるコ
アに生じる複屈折率は8×10-5程度になつたが、
実用上問題はなかつた。
Example 2 As the stress applying base material 13 shown in FIG. 8, as shown in FIG. 9, B 2 O 3 − having a large thermal expansion coefficient value is used.
It is also possible to use one in which the SiO 2 glass 13A is covered with a quartz glass 13B. For example, by the MCVD method, which is known as an optical fiber manufacturing method, SiO 2 glass doped with 14 mol% of B 2 O 3 is deposited in a glass tube and solidified, and then the solidified base material is When a glass rod 13A with an outer diameter of 4 mm and a glass tube 13B with an outer diameter of 2.9 mm are used, the cross-sectional structure of the obtained optical fiber is as follows.
It became as shown in the figure. In this case, the stress applying section 2
Since the area of 2 was effectively reduced, the birefringence generated in the core due to stress was about 8 × 10 -5 , but
There were no practical problems.

この実施例では、コアおよびクラツド母材とし
てコア径/クラツド径=0.8/4のものを使用し
たが、より低損失の特性を実現するためには、こ
の寸法比が0.8/4以下のもの、例えば1/8の
コアおよびクラツド母材を使用することにより、
波長1.3μmで0.5dB/Km、波長1.55μmで0.3dB/
Kmの低損失光フアイバが実現され、かつ応力付与
母材としてB2O3(18モル%)、GeO2(4モル%)、
SiO2のガラスを用いることにより、応力によつ
て生じる応力複屈折率5×10-8が実現され、偏波
は実用上十分に保持された。
In this example, the core and cladding base materials used were core diameter/cladding diameter = 0.8/4, but in order to achieve lower loss characteristics, a material with this dimension ratio of 0.8/4 or less, For example, by using a 1/8 core and clad base material,
0.5dB/Km at wavelength 1.3μm, 0.3dB/Km at wavelength 1.55μm
Km low-loss optical fiber was realized, and the stress-applying base materials were B 2 O 3 (18 mol%), GeO 2 (4 mol%),
By using SiO 2 glass, a stress birefringence of 5×10 −8 caused by stress was achieved, and polarization was maintained sufficiently for practical use.

実施例 3 まず、VAD法によりSiO2ガラスによるクラツ
ド母材11とGeO2を5モル%添加したSiO2ガラ
スによるコア母材12とから成るコア−クラツド
母材を作製した。同様に、VAD法によりGeO2
よびB2O3をそれぞれ4モル%および14モル%添
加したSiO2ガラスによる応力付与母材13を形
成した。コア−クラツド母材と応力付与母材13
を第3A図に示すようにSiO2ガラス製のジヤケ
ツト管10中に挿入し、更にSiO2ガラスによる
充填母材14をもジヤケツト管10中に挿入し
た。この組立体を温度2100℃に加熱して線引きを
行うと、第11図示の断面構造をもつ光フアイバ
が得られた。
Example 3 First, a core-clad base material consisting of a clad base material 11 made of SiO 2 glass and a core base material 12 made of SiO 2 glass to which 5 mol % of GeO 2 was added was prepared by the VAD method. Similarly, a stress-applying base material 13 made of SiO 2 glass to which 4 mol % and 14 mol % of GeO 2 and B 2 O 3 were added, respectively, was formed by the VAD method. Core-clad base material and stress-applying base material 13
was inserted into a jacket tube 10 made of SiO 2 glass as shown in FIG. 3A, and a filling base material 14 made of SiO 2 glass was also inserted into the jacket tube 10. When this assembly was heated to a temperature of 2100° C. and drawn, an optical fiber having the cross-sectional structure shown in FIG. 11 was obtained.

なお、応力付与母材13として第9図示の構成
のものを用いる場合、例えばGeO2およびB2O3
添加したSiO2ガラス13AをSiO2ガラス13B
で覆うこともでき、その場合には第12図示のよ
うに応力付与部22がクラツド21中に島状に分
離した断面構造の光フアイバが得られる。この場
合の複屈折率の大きさは第11図示の光フアイバ
と同程度の大きさになる。
Note that when using the stress- applying base material 13 having the configuration shown in FIG .
In that case, an optical fiber having a cross-sectional structure in which the stress applying portions 22 are separated into islands in the cladding 21 as shown in FIG. 12 is obtained. In this case, the birefringence is approximately the same as that of the optical fiber shown in FIG.

ここで、クラツド母材11、ジヤケツト管10
および充填母材14は本質的にSiO2からなるの
で、熱膨張係数は5×10-7/℃と小さい。他方、
応力付与母材13を構成するガラスとして、例え
ばGeO2を4モル%、B2O3を10モル%添加した
SiO2を用いるときには、このガラスの熱膨張係
数は20×10-7/℃と大きくなる。しかも、GeO2
とB2O3を添加したSiO2はSiO2に比べて低い軟化
温度を持つので、母材を2100℃程度の温度に加熱
して線引きする際に周辺のジヤケツト管10およ
び充填母材14が固定した後に応力付与母材13
が固化し、しかも応力付与母材13は大きな熱膨
張係数を持つているので、この母材13は冷却す
るに従つて収縮する。このように、応力付与母材
13は周囲を固化した石英ガラスを引込むように
なるため、応力付与母材13の周囲には引張り応
力が生じる。この応力はコアにまで到達してコア
の応力付与母材方向に引張り応力が作用する。コ
アの部分に作用する応力は、光弾性効果によりコ
アの屈折率を低下させる。第11図に示す熱膨張
係数分布の一例のように、応力付与部22はコア
20を中心に相対向する側面に局在し、両者の熱
膨張係数の違いによつてコア20に誘起される屈
折率変化も応力付与部22側の領域に大きく生じ
る。クラツド外径/コア外径比が5倍程度のと
き、誘起される屈折率変化Δnは1×10-4となり、
充分大きな複屈折性が得られる。線引きする際
に、コア母材12の屈折率n1とクラツド母材11
の屈折率n2、コア外径2aおよび伝搬させる光の
波長λによつて規定される規格化周波数V=
2πa/λ√1 22 2がV2.405の条件を満足するよ うに各母材の寸法を定めることによつて単一偏波
単一モード光フアイバが得られる。
Here, the clad base material 11, the jacket pipe 10
Since the filling base material 14 essentially consists of SiO 2 , the coefficient of thermal expansion is as small as 5×10 −7 /°C. On the other hand,
For example, 4 mol% of GeO 2 and 10 mol% of B 2 O 3 were added as the glass constituting the stress-applying base material 13.
When SiO 2 is used, the coefficient of thermal expansion of this glass increases to 20×10 -7 /°C. Moreover, GeO 2
SiO 2 containing B 2 O 3 and B 2 O 3 has a lower softening temperature than SiO 2 , so when the base material is heated to a temperature of about 2100°C and drawn, the surrounding jacket tube 10 and filling base material 14 are After fixing, stress applying base material 13
is solidified, and since the stress-applying base material 13 has a large coefficient of thermal expansion, the base material 13 contracts as it cools. In this way, since the stress-applying base material 13 draws in the solidified quartz glass around it, tensile stress is generated around the stress-applying base material 13. This stress reaches the core, and tensile stress acts in the direction of the stress-applying base material of the core. The stress acting on the core portion reduces the refractive index of the core due to the photoelastic effect. As shown in the example of the thermal expansion coefficient distribution shown in FIG. 11, the stress-applying portions 22 are localized on opposite sides of the core 20, and are induced in the core 20 due to the difference in the thermal expansion coefficients between the two. A large change in refractive index also occurs in the region on the stress applying portion 22 side. When the clad outer diameter/core outer diameter ratio is about 5 times, the induced refractive index change Δn is 1×10 -4 ,
Sufficiently large birefringence can be obtained. When drawing, the refractive index n 1 of the core base material 12 and the clad base material 11
Normalized frequency V= defined by the refractive index n 2 of , the core outer diameter 2a, and the wavelength λ of the light to be propagated
By determining the dimensions of each base material so that 2πa/λ√ 1 22 2 satisfies the condition of V2.405, a single polarization single mode optical fiber is obtained.

出発材として用いるコア−クラツドの母材にお
いて、クラツド径/コア径比はコヒーレント光伝
送方式に適用される単一偏波単一モード光フアイ
バの製造にあたつては5倍以上であることが望ま
しい。他の光フアイバセンサ等短長の光フアイバ
を利用する場合には、クラツド径/コア径比が5
倍より小さい比であつてもよい。その理由は、コ
アを伝搬する光はクラツドにも拡がつて伝搬する
ので、光フアイバ中の光はコア−クラツド母材お
よび応力付与母材の双方の対向面における構造不
完全に起因して散乱されることがあり、従つて上
述の比が小さいときには伝搬損失が増大するから
である。そして、長距離光伝送にあつては低損失
性が重要な要因になるので、上述の比を大きく定
めることが必要になる。光フアイバセンサでは、
使用する光フアイバの長さが1Km程度と短いの
で、伝搬損失よりも偏波保存性の方が重要な要因
であり、この点からは応力付与母材をコアに近づ
ける方が一層効果的である。
In the core-clad base material used as a starting material, the clad diameter/core diameter ratio should be 5 times or more when manufacturing a single-polarization single-mode optical fiber that is applied to coherent optical transmission systems. desirable. When using short optical fibers such as other optical fiber sensors, the clad diameter/core diameter ratio is 5.
The ratio may be less than twice. The reason for this is that the light propagating through the core also spreads and propagates through the cladding, so the light in the optical fiber is scattered due to structural imperfections on the opposing surfaces of both the core-cladding matrix and the stress-applying matrix. Therefore, when the above-mentioned ratio is small, the propagation loss increases. Since low loss is an important factor in long-distance optical transmission, it is necessary to set the above-mentioned ratio large. With optical fiber sensors,
Since the length of the optical fiber used is short, about 1 km, polarization preservation is a more important factor than propagation loss, and from this point of view, it is more effective to place the stress-applying base material closer to the core. .

以上の各実施例では、応力付与母材13とし
て、熱膨張係数が石英ガラスの係数よりも大きな
ガラスを利用する場合について述べたが、応力付
与母材としてTiO2を添加したSiO2を用いる場合
には、SiO2−TiO2系ガラスの熱膨張係数は、
TiO2の含有量が所定の範囲約0〜10モル%にあ
るときには、SiO2の熱膨張係数よりも小さくな
る。この場合には、応力付与母材13が配置され
た方向に圧縮応力を生じる。この圧縮応力を用い
ても単一偏波単一モード光フアイバを製造でき
る。
In each of the above embodiments, a case has been described in which glass whose coefficient of thermal expansion is larger than that of quartz glass is used as the stress-applying base material 13, but when SiO 2 to which TiO 2 is added is used as the stress-applying base material The coefficient of thermal expansion of SiO 2 −TiO 2 glass is
When the content of TiO2 is in a predetermined range of about 0 to 10 mol%, the coefficient of thermal expansion is smaller than that of SiO2 . In this case, compressive stress is generated in the direction in which the stress-applying base material 13 is arranged. A single-polarization single-mode optical fiber can also be manufactured using this compressive stress.

さらに、第13図に示すように、熱膨張係数が
SiO2よりも大きな応力付与母材13と、SiO2
りも小さなTiO2含有の応力付与部材23とを互
いに直交する方向に配置することによつて、複屈
折率を更に向上させることもできる。
Furthermore, as shown in Figure 13, the coefficient of thermal expansion is
The birefringence can be further improved by arranging the stress applying base material 13 larger than SiO 2 and the stress applying member 23 containing TiO 2 smaller than SiO 2 in directions orthogonal to each other.

以上説明したように、本発明単一偏波単一モー
ド光フアイバの製造方法は、コア、クラツド母
材、応力付与母材、空隙を埋める母材、およびジ
ヤケツト管10のいずれに対しても、研削等長さ
を規定する工程を含まないので、母材の大形化を
達成でき、以て長大な光フアイバを製造すること
が可能である。また、母材の段階において、各母
材をほぼ完全に緊密に配置するので、線引きによ
りコアの位置がずれたり、また、コアが楕円に変
形することがない利点がある。
As explained above, the method for manufacturing a single-polarized, single-mode optical fiber of the present invention can be applied to any of the core, clad base material, stress-applying base material, void-filling base material, and jacket tube 10. Since it does not include processes such as grinding to define the length, it is possible to increase the size of the base material, thereby making it possible to manufacture a long optical fiber. Furthermore, since each base material is arranged almost completely tightly at the base material stage, there is an advantage that the position of the core does not shift due to wire drawing, and the core does not deform into an ellipse.

また、本発明では、伝送損失に関与するコアお
よびクラツド母材には研磨等何らの加工にも施さ
なくてすむので低損失の光フアイバを製造でき
る。
Furthermore, in the present invention, it is not necessary to perform any processing such as polishing on the core and cladding base materials, which are involved in transmission loss, so that an optical fiber with low loss can be manufactured.

更にまた、本発明では、応力付与部が相対向す
る限られた領域にのみ存在するので、光フアイバ
のコアに発生させる複屈折率は大きな値となり、
偏波保持性を高める効果が大であり、しかも応力
付与母材を配置するにあたつては、充填母材を空
隙部に埋め込むので各母材間の配置は安定に定ま
り、従つて偏波保存性も安定になる。
Furthermore, in the present invention, since the stress applying portions are present only in limited areas facing each other, the birefringence generated in the core of the optical fiber becomes a large value.
It has a great effect on improving polarization maintenance, and when placing stress-applying base materials, the filling base material is embedded in the void, so the arrangement between each base material is stable, and the polarization is maintained. It also has stable storage stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図〜第1C図は従来の単一偏波単一モー
ド光フアイバの製造工程の説明図、第2図はかか
る従来方法で形成した光フアイバの熱膨張係数分
布図、第3A図および第3B図は本発明製造方法
を説明するためのそれぞれ断面図および斜視図、
第4図は本発明により得られた光フアイバの断面
図、第5図は応力付与母材のなす角度と光フアイ
バのコアにおよぼす複屈折率との関係を示すグラ
フ、第6図は本発明で用いる充填母材の一例を示
す斜視図、第7図は本発明で用いる充填母材を円
柱体とした場合の母材組立体を示す断面図、第8
図〜第10図は本発明製造方法の具体例を説明す
るための断面図、第11図は本発明により形成し
た光フアイバの熱膨張係数分布図、第12図は本
発明により製造した光フアイバの他の例を示す断
面図、第13図は本発明における母材組立体の他
の例を示す断面図である。 1……ジヤケツト管、2……クラツド母材、3
……コア母材、4……研削部分、10……ジヤケ
ツト管、11……クラツド母材、12……コア母
材、13……応力付与母材、14……充填母材、
20……コア、21……クラツド、22……応力
付与部、13A……ガラス棒、13B……ガラス
管。
1A to 1C are explanatory diagrams of the conventional manufacturing process of a single-polarization single-mode optical fiber, FIG. 2 is a thermal expansion coefficient distribution diagram of an optical fiber formed by such a conventional method, and FIGS. Figure 3B is a cross-sectional view and a perspective view, respectively, for explaining the manufacturing method of the present invention;
FIG. 4 is a cross-sectional view of an optical fiber obtained according to the present invention, FIG. 5 is a graph showing the relationship between the angle formed by the stress-applying base material and the birefringence exerted on the core of the optical fiber, and FIG. 6 is a graph according to the present invention. FIG. 7 is a perspective view showing an example of the filling base material used in the present invention, FIG. 7 is a cross-sectional view showing a base material assembly when the filling base material used in the present invention is a cylinder, and FIG.
10 are cross-sectional views for explaining specific examples of the manufacturing method of the present invention, FIG. 11 is a thermal expansion coefficient distribution diagram of the optical fiber formed according to the present invention, and FIG. 12 is a diagram of the optical fiber manufactured according to the present invention. FIG. 13 is a sectional view showing another example of the base material assembly according to the present invention. 1... Jacket pipe, 2... Clad base material, 3
...Core base material, 4...Grinded part, 10...Jacket pipe, 11...Clad base material, 12...Core base material, 13...Stress imparting base material, 14...Filling base material,
20... Core, 21... Clad, 22... Stress applying section, 13A... Glass rod, 13B... Glass tube.

Claims (1)

【特許請求の範囲】 1 光フアイバの内部に応力分布を与え、コアに
複屈折性をもつ単一偏波単一モード光フアイバを
製造するにあたり、屈折率の高いコア母材と該コ
ア母材の屈折率よりも屈折率の低いクラツド母材
からなるコア−クラツド母材の外側に応力付与母
材を配置し、前記コア−クラツド母材の外側に、
前記応力付与母材の隙間を埋めるように前記クラ
ツド母材と同一材料による充填母材を配置し、前
記応力付与母材および前記充填母材の周囲をジヤ
ケツト用ガラス管でジヤケツトし、ジヤケツトし
た組立体を線引きして光フアイバとすることを特
徴とする単一偏波単一モード光フアイバの製造方
法。 2 特許請求の範囲第1項記載の製造方法におい
て、前記応力付与母材を、前記コア−クラツド母
材の周囲に沿つて、該コア−クラツド母材をはさ
んで相対向する位置に配置することを特徴とする
単一偏波単一モード光フアイバの製造方法。 3 特許請求の範囲第1項または第2項に記載の
製造方法において、前記コア母材とクラツド母材
の組成をSiO2−GeO2とSiO2、SiO2−GeO2
P2O5とSiO2、SiO2とSiO2−F、およびSiO2
GeO2とSiO2−P2O5−Fのいずれかとなし、前記
応力付与母材の組成をSiO2−B2O3、SiO2−B2O3
−GeO2、SiO2−B2O3−P2O5、SiO2−F−P2O5
SiO2−F−GeO2、SiO2−TiO2、およびSiO2
TiO2−Fのいずれかとなし、前記充填母材のガ
ス組成をSiO2となし、前記ジヤケツト用ガラス
管の組成をSiO2とすることを特徴とする単一偏
波単一モード光フアイバの製造方法。 4 コア、クラツドおよび前記コアに応力を作用
させる応力付与母材を有する単一偏波単一モード
光フアイバの製造方法において、コア用ガラスと
クラツド用ガラスからなるコア−クラツド母材
を、前記クラツド用ガラスと同一ガラスで形成し
たジヤケツト管に挿入し、前記コア−クラツド母
材の外周に沿つて、前記コア用ガラスの中心に対
して、それぞれ、略々点対称の位置に、前記クラ
ツド用ガラスの熱膨張係数よりも大きな熱膨張係
数を有する第1の応力付与母材を複数本配置し、
該第1の応力付与母材の中心点を結ぶ方向に対し
略々直角の方向で、かつ前記コアの中心点に対し
て略々点対称の位置に、前記クラツド用ガラスの
熱膨張係数よりも小さな熱膨張係数を有する第2
の応力付与母材を複数本配置し、前記コア−クラ
ツド母材と前記ジヤケツト管との間には、前記第
1および第2応力付与母材の間に生じる空隙を前
記クラツド用ガラスと同一ガラスの充填母材で埋
め、得られた母材組立体を線引きすることを特徴
とする単一偏波単一モード光フアイバの製造方
法。 5 特許請求の範囲第4項に記載の製造方法にお
いて、前記クラツド用ガラスを石英ガラスとな
し、前記応力付与母材の中心部に、熱膨張係数が
石英ガラスの熱膨張係数とは異なり、しかも軟化
点が石英ガラスよりも低い温度をもつGeO2
B2O3、P2O5、TiO2、F、Al2O3、ZrO2および
Sb2O5のいずれか一つもしくは複数個の材料が添
加された添加石英ガラスを存在させることを特徴
とする単一偏波単一モード光フアイバの製造方
法。 6 特許請求の範囲第5項記載の製造方法におい
て、前記応力付与母材は前記添加石英ガラスの周
囲を石英ガラスにより被覆して組立てることを特
徴とする単一偏波単一モード光フアイバの製造方
法。
[Claims] 1. A core base material with a high refractive index and the core base material are used to produce a single-polarization, single-mode optical fiber that provides stress distribution inside the optical fiber and has birefringence in the core. A stress-applying base material is placed on the outside of a core-clad base material made of a clad base material having a refractive index lower than that of the core-clad base material, and on the outside of the core-clad base material,
A filling base material made of the same material as the cladding base material is arranged so as to fill the gap between the stress-applying base materials, and a glass tube for jacketing is used to jacket the periphery of the stress-applying base material and the filling base material to form a jacketed assembly. 1. A method for manufacturing a single-polarized single-mode optical fiber, which comprises drawing a three-dimensional line to form an optical fiber. 2. In the manufacturing method according to claim 1, the stress-applying base materials are arranged along the periphery of the core-clad base material at opposing positions with the core-clad base material in between. A method for manufacturing a single-polarized single-mode optical fiber, characterized in that: 3. In the manufacturing method according to claim 1 or 2, the compositions of the core base material and the clad base material are SiO 2 -GeO 2 and SiO 2 , SiO 2 -GeO 2 -
P2O5 and SiO2 , SiO2 and SiO2 - F , and SiO2-
Either GeO 2 or SiO 2 −P 2 O 5 −F is used, and the composition of the stress-applying base material is SiO 2 −B 2 O 3 or SiO 2 −B 2 O 3 .
-GeO2 , SiO2 - B2O3 - P2O5 , SiO2 - F - P2O5 ,
SiO2 -F- GeO2 , SiO2 - TiO2 , and SiO2-
Manufacture of a single polarization single mode optical fiber characterized in that the filling base material has a gas composition of SiO 2 and the jacket glass tube has a composition of SiO 2 . Method. 4. In a method for manufacturing a single-polarization single-mode optical fiber having a core, a cladding, and a stress-applying base material that applies stress to the core, a core-cladding base material consisting of a core glass and a cladding glass is combined with the cladding base material. The glass for the cladding is inserted into a jacket tube made of the same glass as the glass for the cladding, and the glass for the cladding is placed along the outer periphery of the core-cladding base material at positions approximately symmetrical to the center of the glass for the core. A plurality of first stress-applying base materials having a coefficient of thermal expansion larger than a coefficient of thermal expansion are arranged,
In a direction substantially perpendicular to the direction connecting the center points of the first stress-applying base material, and at a position substantially symmetrical to the center point of the core, the thermal expansion coefficient of the glass for the cladding is larger than that of the cladding glass. The second with a small coefficient of thermal expansion
A plurality of stress-applying base materials are arranged, and a gap created between the first and second stress-applying base materials is filled between the core-clad base material and the jacket tube using the same glass as the glass for the cladding. A method for manufacturing a single-polarized single-mode optical fiber, comprising filling the fiber with a filler matrix of 100% of the total number of particles, and drawing the resulting matrix assembly. 5. In the manufacturing method as set forth in claim 4, the glass for the cladding is made of quartz glass, and the center portion of the stress-applying base material has a thermal expansion coefficient different from that of quartz glass, and GeO 2 has a softening point lower than that of silica glass,
B 2 O 3 , P 2 O 5 , TiO 2 , F, Al 2 O 3 , ZrO 2 and
A method for producing a single-polarized single-mode optical fiber, characterized in that doped silica glass is added with one or more of Sb 2 O 5 . 6. The manufacturing method according to claim 5, wherein the stress-applying base material is assembled by covering the periphery of the doped quartz glass with quartz glass. Method.
JP56200044A 1981-01-17 1981-12-14 Preparation of optical fiber having single polarization diversity and single mode Granted JPS58104035A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP56200044A JPS58104035A (en) 1981-12-14 1981-12-14 Preparation of optical fiber having single polarization diversity and single mode
GB8200751A GB2096788B (en) 1981-01-17 1982-01-12 Single-polarization single-mode optical fibers
CA000394239A CA1168488A (en) 1981-01-17 1982-01-15 Single-polarization single-mode optical fibers
FR8200581A FR2498339B1 (en) 1981-01-17 1982-01-15 IMPROVEMENTS ON SINGLE-MODE OPTICAL FIBERS AND THEIR MANUFACTURING METHOD
NL8200149A NL184924C (en) 1981-01-17 1982-01-15 OPTICAL SINGLE-MODE FIBER FOR POLARIZED LIGHT AND METHOD FOR MANUFACTURING SUCH FIBER.
DE19823201342 DE3201342C2 (en) 1981-01-17 1982-01-18 Single polarization single mode wave optical fiber and process for its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56200044A JPS58104035A (en) 1981-12-14 1981-12-14 Preparation of optical fiber having single polarization diversity and single mode

Publications (2)

Publication Number Publication Date
JPS58104035A JPS58104035A (en) 1983-06-21
JPS6328857B2 true JPS6328857B2 (en) 1988-06-10

Family

ID=16417888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56200044A Granted JPS58104035A (en) 1981-01-17 1981-12-14 Preparation of optical fiber having single polarization diversity and single mode

Country Status (1)

Country Link
JP (1) JPS58104035A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028703U (en) * 1983-08-01 1985-02-26 古河電気工業株式会社 single polarization optical fiber
JPH0685005B2 (en) * 1985-01-29 1994-10-26 住友電気工業株式会社 Constant polarization fiber and manufacturing method thereof
JPS62276510A (en) * 1986-05-26 1987-12-01 Nippon Telegr & Teleph Corp <Ntt> Stress imparting type polarized wave maintaining optical fiber
JPH01314209A (en) * 1988-06-14 1989-12-19 Sumitomo Electric Ind Ltd Constant polarization optical fiber
DE102014224964B4 (en) 2014-05-12 2023-06-01 J-Fiber Gmbh Process for manufacturing a polarization-maintaining optical fiber, preform for manufacturing a polarization-maintaining optical fiber, and polarization-maintaining optical fiber

Also Published As

Publication number Publication date
JPS58104035A (en) 1983-06-21

Similar Documents

Publication Publication Date Title
EP0109604B1 (en) Polarised plane-maintaining optical fiber
US4179189A (en) Single polarization optical fibers and methods of fabrication
GB2205828A (en) Methods of manufacturing polarisation-maintaining optical fibres
JPS61232245A (en) Optical fiber
EP0201544A1 (en) Form birefringent fibers and method of fabrication
JPS6328857B2 (en)
JPH0389204A (en) Mono-polarized mode optical fiber and manufacture thereof
GB2096788A (en) Single polarization single-mode optical fibers
JPS59164505A (en) Single-polarization single-mode optical fiber
JPH0685005B2 (en) Constant polarization fiber and manufacturing method thereof
JPH01314209A (en) Constant polarization optical fiber
JPH0352042B2 (en)
JPH0212887B2 (en)
JPS59139005A (en) Fiber for maintaining linearly polarized light
JPS59125702A (en) Polarization maintaining optical fiber
JPS6367168B2 (en)
JP2805533B2 (en) Fiber fusion type optical branch coupler
JPH0239456B2 (en)
JPH02157133A (en) Production of elliptic core type polarization plane maintaining optical fiber
JPS63381B2 (en)
JPS5918326B2 (en) Preform rod manufacturing method for &#34;Hen&#34; wave preservation optical fiber
JPWO2022172910A5 (en)
JPH0623805B2 (en) Polarization-maintaining optical fiber
JPS59190234A (en) Preparation of fiber for maintenance of straight polarization
JPH0439605A (en) Elliptic core type polarization plane maintaining optical fiber and optical fiber polarizer