JPS59125702A - Polarization maintaining optical fiber - Google Patents

Polarization maintaining optical fiber

Info

Publication number
JPS59125702A
JPS59125702A JP58000417A JP41783A JPS59125702A JP S59125702 A JPS59125702 A JP S59125702A JP 58000417 A JP58000417 A JP 58000417A JP 41783 A JP41783 A JP 41783A JP S59125702 A JPS59125702 A JP S59125702A
Authority
JP
Japan
Prior art keywords
core
stress
refractive index
base material
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58000417A
Other languages
Japanese (ja)
Other versions
JPS6018042B2 (en
Inventor
Juichi Noda
野田 とう一
Noriyoshi Shibata
典義 柴田
Yutaka Sasaki
豊 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58000417A priority Critical patent/JPS6018042B2/en
Publication of JPS59125702A publication Critical patent/JPS59125702A/en
Publication of JPS6018042B2 publication Critical patent/JPS6018042B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • C03B37/01231Removal of preform material to form a longitudinal hole, e.g. by drilling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • C03B2203/31Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres by use of stress-imparting rods, e.g. by insertion

Abstract

PURPOSE:To form a polarization maintaining optical fiber which is long-sized and improves remarkably a polarization characteristic by forming a core of a circular or elliptical shape and forming a refractive index distribution of said core into a graded type shape. CONSTITUTION:Holes 3'a, 3'b for stressing base materials are opened to a quartz bar 5 having 50mm. diameter and 150mm. length in the positions symmetrical with the center of the quartz bar and a hole 4' for a core base material is opened at the center of the bar 5, by means of an ultrasonic drill, then stressing base materials 3a, 3b and a fiber core base material 4 are inserted into these holes. The stressing base materials consist of SiO2 glass doped with 10.5mol% B2O3 and 4.5mol% GeO2. The core base material is doped with 16wt% GeO2, has a refractive index distribution of a square function roughly in the radial direction. Said material has a ratio of five between the diameter of the clad and the diameter of the core. After the material 4 and the members 3a, 3b are mounted to the bar 5, the bar is drawn under the pressure reduced to about 10- 100Torr. The resulted polarization maintaining optical fiber is improved in crosstalk, i.e., the fiber having the core of a graded type refractive index distribution is better in crosstalk by about 5dB than a conventional fiber having a step type refractive index distribution.

Description

【発明の詳細な説明】 本発明は直線偏波光を長距屋t、かつ外乱に対して安定
に伝はんする偏波保持光ファイ/<の構造番こ関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polarization-maintaining optical fiber structure that transmits linearly polarized light over a long distance and stably against external disturbances.

従来、直線偏波光を安定に伝ばんする光ファイバは、第
1図に示す構造が知られている。すなわち第1図におい
て、1はGeO2が0.3〜1%程度5in2ガラスに
ドープされたコア、2はS iO2ガラスからなるクラ
ッド、3はSiO2ガラスにB2O3またはB2O3と
GeO□が1010−2O/%ドープされた応力付与部
である。従来用いられている偏波保持光ファイバのコア
の屈折率分布は、第2図(a)に示すようにステップ形
であった。このためコア1にドープされたGeO2に起
因するコア】の半径方向の応力σrと半径方向と直角を
なす応力σθは、論文 ]  (N、5hibata 
 、  K、Jinguji  、  M、Kawan
a  andT、Edahiro 、 Jan J−A
ppl、PhyS 、 VOl、] 8 、 l/G 
7 。
Conventionally, an optical fiber that stably transmits linearly polarized light has a structure shown in FIG. 1. That is, in FIG. 1, 1 is a core doped with GeO2 of about 0.3 to 1% in 5in2 glass, 2 is a cladding made of SiO2 glass, and 3 is a SiO2 glass with B2O3 or B2O3 and GeO□ doped at 1010-2O/2. % doped stress applying part. The refractive index distribution of the core of a conventionally used polarization-maintaining optical fiber was step-shaped as shown in FIG. 2(a). Therefore, the stress σr in the radial direction of the core due to GeO2 doped in core 1 and the stress σθ perpendicular to the radial direction are
, K. , Jinguji , M. Kawan
a and T, Edahiro, Jan J-A
ppl, PhyS, VOl,] 8, l/G
7.

pp。1267〜7273.1979)によれは、第2
図fblに示す分布となる。ここでコア1内の応力分布
はσr、σθのいすねも均一であるが、コア1とクラッ
ド2の界面では特に応力σθは急激な変化を示している
pp. 1267-7273.1979) is the second
The distribution is shown in Figure fbl. Here, the stress distribution within the core 1 is uniform in both σr and σθ, but the stress σθ shows a particularly rapid change at the interface between the core 1 and the cladding 2.

第3図は論文1に示されているコアがステップ形屈折率
形状を持つ光フアイバ母材の応力分布の測定例を示す。
FIG. 3 shows an example of measuring the stress distribution of an optical fiber base material whose core has a step-shaped refractive index shape as shown in Paper 1.

第3図から明らかにわかるように、半径方向と直角をな
す応力σθはコ、アとクラッドの界面で急激な応力変化
を示している。光フアイバ内の応力分布を有限要素法で
2次元的に示した結果が第4図である。第4図において
、0印は引張応力、〉く印は圧縮応力を示す。有限要素
の解法は論文2 (K、Okamoto 、 T、Ho
5aka and T、Edahir。
As can be clearly seen from FIG. 3, the stress σθ perpendicular to the radial direction shows a rapid stress change at the interface between the core, the a and the cladding. FIG. 4 is a two-dimensional representation of the stress distribution within the optical fiber using the finite element method. In FIG. 4, the 0 mark indicates tensile stress, and the square mark indicates compressive stress. The finite element solution method is in paper 2 (K, Okamoto, T, Ho
5aka and T, Edahir.

工EEE J、Quantum Electron 、
 vat、 QE −17。
Engineering EEE J, Quantum Electron,
vat, QE-17.

A10.pp、jl!123〜2129.1981 +
に示されている。
A10. pp,jl! 123-2129.1981 +
is shown.

この計算ではコア径5μm1クラツド径125μm1コ
アとクラッドの屈折率差比0.75%を仮定しており、
通常の単一モード光ファイバのパラメータと同じである
。このようなコアとクランドの界面の急激な応力変化(
コアの内部では引張症、力のみで、コアの外部では引張
応力と圧縮応力がある)は応力付与部3が導入さね、た
場合、応力付与部3により生じる応力分布に悪影物をも
たらす。
This calculation assumes a core diameter of 5 μm, a cladding diameter of 125 μm, and a refractive index difference ratio of 0.75% between the core and cladding.
The parameters are the same as those of ordinary single mode optical fiber. Such a sudden stress change at the interface between the core and the crand (
If the stress applying section 3 fails to introduce stress (inside the core there is only tensile stress and force, and outside the core there are tensile stress and compressive stress), it will cause a negative effect on the stress distribution caused by the stress applying section 3. .

有限要素法の解析を容易にするため、第5図に示すよう
な扇形の応力付与部の形状を考える。このような応力付
与形状tよる応力分布は第1図の応力付与形状と多少異
なるが、光ファイバのコアとクラッドの界面の応力変化
によるe響を知る上では何ら問題ない。第6図はその結
果を示す。第6図において、峠印は引張応力、x印は圧
縮応力を示す。ここで応力付与部、の大きさは、第5図
の図中のパラメータに従い、θ−90°、t −22,
5μm、 rl−12,5μm、 2 a−5μm、 
2 b−125μmである。また応力付与部のB2O3
とGem2のドープ量は15 m01%を仮定している
In order to facilitate the analysis using the finite element method, consider the shape of the sector-shaped stress applying section as shown in FIG. Although the stress distribution due to the stress applying shape t is somewhat different from the stress applying shape shown in FIG. 1, there is no problem in understanding the e-effect due to the stress change at the interface between the core and cladding of the optical fiber. Figure 6 shows the results. In FIG. 6, the pass mark indicates tensile stress, and the x mark indicates compressive stress. Here, the size of the stress applying part is θ-90°, t-22,
5μm, rl-12,5μm, 2a-5μm,
2b-125 μm. Also, B2O3 in the stress applying part
The doping amount of Gem2 and Gem2 is assumed to be 15 m01%.

第6図かられかるように、コア内の引張応力はその応力
付与部の配置されているX軸方向にほぼ一致している。
As can be seen from FIG. 6, the tensile stress within the core substantially coincides with the X-axis direction in which the stress applying portion is arranged.

一方、コアとクラッドの界面の引張応力の方向はX@か
ら外れることにより、その応力付与部が配置されている
X軸方向と一致しなくなる。これは直線偏波光がコアと
クラッドの界面で全反射する時、偏波面と直角方向σ)
成分、すなわちHExモ1 一ドよりHEy モードを誘起する結果となる。
On the other hand, the direction of the tensile stress at the interface between the core and the clad deviates from X@, and thus no longer coincides with the X-axis direction in which the stress applying portion is arranged. This is when linearly polarized light is totally reflected at the interface between the core and cladding, in the direction perpendicular to the polarization plane σ)
The result is that the HEy mode is induced more than the HEx mode.

1 第7図はモード複屈折率BSをパラメータとして、偏波
保持ファイバのコアとクラッドの屈折率差比と偏波面変
動角との関係を示す。ここで偏波面変動角は波長λ−’
1.15μmのHe −Neレーザを偏波保持ファイバ
の屈折率楕円体の一つの主軸に入れたとき、出射偏波面
の変動する角度を表わす。
1. FIG. 7 shows the relationship between the refractive index difference ratio between the core and cladding of a polarization-maintaining fiber and the polarization plane fluctuation angle using the mode birefringence BS as a parameter. Here, the polarization plane variation angle is the wavelength λ−'
It represents the angle at which the output polarization plane changes when a 1.15 μm He-Ne laser is inserted into one principal axis of the index ellipsoid of the polarization-maintaining fiber.

モード蝮屈折率BSは屈折率楕円体の二つの主軸に立つ
電ばんモードの規格化伝ばん定数の差を表わす。
The mode refractive index BS represents the difference in the normalized propagation constants of the electric band modes standing on the two principal axes of the refractive index ellipsoid.

ところで偏波面の安定性は第7図に示すようにコアとク
ラッドの屈折率差比が大きくなると良くなることが実験
的に示されている。これはフコ文3(N、5hibat
a 、 Y、5asaki 、 K、Okamoto 
、 andT、Ho5aka 、 ■EEE Opti
calwaveguide ’i’echn。
Incidentally, it has been experimentally shown that the stability of the polarization plane improves as the refractive index difference ratio between the core and the cladding increases, as shown in FIG. This is fukobun 3 (N, 5hibat
a, Y, 5asaki, K, Okamoto
, andT, Ho5aka, ■EEE Opti
calwave guide 'i'echn.

10g”J 、 VOl、 1 、AI 、 1983
 )で論じられている。しかしコアとクラッドの屈折率
差比Δが大きくなると、たとえばΔ−0,8%とすると
、第8図に示すようなステップ形屈折率分布を持つコア
の特にクラッドとの界面にコア/クラッド屈折率差のゆ
らぎcつの状部の高さの変f!1+ )を生じるように
なる。特にこれはVAD法と称ぎねるファイバ母材形成
法では顕著になることが知られている。
10g”J, VOl, 1, AI, 1983
) is discussed. However, when the refractive index difference ratio Δ between the core and the cladding becomes large, for example Δ-0.8%, the core/cladding refraction occurs in the core with a step-shaped refractive index distribution, especially at the interface with the cladding, as shown in Figure 8. Fluctuation in rate difference c Change in height of two shaped parts f! 1+). This is known to be particularly noticeable in a fiber base material forming method called the VAD method.

こねは論文4 (T、Tomaru 、 M、Kawa
Chi 、 M、Yasu。
Koneha Paper 4 (T, Tomaru, M, Kawa
Chi, M., and Yasu.

T、Miya 、 and T、Edahiro 、 
Electron、 Lett、  。
T, Miya, and T, Edahiro,
Electron, Lett.

で指摘されている。これはコアとクラ゛ンドの界面の応
力の急激な変化をさらに強詩すること※こなり、特に第
8図に示したコア内のつの状の屈折率分布は光ファイバ
の長手方向にもゆらぐので、高しAコアとクラッドの屈
折率差比を有する偏波保持光)了イバでは偏波保持安定
化とけ逆行する結果であり、重大な問題となっている。
It has been pointed out. This further accentuates the rapid change in stress at the interface between the core and the crimp. In particular, the horn-shaped refractive index distribution within the core shown in Figure 8 also fluctuates in the longitudinal direction of the optical fiber. Therefore, in polarization-maintaining optical fibers having a high A-core and cladding refractive index difference ratio, polarization-maintaining stabilization is reversed, which is a serious problem.

本発明は以上説明したように、コアとクラ゛ント”の界
面の急激な応力変化を緩和させるためGこ、ステップ屈
折率分布を持つコア(4□: ’fN2に代わって、り
゛レーテッド型屈折軍分布を持つコア横滑Gこより、長
尺で偏波特性が飛躍的に向上する偏波保持光ファイバを
実供することを目的としてし)る。
As explained above, in order to alleviate sudden stress changes at the interface between the core and the client, the present invention uses a core with a step refractive index distribution (4□: 'fN2), which is a rated type The purpose of the present invention is to provide a long polarization-maintaining optical fiber whose polarization characteristics are dramatically improved by having a transversely sliding core with a refractive force distribution.

第9図は本発明によるグレーテ・ンド型屈折率のコアを
有する光フアイバ屈折率分布を示す。すてに述べた論文
]によれば、$qH<a、xこ示す屈折率分布を有する
コアおよびクラ・ンド内の半径方向の応力σ、および半
径方向と直角な方向の応力σθは、P9図(b)のよう
な分布を示す。第2、いる。コアとクラッドの屈折率差
比が0.4%のクーレーデラド型層折率分布を持つ光フ
ァイ2く母相の実測した応力分布も、第10図に示すよ
う(こコアとクラッドの界面付近でゆるくなっている。
FIG. 9 shows the refractive index profile of an optical fiber having a grating-and-index core according to the present invention. According to the above-mentioned paper], $qH<a, The distribution is shown in figure (b). Second, there is. As shown in Figure 10, the stress distribution actually measured in the matrix of an optical fiber with a Coulet-Derad type layer refractive index distribution with a refractive index difference ratio of 0.4% between the core and the cladding is as shown in Figure 10. It's getting loose.

第1図に示す構造で、かつコアにグレーテラF型態折率
分布を持つ偏波保持光コアイノくの作製法につし八で以
下に示す。
A method for fabricating a polarization-maintaining optical core having the structure shown in FIG. 1 and having a Gray Terra F-type refractive index distribution in the core will be described below.

実施例1 第11図は直径50m71.長ざ150m1J1の石英
棒5を超音波ドリルで石英棒の中心に対して対称な位胎
に応力付与母材用の穴a’a 、 3’b [穴径(才
ll鴎)と、石英棒5の中心にコア母相用の穴4′(穴
径け10fim+をあけ、ついで何層した後、MCVD
法によって作製した応力付与母材(直径11 mx )
3a、3bおよびVAD法によって作製したファイバ母
材(直径I Q m7n ) 4を挿入する状況を示す
Example 1 Figure 11 shows a diameter of 50 m71. Using an ultrasonic drill, a quartz rod 5 with a length of 150 m1J1 was drilled with stress-applying holes a'a and 3'b for the base material in positions symmetrical with respect to the center of the quartz rod. Drill a hole 4' (hole diameter 10fim+) for the core matrix in the center of 5, then after applying several layers, MCVD
Stress-applying base material (diameter 11 mx) prepared by the method
3a, 3b and a situation in which a fiber preform (diameter I Q m7n) 4 produced by the VAD method is inserted.

応力付与母材ハB2O3]C!。5 m01%およびG
eO24,5mo1%がSiO□ガラスにドープさねた
ものである。コア母材はGeO2が]6重f?4:%ド
ープされたほぼ半径方向に2采の関数の屈折率分布を持
ちかつクラッドの直径とコアの直径の比5からなる。
Stress-applying base material B2O3]C! . 5 m01% and G
SiO□ glass is doped with 4.5 mo1% eO2. The core base material is GeO2] 6-fold f? It is doped at 4:% and has a refractive index profile of two functions in the radial direction, with a ratio of cladding diameter to core diameter of 5.

石英棒5にコア母材4および応力付与母相3a。A core base material 4 and a stress-applying matrix 3a are provided on a quartz rod 5.

3bを挿入する際、穴s’a−、3’b 、 4’は”
yymmで研磨により歪層を除去しである。フ・ン酸液
処理後、酸水素炎で加炎研磨も可曲である。石英棒5に
コア母材4およびルL・力伺与部相3a、3bを装珀し
た後、これを約10〜100 Torr程度で波圧しな
がら線引する。l?ケられた偏波保持光ファイバノ結果
は、外径150mπ、カッ) オフ波81.1μm 、
 tffx 矢カ波長1.5μmで0.8dB/”m、
J、(:$波モートのHEX  とHEy 間のクロス
トークかfi長1.311      1.1 μm1光フアイバ長]へて−29(iBであった。クロ
ストークは従来のステップ形屈折軍分布び)コアを有す
るファイバに比べ、グレーデッド型屈折梁分布のコアを
有するコアイノ〈の方が5 dBの改善をイ(↓た。ま
た100°Cの温度変化Gこス4してクロストークは3
 dB変化したに過き゛ない。コア母材としてVAD法
による母材を用いたが、MCVD法による母材を用いて
も全く同じ結果が彬らねる。
When inserting 3b, holes s'a-, 3'b, 4' should be
The strained layer was removed by polishing at yymm. After treatment with fluoric acid solution, flame polishing with oxyhydrogen flame is also flexible. After loading the core base material 4 and the force imparting portions 3a and 3b onto the quartz rod 5, it is drawn into a wire while applying wave pressure at about 10 to 100 Torr. l? The polarization-maintaining optical fiber has an outer diameter of 150mπ, an off-wavelength of 81.1μm,
tffx 0.8 dB/”m at arrow wavelength 1.5 μm,
J, (: The crosstalk between HEX and HEy of the $ wave mote was 1.311 1.1 μm 1 optical fiber length) and -29 (iB). ) core with a graded refraction beam distribution, the core ino with a core with graded refraction beam distribution showed an improvement of 5 dB (↓). Also, the crosstalk was reduced by 3 dB after a 100°C temperature change
It's just a dB change. Although a base material produced by the VAD method was used as the core base material, the same results would not be obtained even if a base material produced by the MCVD method was used.

、実施例2 第12甲は本発明の別の実施例を示し、石英棒5の代わ
りに、VAD法による実施例]に示したコア母材を外付
は法により5IO2ガラス層を付着透明化して直径5Q
mmになるようにした。コア母材4にその中心に対称に
圧力付与母材3a、3bの穴3’a 、 3’bを超音
波ドリルで穴開けし研磨する。以ド実施例1に従って作
製した光ファイバの特性は、波−131,55μmで損
失0.4a13/1m、クロストークは]へ長で−35
(iBを示した。第11図の実kf1例ではクラッド内
にも浸み出した光74界がコア母材4を石英棒5でジャ
ケットする際、ジャケット界面にあるOH基および微小
泡が損失を増加する要因となる。これに対し第12図の
実施例では、そのおそ才]5番オなし)ので、を叱矢が
大中♀Qこ改善された。
, Example 2 No. 12 A shows another example of the present invention, in which, instead of the quartz rod 5, the core base material shown in Embodiment by VAD method was attached to the outside and made transparent by attaching a 5IO2 glass layer by the method. diameter 5Q
It was set to mm. Holes 3'a and 3'b in the pressure-applying base materials 3a and 3b are drilled and polished symmetrically around the center of the core base material 4 using an ultrasonic drill. The characteristics of the optical fiber produced according to Example 1 are as follows: -131 wavelength, 55 μm loss, 0.4 a13/1 m crosstalk, -35 m length
(iB is shown. In the actual kf1 example shown in Fig. 11, when the light 74 field seeps into the cladding and jackets the core base material 4 with the quartz rod 5, the OH groups and microbubbles at the jacket interface are lost. On the other hand, in the embodiment shown in FIG. 12, the number 5 was improved, so the scolding arrow was improved.

またこの方法ではジャケット界面の微小泡がないので、
応力の泡における解放がないことによる均一応力分布の
ため、クロストークも改善さねている。なおVAD法に
よるコア母材4は前記外付は法によらず、すべてVAD
法によって行うこともできる。
Also, with this method, there are no microbubbles at the jacket interface, so
Crosstalk also fails to improve due to the uniform stress distribution due to the lack of stress relief in the bubble. In addition, the core base material 4 made by the VAD method is all made by VAD, regardless of the method.
It can also be done by law.

この方法ではコア母材4とジャケットする石英棒5が一
体化、すなわち合成母相であるが、別の実施例として第
13図のように、コア部組5 mni、クララ上“部組
80陥、長さ”l Q @mのコア母材4を外径50闘
、内径30關の石英ジャケット管6の内壁を火炎研r−
=r した祐、コア母材4をΦ着して一体とする。その
後、前記実施例のように、応力付与母材3a、3bを挿
入用の穴3’a 、 3’bに入れて実施例]に述べた
工程により線引して偏波保持ファイバを作製した。得ら
れた特性は前記実加1例2の偏波保持光ファイバの特′
にとけば同じであった。この実施例は前記のコア母材4
の全合成と異なり、通常の石英ガラス管(図において、
6は石英ガラスバイブである)を用いるので、より経済
的である。
In this method, the core base material 4 and the jacketing quartz rod 5 are integrated, that is, they are a synthetic matrix, but as another example, as shown in FIG. , the inner wall of a quartz jacket tube 6 with an outer diameter of 50 mm and an inner diameter of 30 mm is flame-ground.
=r After that, the core base material 4 is Φ-bonded and made into one piece. Thereafter, as in the previous example, the stress-applying base materials 3a and 3b were inserted into the insertion holes 3'a and 3'b, and a polarization-maintaining fiber was produced by drawing according to the process described in Example]. . The obtained characteristics are those of the polarization maintaining optical fiber of Example 1 and 2 above.
If you look at it, it was the same. This embodiment uses the core base material 4 described above.
Unlike total synthesis, ordinary quartz glass tubes (in the figure,
6 is a quartz glass vibrator), it is more economical.

なおこの実施例ではVAD法によるコア母材の代わりに
M (E V D法によるコア母材でもよい。
In this embodiment, instead of the core base material formed by the VAD method, a core base material formed by the M (EVD method) may be used.

、実施例3 第14図は実施例2に示したコア母材4を外付は法によ
って作製した石英母材に直径9 rr、ryの応力付与
母材3a〜3d4本が挿入されるよう譬、X軸方向では
、たとえば穴31aと穴3’dの中心間隔が19mg+
、y軸方向では、たとえば穴3’aと穴3’Cの中心間
隔が10能になるように穴3′a〜3’dを超音波ド・
リルで作り、応力付与母材3a〜3dを挿入する母材構
造を示す。実施1例]に示した工程により直径150μ
mの偏波保持ファイバを作製した。応力付与は第11図
および〕2図に示した応力付与母材2本の場合より約2
倍大F°<なっているので、温度等の外乱に対して偏波
保持特18:は増しており、10〜長でも波長1.3μ
mにおいてクロストーク+i −25(iBが得られた
。接失も0.5clB/J++が得らねており、応力付
与母材の本数を増す効果は損失にはrんど影響ない。
, Embodiment 3 FIG. 14 shows an example in which four stress-applying base materials 3a to 3d with diameters of 9 rr and ry are inserted into a quartz base material prepared by an external method using the core base material 4 shown in Example 2. , in the X-axis direction, for example, the center distance between hole 31a and hole 3'd is 19 mg +
, in the y-axis direction, the holes 3'a to 3'd are heated with an ultrasonic wave so that the center distance between the holes 3'a and 3'C becomes 10 mm.
A base material structure made of a rill and into which stress-applying base materials 3a to 3d are inserted is shown. The diameter is 150μ by the process shown in Example 1].
A polarization maintaining fiber of m was fabricated. The stress application is approximately 2
Since the F° is twice as large, the polarization maintaining characteristic 18: is increased against disturbances such as temperature, and the wavelength is 1.3μ even with a length of 10~.
Crosstalk +i -25 (iB) was obtained at m, and contact loss of 0.5 clB/J++ was not obtained, and the effect of increasing the number of stress-applying base materials has little effect on loss.

従って第15図に示すような6本の応力付与母材を用い
ると、さらに応力付与、の効果が待らねる。
Therefore, if six stress-applying base materials as shown in FIG. 15 are used, further stress-applying effects can be expected.

しかし応力付与母材の本数を増す−と、母材直径が小さ
くなるので、かえって応力が減少するので、むやみに増
すことはできない。
However, if the number of stress-applying base materials is increased, the diameter of the base material will become smaller, and the stress will actually decrease, so it cannot be increased unnecessarily.

また第16図に示すように応力付与母材の種類が異なる
場合も応力付与の効果を向上できる。すなわち、これま
では応力付与母材の熱膨張係数がクラッドガラスの熱膨
張係数より大きい場合であったが、応力付与母材の熱膨
張係数がクラッドガラスの熱膨張係数より小さい場合も
応力付与用として適用できる。たとえばTiOまたはT
iO2をドープした5i02ガラスは、SiC2のみの
ガラスより熱膨張係数が小さい。したがって第16図に
おいて応力付与母材3a、abにはたとえばB2O3の
みまたはB2O3およびGeO□をドープした5in2
ガラスを、応力付与母材8g 、3hにTiOまたはT
iO2をドープした5in2ガラスを用いる。
Furthermore, as shown in FIG. 16, the effect of stress application can be improved even when the types of stress application base materials are different. In other words, previously the coefficient of thermal expansion of the stress-applying base material was larger than the coefficient of thermal expansion of the clad glass, but even when the coefficient of thermal expansion of the stress-applying base material is smaller than the coefficient of thermal expansion of the clad glass, stress-applying Can be applied as For example TiO or T
The iO2-doped 5i02 glass has a lower coefficient of thermal expansion than the SiC2-only glass. Therefore, in FIG. 16, the stress-applying base materials 3a and ab are, for example, 5in2 doped with only B2O3 or with B2O3 and GeO□.
Glass, stress applying base material 8g, TiO or T for 3h
A 5in2 glass doped with iO2 is used.

その際、応力付与母材aa、8b、3g、ahは応力付
与母材3a、8bの中心を結ぶ中心線と応力付与母材3
g 、 3hの中心を結ぶ中心線は互いにコア用母材の
中心で交叉し1、かつ互いに直交するように配される。
At that time, the stress-applying base materials aa, 8b, 3g, and ah are the center line connecting the centers of the stress-applying base materials 3a and 8b, and the stress-applying base material 3
The center lines connecting the centers of g and 3h intersect with each other at the center of the core base material 1, and are arranged so as to be orthogonal to each other.

以上はコアの形状が円形の場合であるが、コア形状が楕
円形で、かつコアの屈折率分布がグレーデッド型の場合
でも、以上の実施例が適用できる。
The above embodiments are applicable to cases where the core shape is circular, but the above embodiments can also be applied to cases where the core shape is elliptical and the refractive index distribution of the core is graded.

楕円形コアの場合には、楕円形の長軸上または短軸上に
応力付与母材を配する。
In the case of an elliptical core, the stress-applying base material is placed on the long axis or short axis of the ellipse.

以上説明したように、本発明はグレーデッドを屈折率分
布のコアを偏波保持光ファイバに適用することによって
、コアとクラッドの界面に生じる急激な応力の変化が緩
和されるので、直線偏波光が温度変化や曲げ等による外
乱にス・1して、安定に伎距離にわたって保持される利
点があり、またその偏波保持光ファイバの作製も従来の
方法で実現できる。
As explained above, the present invention applies a graded refractive index distribution core to a polarization-maintaining optical fiber, which alleviates the sudden change in stress that occurs at the interface between the core and the cladding. The polarization maintaining optical fiber has the advantage that it is resistant to disturbances caused by temperature changes, bending, etc. and is stably maintained over a long distance, and the polarization maintaining optical fiber can be manufactured using conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は応力付与部を有する偏波保持光ファイバの基本
構造を示す断面図、 第2図[a)はステップ形屈折率のコアを持つ光ファイ
バの屈折率分布図、 第2図(blは第2図(aiのヴCファイバの応力分布
図、 第8図はステップ形屈折率分布のコアを持つ光ファイバ
母村内の応力分布の測定結果を示す図、第4図は有限要
素法によって計算した光フアイバ内の応力分布図、 第5図は応力付与部を有限要素法で求めるためにモデル
化した偏波保持光ファイバの構造を示す断面図、 第6図は有限要素法で求めた第5図に示した光フアイバ
内の応力分布図、 第7図は作製したステップ形屈折率のコアを有する偏波
保持光ファイバの体波面変動角とコアとクラッドの屈折
率差片の関係を示す図、第8図はコアとクラッドの屈折
率差片が0.8%のステップ形屈折率のコアの屈折率分
布図、第9図fa)は本発明によるグレーデッド型屈折
率のコアを有する光ファイバの屈折全分布図、aΣ91
7(blはvi9図ta)の光ファイバの応力分布図、 第10図はグレーデッド型屈折率のコアを有する光フア
イバ母材の応力分布の測定3結果を示す図第11V〜]
6囮は本発明の構造を有する偏波保持光ファイバの作製
法の説明図である。 1・・・コア、2・・・クラッド、3・・・応力付与部
、3a、3b、3c、3cl 、3e、3f−−−クラ
ッドより熱膨張係数の大きい応力付与母材、3g。 3h・・・クラッドより熱膨張係数の小ざい応力付与母
材、4・・・コア母材、5・・・石英ガラス棒、6・・
・石英カラスノぐイブ、3’a 、 3’b 、 3’
C、3’d 、 3’e 。 3’f 、 3’g 、 3’h・・・応力付与母材用
の穴、4′・・・コア母材用の穴。 特許出願人 日本電信電話公社 第7図 コ1とグラ、・7Fの屁漬r牢左rU (%)第S図 羊経〃頗 第9図 (a) (b) σ 第10図 規絡に、手拝子ン 第1I図 第12図 第13図 第14図 第15図 第16図
Figure 1 is a cross-sectional view showing the basic structure of a polarization-maintaining optical fiber having a stress applying section, Figure 2 [a] is a refractive index distribution diagram of an optical fiber having a core with a stepped refractive index, and Figure 2 (bl Figure 2 is a stress distribution diagram of AI's VC fiber, Figure 8 is a diagram showing the measurement results of the stress distribution in the optical fiber core with a step-shaped refractive index distribution core, and Figure 4 is a stress distribution diagram using the finite element method. The calculated stress distribution diagram in the optical fiber. Figure 5 is a cross-sectional view showing the structure of a polarization-maintaining optical fiber modeled to determine the stress applying part using the finite element method. Figure 6 is the stress distribution diagram determined using the finite element method. Figure 5 shows the stress distribution diagram in the optical fiber, and Figure 7 shows the relationship between the body wavefront fluctuation angle and the refractive index difference between the core and the cladding of the fabricated polarization-maintaining optical fiber with a step-shaped refractive index core. Figure 8 is a refractive index distribution diagram of a step-type refractive index core with a refractive index difference of 0.8% between the core and cladding, and Figure 9 fa) is a refractive index distribution diagram of a core with a graded refractive index according to the present invention. Total refraction distribution diagram of an optical fiber with aΣ91
Figure 10 is a diagram showing the results of three measurements of the stress distribution of an optical fiber base material having a graded refractive index core.
6 is an explanatory diagram of a method for manufacturing a polarization-maintaining optical fiber having the structure of the present invention. DESCRIPTION OF SYMBOLS 1... Core, 2... Clad, 3... Stress applying part, 3a, 3b, 3c, 3cl, 3e, 3f --- Stress applying base material with a larger coefficient of thermal expansion than clad, 3g. 3h... Stress-applying base material with a smaller coefficient of thermal expansion than the cladding, 4... Core base material, 5... Quartz glass rod, 6...
・Quartz crow bush, 3'a, 3'b, 3'
C, 3'd, 3'e. 3'f, 3'g, 3'h... Holes for stress-applying base material, 4'... Holes for core base material. Patent Applicant Nippon Telegraph and Telephone Public Corporation Figure 7 Ko 1 and Graph, 7F fart pickling r prison left r U (%) Figure S Yang Ching〃頗Figure 9 (a) (b) σ Figure 10 Regulations , Tehaiko Figure 1I Figure 12 Figure 13 Figure 14 Figure 15 Figure 16

Claims (1)

【特許請求の範囲】[Claims] 1 石英ガラスを主成分とするコアと、石英ガラスから
なるクラッドと、該コアの両側にコアを中心対称として
配置された2本以上の偶数本の石英ガラスを主成分とす
る応力付与部からなる偏波保持光コアイノくにおいて、
該コアの形状が真円または楕円形状からなり、かつ該コ
アの屈折率分布の形状がグレーデ・ンド型であることを
特徴とする偏波保持光ファイバ、
1 Consists of a core mainly composed of quartz glass, a cladding composed of silica glass, and a stress applying section mainly composed of two or more even numbered quartz glasses arranged on both sides of the core symmetrically with respect to the core. In polarization-maintaining optical core technology,
A polarization-maintaining optical fiber, characterized in that the core has a perfect circular or elliptical shape, and the refractive index distribution of the core has a graded type.
JP58000417A 1983-01-07 1983-01-07 polarization maintaining optical fiber Expired JPS6018042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58000417A JPS6018042B2 (en) 1983-01-07 1983-01-07 polarization maintaining optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58000417A JPS6018042B2 (en) 1983-01-07 1983-01-07 polarization maintaining optical fiber

Publications (2)

Publication Number Publication Date
JPS59125702A true JPS59125702A (en) 1984-07-20
JPS6018042B2 JPS6018042B2 (en) 1985-05-08

Family

ID=11473219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58000417A Expired JPS6018042B2 (en) 1983-01-07 1983-01-07 polarization maintaining optical fiber

Country Status (1)

Country Link
JP (1) JPS6018042B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6360565B1 (en) * 1996-06-17 2002-03-26 Corning Incorporated Method of making polarization retaining fiber
US6587624B2 (en) 1996-06-17 2003-07-01 Corning Incorporated Polarization retaining fiber
CN106199826A (en) * 2016-08-03 2016-12-07 清华大学 Polarization maintaining optical fibre

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316254U (en) * 1986-07-18 1988-02-03

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6360565B1 (en) * 1996-06-17 2002-03-26 Corning Incorporated Method of making polarization retaining fiber
US6587624B2 (en) 1996-06-17 2003-07-01 Corning Incorporated Polarization retaining fiber
CN106199826A (en) * 2016-08-03 2016-12-07 清华大学 Polarization maintaining optical fibre
CN106199826B (en) * 2016-08-03 2019-04-23 清华大学 Polarization-maintaining annular core fibre

Also Published As

Publication number Publication date
JPS6018042B2 (en) 1985-05-08

Similar Documents

Publication Publication Date Title
US4426129A (en) Optical fiber and method of producing the same
JP2613657B2 (en) Method for providing a preform for a polarization-maintaining optical fiber
US4354736A (en) Stress-induced birefringent single mode optical fiber and a method of fabricating the same
JPH02108010A (en) Polarizing-state maintaining optical fiber for manufacturing coupler
JP2007536580A (en) Long wavelength pure silica core single mode fiber and method of forming the fiber
JPH02240608A (en) Polarization maintaining optical fiber
JPH06235841A (en) Manufacture of 1xn achromatic coupler, fiber optic coupler and 1xn fiber optic coupler
JP2007536580A5 (en)
CA2121418A1 (en) Low loss coupler
JP4808906B2 (en) Single-mode optical fiber and single-mode optical fiber manufacturing method
JPS59125702A (en) Polarization maintaining optical fiber
US4818047A (en) Polarized wave preserving fiber
CN107085263A (en) A kind of fused tapered bend-insensitive single-mode optical fiber
JPS6328857B2 (en)
Marrone et al. Polarization properties of birefringent fibers with stress rods in the cladding
JPH0685005B2 (en) Constant polarization fiber and manufacturing method thereof
JPH01314209A (en) Constant polarization optical fiber
JP2828276B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JPH0212887B2 (en)
JPS6033513A (en) Single linear polarization optical fiber
JPS6367168B2 (en)
JPH0612364B2 (en) Polarization-maintaining optical fiber base material
JPH0421533A (en) Preparation of polarized wave-holding optical fiber
JPH01148724A (en) Production of polarization retaining fiber
JPS6356614A (en) Stress induction type polarized wave maintaining optical fiber