JPS6356614A - Stress induction type polarized wave maintaining optical fiber - Google Patents
Stress induction type polarized wave maintaining optical fiberInfo
- Publication number
- JPS6356614A JPS6356614A JP61199132A JP19913286A JPS6356614A JP S6356614 A JPS6356614 A JP S6356614A JP 61199132 A JP61199132 A JP 61199132A JP 19913286 A JP19913286 A JP 19913286A JP S6356614 A JPS6356614 A JP S6356614A
- Authority
- JP
- Japan
- Prior art keywords
- core
- refractive index
- optical fiber
- stress
- maintaining optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 27
- 230000006698 induction Effects 0.000 title 1
- 238000009826 distribution Methods 0.000 claims abstract description 22
- 238000005253 cladding Methods 0.000 claims description 16
- 238000005452 bending Methods 0.000 abstract description 4
- 230000006866 deterioration Effects 0.000 abstract description 4
- 230000001939 inductive effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 16
- 238000010586 diagram Methods 0.000 description 10
- 230000010287 polarization Effects 0.000 description 8
- 239000011521 glass Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 101100264195 Caenorhabditis elegans app-1 gene Proteins 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000012681 fiber drawing Methods 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000006257 total synthesis reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/105—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、長距離にわたって偏波を保持する光フアイバ
構造に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical fiber structure that maintains polarization over long distances.
(従来の技術及び問題点)
従来、偏波光を安定に伝ばんする光ファイバは、第4図
に示す構造のものがあった。第4図において、1はSi
O□ガラスにGeO□が2〜10mo1 %程度ドープ
さたコア、2は5i02ガラスからなるクラッド、3は
5iOzガラスにB、Q、が10〜20 mo1%ドー
プされた応力付与部である。第5図にコアとクラッドの
比屈折率差0.75とした場合の(応力付与部を持たな
い)光ファイバの応力分布の測定例を示す。この例はコ
ア半径a/クラッド半径すが172の場合である。第5
図から分かるように、半径方向の応力σ、は連続である
が、半径方向と直角のθ方向応力σ、はコアとクラッド
の界面で急激に変化する。第6図(a)にステップ形屈
折率分布を示す。(Prior Art and Problems) Conventionally, an optical fiber that stably transmits polarized light has a structure shown in FIG. 4. In FIG. 4, 1 is Si
A core is O□ glass doped with about 2 to 10 mo1% of GeO□, 2 is a cladding made of 5i02 glass, and 3 is a stress applying portion made of 5iOz glass doped with 10 to 20 mo1% of B and Q. FIG. 5 shows an example of measuring the stress distribution of an optical fiber (without a stress applying part) when the relative refractive index difference between the core and the cladding is 0.75. This example is a case where the core radius a/the clad radius is 172. Fifth
As can be seen from the figure, the stress σ in the radial direction is continuous, but the stress σ in the θ direction perpendicular to the radial direction changes rapidly at the interface between the core and the cladding. FIG. 6(a) shows a step-shaped refractive index distribution.
この時の応力分布は(例えば柴田、神宮寺、河内、技法
、日本応用物理学会誌、18巻、7号1頁1267〜1
273.1979年(N、 5hibata、 K、
Jinguji。The stress distribution at this time is
273.1979 (N, 5hibata, K,
Jinguji.
?1. Kasvachi and T、 Edahi
ro、 Jan J、 Appl、 Phys、。? 1. Kasvachi and T., Edahi
ro, Jan J, Appl, Phys.
vol、 18+ 覧7 、 pp、 1267〜12
73.1979) ) 、第6図(b)のようになる。vol, 18+ list 7, pp, 1267-12
73.1979) ), as shown in Figure 6(b).
この例が示す様に、従来のステップ形屈折率分布の光フ
ァイバでは、長手方向のマイクロベンドによりコアとク
ラッドの界面において応力の変化が強調されることにな
り、このような状態の光ファイバのコアに対して対称の
位置に応力付与部を配置した場合、応力分布に悪影響を
及ぼす。As this example shows, in a conventional optical fiber with a step-shaped refractive index profile, the longitudinal microbend emphasizes stress changes at the interface between the core and the cladding. If the stress applying portion is placed at a symmetrical position with respect to the core, the stress distribution will be adversely affected.
ところで、偏波面の安定性はコアとクラッドの比屈折率
差が大きくなると良くなる事が実験的に確かめられてい
る。(例えば柴田、佐々木、開本、採板、アイ・トリプ
ルイー オプティカル ウェーブガイド テクノロジ
1巻、1号、 1983年(N、5hibata、 Y
、 5asaki、 K、 Okamoto andT
、 Ho5aka、 III!EE 0ptical
wave guide Technology+vo1
.1 、 l’h 1 、1983) ) 第7図に
モード複屈折率Bをパラメータとしたときの、偏波面安
定性と、比屈折率差の関係を示す実験データをあげる。By the way, it has been experimentally confirmed that the stability of the polarization plane improves as the relative refractive index difference between the core and the cladding increases. (For example, Shibata, Sasaki, Kaimoto, Seiken, I Triple E Optical Waveguide Technology
Volume 1, No. 1, 1983 (N, 5hibata, Y
, 5asaki, K., Okamoto and T.
, Ho5aka, III! EE 0ptical
wave guide Technology+vol1
.. 1, l'h 1, 1983)) Figure 7 shows experimental data showing the relationship between polarization plane stability and relative refractive index difference when mode birefringence B is used as a parameter.
ここで、偏波面変動角は波長λ=1.15μmのHe
−Neレーザ光を偏波保持光ファイバの屈折率楕円体の
一つの主軸に入射した時、出射偏波面の変動する角度を
表す。また、複屈折率が3X10−’の時の比屈折率差
とクロストークの関係を示す実験データを第8図にあげ
る。第7図と第8図が示すように、従来のステップ屈折
率分布のコアを持った偏波保持光ファイバでは、比屈折
率差が大きくなると、クロストーク、偏波面の安定性は
向上する。しかし、レーリー散乱及び構造不完全性(例
えばイー・シイ−・ローソン、アプライド・オプティク
ス13巻、10号9頁2370〜2377、1974年
(E、 G、 Rawson+App1. Opt、
、 vol、 13. mlO,pp、 2370〜2
377゜1974) )による伝送損失は大きくなる。Here, the polarization plane variation angle is He with wavelength λ = 1.15 μm.
-Ne laser light is incident on one principal axis of the refractive index ellipsoid of a polarization-maintaining optical fiber, and represents the angle at which the output polarization plane changes. Further, experimental data showing the relationship between relative refractive index difference and crosstalk when the birefringence index is 3×10−′ is shown in FIG. As shown in FIGS. 7 and 8, in a conventional polarization-maintaining optical fiber having a core with a step refractive index distribution, as the relative refractive index difference increases, crosstalk and stability of the polarization plane improve. However, Rayleigh scattering and structural imperfections (e.g. E. C. Lawson, Applied Optics Vol. 13, No. 10, pp. 9, 2370-2377, 1974 (E, G, Rawson+App1. Opt.
, vol, 13. mlO,pp, 2370~2
377°1974) ), the transmission loss becomes large.
第9図に1.5μmにおけるコア中心の屈折率n、とレ
ーリー散乱による損失(dB/km)の関係を、第10
図(a)に構造不完全性のモデルを、第10図(b)に
構造不完全による散乱波と構造不完全量の関係を示す。Figure 9 shows the relationship between the refractive index n at the core center at 1.5 μm and the loss due to Rayleigh scattering (dB/km).
Figure 10(a) shows a model of structural imperfection, and Figure 10(b) shows the relationship between scattered waves due to structural imperfection and the amount of structural imperfection.
第10図(a)、 (b)において、n6+ nlはそ
れぞれクラッドおよびコアの屈折率、aはコア半径、L
は構造不完全長、Δnはコアとクラッドの屈折率差を示
している。In Figures 10(a) and (b), n6+ nl are the refractive indices of the cladding and core, a is the core radius, and L
represents the structural imperfection length, and Δn represents the refractive index difference between the core and the cladding.
(問題点を解決するための手段)
本発明はコアとクラフトの界面の急激な応力変化を緩和
させ低損失を実現するために、ステップ形屈折率分布を
持つコアの代わりにα乗屈折率分布を持つコアを採用す
ることにより、長尺で偏波保持特性が飛躍的に向上する
偏波保持光ファイバを実現するものである。(Means for Solving the Problems) In order to alleviate sudden stress changes at the interface between the core and the craft and achieve low loss, the present invention provides an α-th power refractive index distribution instead of a core with a step-shaped refractive index distribution. By employing a core with this characteristic, it is possible to create a long polarization-maintaining optical fiber with dramatically improved polarization-maintaining properties.
本発明のα乗屈折率分布コア(α−1)を持つ偏波保持
光ファイバと、ステップ形屈折率分布コアを持った偏波
保持光ファイバのモードフィールド径Wと規格化周波数
V (−kn+a−、Dニー)の関係を第11図に示す
。第11図から分かるように規格化周波数が高くなると
モードフィールド径が小さくなる。すなわち、コアとク
ラッドの界面での電界強度が小さくなり、コアとクラッ
ドの界面での外乱の影響を受けにくくなる。また、モー
ドフィールド径の絶対値でもα乗屈折率分布コアはステ
ップ形屈折率分布コアに対して小さくなり、ファイバ外
からの外乱の距離が遠(なり影響を受けに(くなる。Mode field diameter W and normalized frequency V (-kn+a -, D knee) is shown in FIG. As can be seen from FIG. 11, as the normalized frequency increases, the mode field diameter decreases. That is, the electric field strength at the interface between the core and the cladding becomes smaller, and the interface between the core and the cladding becomes less susceptible to disturbances. In addition, even in terms of the absolute value of the mode field diameter, the α-th power gradient index core is smaller than the step-shaped gradient index core, and the distance from disturbances from outside the fiber is far away, making it less susceptible to influence.
次に、第12図にコア径5μm1フアイバ外径125μ
mの時の比屈折率差とレーリー散乱にもとづく伝送損失
の関係を示す。このように、α乗屈折率分布を用いるこ
とによりステップ形屈折率分布に比べてモードフィール
ド径およびレーリー散乱を小さくできる。このためこれ
は外乱による影響を受けに<<、低クコストーク、低損
失の偏波保持光ファイバのコア分布に適している。Next, Fig. 12 shows a fiber with a core diameter of 5 μm and an outer diameter of 125 μm.
The relationship between the relative refractive index difference and the transmission loss based on Rayleigh scattering when m is shown. In this way, by using the α-th power refractive index distribution, the mode field diameter and Rayleigh scattering can be made smaller than when using the step-shaped refractive index distribution. Therefore, this is suitable for the core distribution of a polarization-maintaining optical fiber that is not affected by disturbances, has low costalk, and has low loss.
(実施例)
第1図(a)に、本発明の偏波保持光ファイバに用いた
α乗屈折率分布のコアを示す。光フアイバ線引き時の線
径変動による複屈折の劣化を防ぐために、αは第1図(
b)に示すように1〜2の間の値とするとよい。比屈折
率差Δは光ファイバの曲げによる損失を小さくするため
に0,2〜1.0%とする。応力付与部の屈折率n、を
上げてクラッドの屈折率n2と等しくすることにより、
応力付与部をコアに近づけても基本モードの乱れやクロ
ストークの劣化を防ぐことができる。第2図にVAD法
により作製したコア母材4に外付は法によりSiO□ガ
ラス層を付着させて透明化し、直径50mとしたコア用
母材5に超音波ドリルによりコア用母材5の中心に対し
て対称な位置に、クラフトより熱膨張係数の小さい応力
付与母材6a、 6bを挿入する穴7a。(Example) FIG. 1(a) shows a core with an α-th power refractive index profile used in the polarization-maintaining optical fiber of the present invention. In order to prevent deterioration of birefringence due to variations in wire diameter during optical fiber drawing, α is set as shown in Figure 1 (
It is preferable to take a value between 1 and 2 as shown in b). The relative refractive index difference Δ is set to 0.2 to 1.0% in order to reduce loss due to bending of the optical fiber. By increasing the refractive index n of the stress applying part to be equal to the refractive index n2 of the cladding,
Even if the stress applying section is brought closer to the core, disturbance of the fundamental mode and deterioration of crosstalk can be prevented. Fig. 2 shows that a core base material 4 made by the VAD method is made transparent by attaching a SiO□ glass layer using an external method, and a core base material 5 with a diameter of 50 m is drilled using an ultrasonic drill. A hole 7a into which a stress-applying base material 6a, 6b having a smaller coefficient of thermal expansion than the craft is inserted at a symmetrical position with respect to the center.
7bを開けた様子を示す。コア用母材5の作製方法とし
では全合成によりコア、クラッドを一括して作製した母
材を用いてもよい。超音波ドリルを用いた孔開は技術と
研磨加工を併用することにより、応力付与部の形状とし
て第3図に示すものが作製できるが、そのいずれも同様
の効果を期待できる。7b is shown opened. As a method for producing the core base material 5, a base material in which the core and cladding are collectively produced by total synthesis may be used. The shape of the stress-applying portion shown in FIG. 3 can be produced by using a hole drilling technique using an ultrasonic drill in combination with polishing, but the same effect can be expected with either method.
コア、クラッド、応力付与母材用の孔からなるコア用母
材5は、5iOzガラスにGe01を10 mo1%ド
ープし、半径方向に三角形の屈折率分布を持つようにさ
れている。応力付与母材はフン酸で表面が処理さており
、コア用母材との接触面に気泡が入らないように注意さ
れている。コア用母材に応力付与母材を装着した後、こ
れを10〜100 Torr程度で減圧しながら線引き
する。得られた偏波保持光ファイバの特性は、ファイバ
径125μm1コア径4.6μmであり、波長1.5μ
mでカットオフ波長は1.01μm、伝送損失は0.4
6 dB/kI11.りo7.トークは−30dBであ
った。The core base material 5 consisting of the core, cladding, and holes for the stress-applying base material is made of 5iOz glass doped with 10 mo1% of Ge01 and has a triangular refractive index distribution in the radial direction. The surface of the stress-applying base material is treated with hydrochloric acid, and care is taken to prevent air bubbles from entering the contact surface with the core base material. After the stress-applying base material is attached to the core base material, it is drawn into a wire while reducing the pressure at about 10 to 100 Torr. The characteristics of the obtained polarization-maintaining optical fiber are that the fiber diameter is 125 μm, the core diameter is 4.6 μm, and the wavelength is 1.5 μm.
m, cutoff wavelength is 1.01μm, transmission loss is 0.4
6 dB/kI11. ri o7. The talk was -30 dB.
(発明の効果)
以上説明したように、本発明のα乗屈折率分布のコアを
偏波保持光ファイバに適用することによリコアとクラフ
トの界面に生じる急激な応力変化を緩和できるため、曲
げや温度変化等の外乱に対して直線偏光を安定に保持で
き、低クロストーク、低損失の偏波保持光ファイバを実
現できる。(Effects of the Invention) As explained above, by applying the α-th power refractive index distribution core of the present invention to a polarization-maintaining optical fiber, it is possible to alleviate the sudden stress change that occurs at the recore-craft interface. It is possible to stably maintain linearly polarized light against disturbances such as light and temperature changes, and it is possible to realize a polarization-maintaining optical fiber with low crosstalk and low loss.
第1図(a)は、α乗屈折率分布コアの屈折率分布図、
第1図(b)は、偏波保持光ファイバの屈折率分布図、
第2図は、コア母材に応力付与部用の孔をあけ、応力付
与母材を挿入する様子を示す図、第3図は、応力付与形
偏波保持光ファイバの断面構造を示す図、
第4図は、従来の応力付与部を有する偏波保持光ファイ
バの基本構造を示す断面図、
第5図は、ステップ形屈折率分布のコアを持つ光フアイ
バコア中の応力分布図、
第6図(a)は、ステップ形屈折率分布コアを持つ光フ
ァイバの屈折率分布図、
第6図(b)は、第3図(a)に示した光ファイバの応
力分布図、
第7図は、ステップ形屈折率分布のコアを持っ偏波保持
光ファイバの偏波面変動角とコアとクラフトの比屈折率
差の関係を示す図、
第8図は、複屈折が3X10−’の時の比屈折率差とク
ロストークの関係を示す図、
第9図は、レーリー散乱による損失(dB/km)と屈
折率nとの関係を示す図、
第10図(a)は、構造不完全性のモデルを示す図、第
10図(b)は、第10図(a)、のモデルに対する散
乱電界と構造不完全性の関係を示す図、第11図は、ス
テップ形屈折率分布と、α乗屈折率分布の場合のモード
フィールド径Wとコア径aとの比w / aと、規格化
周波数との関係を示す図、第12図は、α乗屈折率分布
とステップ形屈折率分布に対する比屈折率差と波長1.
5μmにおけるレーリー散乱による損失(dB/km)
との関係を示す図である。
1・・・コア 2・・・クラッド3・・・
応力付与部 4・・・コア母材5・・・コア用母
材
6a、 6b・・・クラッドより熱膨張係数の小さい応
力付与母材
7a、 7b・・・応力付与母材用の孔特許出願人
日本電信電話株式会社
第1図(a)
!・・−コア
2−・・クララF
3−・応カイ寸与壱β
第1図(b)
第2図
第3図
(a) (b)
(Ca(d>
第5図
煙路化半径(ヅbン
第6図
(a)
第7図
コアとクラッド゛の比圧tF($ 1− (%)コアと
クラヅド゛0Lヒ屈オ斤l延(%)第9図
コア中心の屈祈率n1
第10図
(a)
(b)
ム%77り
第11図
夫見將イヒ周プ皮姿欠 VFigure 1 (a) is a refractive index distribution diagram of the α-th power gradient index core, Figure 1 (b) is a refractive index distribution diagram of a polarization maintaining optical fiber, and Figure 2 is a stress applied to the core base material. Figure 3 shows the cross-sectional structure of a stress-applying type polarization-maintaining optical fiber, and Figure 4 shows a conventional stress-applying part. 5 is a stress distribution diagram in an optical fiber core having a step-shaped refractive index distribution core. FIG. Figure 6(b) is a stress distribution diagram of the optical fiber shown in Figure 3(a), and Figure 7 is a diagram of the refractive index distribution of the optical fiber having a step-shaped refractive index distribution. A diagram showing the relationship between the variation angle of the polarization plane of the holding optical fiber and the relative refractive index difference between the core and the craft. Figure 9 is a diagram showing the relationship between Rayleigh scattering loss (dB/km) and refractive index n, Figure 10 (a) is a diagram showing a model of structural imperfection, and Figure 10 (b) is , FIG. 10(a) is a diagram showing the relationship between the scattered electric field and structural imperfection for the model of FIG. 12 is a diagram showing the relationship between the ratio w/a to the diameter a and the normalized frequency, and FIG. 12 shows the relationship between the relative refractive index difference and the wavelength 1.
Loss due to Rayleigh scattering at 5 μm (dB/km)
FIG. 1... Core 2... Clad 3...
Stress-applying part 4... Core base material 5... Core base material 6a, 6b... Stress-applying base material 7a, 7b having a smaller coefficient of thermal expansion than the cladding... Hole for stress-applying base material Patent application Man
Nippon Telegraph and Telephone Corporation Figure 1 (a)! ...-Core 2--Clara F 3-・Okai Dimensions Ichi β Fig. 1 (b) Fig. 2 Fig. 3 (a) (b) (Ca(d> Fig. 5 Flue radius ( Figure 6 (a) Figure 7 Specific pressure between core and cladding tF ($ 1- (%) Core and cladding 0L bending force extension (%) Figure 9 Refractive index at core center n1 Figure 10 (a) (b) %77 Figure 11 Fumi Masa Ihi Shupu skin figure missing V
Claims (1)
真円で、n_1をコア中心の屈折率、aをコア半径、Δ
をコアとクラッドの比屈折率差とし、コアの屈折率分布 n(r)=n_1(1−2Δ(r/a)^α)^1^/
^2である応力付与形偏波保持光ファイバにおいて、1
<α<2、0.2%<Δ<1.0%であることを特徴と
する応力付与形偏波保持光ファイバ。[Claims] 1. The core has two stress applying parts on both sides, the core shape is a perfect circle, n_1 is the refractive index at the center of the core, a is the core radius, Δ
Let be the relative refractive index difference between the core and the cladding, and the refractive index distribution of the core n(r) = n_1(1-2Δ(r/a)^α)^1^/
In a stress-applied polarization-maintaining optical fiber that is ^2, 1
A stress-applied polarization-maintaining optical fiber characterized in that <α<2, 0.2%<Δ<1.0%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61199132A JPS6356614A (en) | 1986-08-27 | 1986-08-27 | Stress induction type polarized wave maintaining optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61199132A JPS6356614A (en) | 1986-08-27 | 1986-08-27 | Stress induction type polarized wave maintaining optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6356614A true JPS6356614A (en) | 1988-03-11 |
Family
ID=16402674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61199132A Pending JPS6356614A (en) | 1986-08-27 | 1986-08-27 | Stress induction type polarized wave maintaining optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6356614A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4828658B1 (en) * | 2011-03-14 | 2011-11-30 | 株式会社タケヒロ | Sound insulation for vehicles |
WO2023145862A1 (en) * | 2022-01-31 | 2023-08-03 | 株式会社フジクラ | Polarization-maintaining fiber |
-
1986
- 1986-08-27 JP JP61199132A patent/JPS6356614A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4828658B1 (en) * | 2011-03-14 | 2011-11-30 | 株式会社タケヒロ | Sound insulation for vehicles |
WO2023145862A1 (en) * | 2022-01-31 | 2023-08-03 | 株式会社フジクラ | Polarization-maintaining fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3153120B2 (en) | Tapered waveguide | |
CN104536085B (en) | A kind of thin footpath polarization maintaining optical fibre | |
JPH02108010A (en) | Polarizing-state maintaining optical fiber for manufacturing coupler | |
JPH01237507A (en) | Absolute single polarizing optical fiber | |
Schiffner et al. | Double-core single-mode optical fiber as directional coupler | |
JPS6247619A (en) | Polarizer for propagating selectively polarized optical signal through optical fiber | |
EP0201544A1 (en) | Form birefringent fibers and method of fabrication | |
JPS6356614A (en) | Stress induction type polarized wave maintaining optical fiber | |
KR102029213B1 (en) | Fabrication method of micro-fiber concave tip for radial wave propagation | |
JPS60154215A (en) | Fiber type directional coupler | |
RU2627018C1 (en) | Radiation-resistant single-mode light guide with large linear birefringence for fiber-optic gyroscope | |
JPH0685005B2 (en) | Constant polarization fiber and manufacturing method thereof | |
JPH11119036A (en) | Plastic clad fiber | |
JPS6053285B2 (en) | Constant polarization optical fiber | |
JP2542358B2 (en) | Absolute single polarization type constant polarization optical fiber | |
Lu et al. | Sectional sensitivity in RI sensor during mode transition with regenerative cladding layer | |
JPS59139005A (en) | Fiber for maintaining linearly polarized light | |
JPS59125702A (en) | Polarization maintaining optical fiber | |
JPH07281044A (en) | Constant polarization optical fiber | |
JPH0350505A (en) | Single polarization optical fiber | |
JPS6054644B2 (en) | Single polarization fiber for very long wavelengths | |
JP2828251B2 (en) | Optical fiber coupler | |
JPS6033513A (en) | Single linear polarization optical fiber | |
JPH01148724A (en) | Production of polarization retaining fiber | |
JPH0750216B2 (en) | Polarization-maintaining optical fiber fixing method |