JPS63206710A - Absolute single polarization optical fiber and its production - Google Patents

Absolute single polarization optical fiber and its production

Info

Publication number
JPS63206710A
JPS63206710A JP62039231A JP3923187A JPS63206710A JP S63206710 A JPS63206710 A JP S63206710A JP 62039231 A JP62039231 A JP 62039231A JP 3923187 A JP3923187 A JP 3923187A JP S63206710 A JPS63206710 A JP S63206710A
Authority
JP
Japan
Prior art keywords
sio
intermediate layer
core
optical fiber
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62039231A
Other languages
Japanese (ja)
Inventor
Katsusuke Tajima
克介 田嶋
Yutaka Sasaki
豊 佐々木
Yoshiyuki Aomi
青海 恵之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62039231A priority Critical patent/JPS63206710A/en
Publication of JPS63206710A publication Critical patent/JPS63206710A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects

Abstract

PURPOSE:To provide an optical fiber which has a sufficiently large double refractive index and can realize the absolute single polarization and a process for producing said fiber by providing two 1st intermediate layers in contact with a core on the diametral opposite side of the core and providing two 2nd intermediate layers in the direction perpendicular thereto apart from the core. CONSTITUTION:The respectively two 1st intermediate layers 2A, 2B are provided on the diametral opposite side of the core 1 in contact with the core 1 positioned at the center of a clad 4 and the 2nd intermediate layers 3A, 3B are disposed in the direction orthogonal with the direction where the 1st intermediate layers are arranged apart from the core 1. The 1st and 2nd intermediate layers are formed by boring holes respectively by drilling in a base material having the clad and the core, then inserting the base materials for the respective intermediate layers into the hole to unite the base materials. Such material is then drawn to form the optical fiber. The anisotropy of an electric field distribution and the anisotropy of stress are induced in the core by the 1st intermediate layers and the anisotropy of stress is induced in the core by the 2nd intermediate layers, by which the mode double refractive index is increased and the absolute single polarization is realized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、コヒーレント光伝送方式用の伝送媒体、また
は、偏波特性を有する光回路素子の間の結合に必要な単
一直線偏波を伝送する絶対単一偏波光ファイバおよびそ
の製造方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a transmission medium for a coherent optical transmission system or a single linearly polarized wave necessary for coupling between optical circuit elements having polarization characteristics. The present invention relates to an absolutely single polarization optical fiber for transmission and a method for manufacturing the same.

[従来の技術] 従来、考えられていた絶対単一偏波光ファイバは第5図
のような断面構造、すなわち、コア1を含むように長方
形状の第1中間層2および第1中間層の長手方向と直角
の方向に2個の第2中間層3を有し、これら全体がクラ
ッド4に埋め込まれている構造を有するものであった。
[Prior Art] Absolutely single-polarized optical fibers that have been considered in the past have a cross-sectional structure as shown in FIG. It had a structure in which it had two second intermediate layers 3 in a direction perpendicular to the direction, and these were entirely embedded in a cladding 4.

この絶対単一偏波光ファイバは、第1中間層2の屈折率
をクラッド4の屈折率より低くすることにより、構造に
依存した複屈折を誘起するするものである。しかし、こ
の構造では絶対単一偏波を実現するために必要な複屈折
率を大きくすることは不可能であった。
This absolutely single polarization optical fiber induces structure-dependent birefringence by making the refractive index of the first intermediate layer 2 lower than the refractive index of the cladding 4. However, with this structure, it was impossible to increase the birefringence necessary to achieve absolute single polarization.

この絶対単一偏波光ファイバの製造方法として、第6図
に示すように、同心円状のコア部1a。
As a method of manufacturing this absolutely single polarization optical fiber, as shown in FIG. 6, a concentric core portion 1a is used.

第1中間層部2aおよびクラッド部4aよりなるコア用
母材5−を破線で示すように板状に研削・研磨した後、
第7図に示すように同心円状の応力付与母材(第2中間
層部3aに相当)を半円柱状に研削・研磨し、第8図に
示すように石英管6に挿入して線引く方法が考えられて
いた。
After grinding and polishing the core base material 5- consisting of the first intermediate layer portion 2a and the cladding portion 4a into a plate shape as shown by the broken line,
As shown in FIG. 7, a concentric stress-applying base material (corresponding to the second intermediate layer portion 3a) is ground and polished into a semi-cylindrical shape, and as shown in FIG. 8, it is inserted into a quartz tube 6 and drawn. A method was being considered.

この方法では、研削・研磨の工程が多いこと、光フアイ
バ用の母材を設計通りに製造するのが困難なことおよび
線引き時の光フアイバ長手方向の線径ゆらぎが大きいこ
と等から低損失、低クロストークの絶対単一偏波光ファ
イバを実現することは不可能であった。
This method requires many grinding and polishing steps, it is difficult to manufacture the base material for the optical fiber according to the design, and there is large fluctuation in the wire diameter in the longitudinal direction of the optical fiber during drawing. It has been impossible to realize an absolutely single polarization optical fiber with low crosstalk.

[発明が解決しようとする問題点] 本発明は上に述べた従来の欠点を解決し、複屈折率が十
分に大きく、絶対単一偏波の実現できる光ファイバおよ
び簡単な工程で絶対単一偏波光ファイバを製造する方法
を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned conventional drawbacks, and creates an optical fiber that has a sufficiently large birefringence and can realize absolutely single polarized waves, and a simple process that can generate absolutely single polarized waves. It is an object of the present invention to provide a method of manufacturing a polarized optical fiber.

c問題点を解決するための手段] このような目的を達成するために本発明の絶対単一偏波
光ファイバは、クラッドと、クラッドの中心に位置する
コアと、それぞれコアと接しかつ互いにコアの直径方向
反対側に設けた2個の第1中間層と、2個の第1中間層
の配列方向と直角方向にかつそれぞれコアから離れかつ
コアを挟んで設けた2個の第2中間層とからなることを
特徴とする。
Means for Solving the Problem] In order to achieve such an object, the absolute single polarization optical fiber of the present invention has a cladding, a core located at the center of the cladding, and a core that is in contact with the core and mutually. two first intermediate layers provided on opposite sides in the diametrical direction; and two second intermediate layers provided in a direction perpendicular to the arrangement direction of the two first intermediate layers, each separated from the core and sandwiching the core. It is characterized by consisting of.

また、本発明の絶対単一偏波光ファイバの製造方法は、
線引き後それぞれコアおよびクラッドとなるコア部およ
びクラッド部を有する母材に、コア部に接しかつコア部
の直径方向反対側にそれぞれ第1中間層用の孔を、2個
の孔の中心を結ぶ方向と直角方向で、コア部を挟む位置
にそれぞれ第2中間層用の孔を開け、それぞれ2個の第
1中間層用の孔および第2中間層の孔にそれぞれ第1中
間層用母材および第2中間層用母材を挿入して一体化し
、線引きして光ファイバとすることを特徴とする。
Further, the method for manufacturing an absolutely single polarization optical fiber of the present invention includes:
After drawing, a hole for the first intermediate layer is connected to the base material having a core part and a clad part, which will become the core and cladding, respectively, in contact with the core part and on the opposite side in the diametrical direction of the core part, and connect the centers of the two holes. In the direction perpendicular to the direction, holes for the second intermediate layer are formed at positions sandwiching the core part, and the two holes for the first intermediate layer and the holes in the second intermediate layer are filled with the base material for the first intermediate layer. Then, a second intermediate layer base material is inserted and integrated, and an optical fiber is formed by drawing.

[作 用] 本発明によれば、複屈折率が十分に大きく、絶対単一偏
波の実現が可能である。また本発明の製造は工程が簡単
であり、特に超音波ドリルによる孔開けは0.1mm程
度の精度で行うことができ、ドリルによる孔開は後、孔
を火炎研府することにより、構造ゆらぎによるクロスト
ーク特性の劣化、伝送損失の増加を抑制でき、設計通り
の絶対単一偏波光ファイバを実現できる。
[Function] According to the present invention, the birefringence is sufficiently large and absolute single polarization can be realized. In addition, the manufacturing process of the present invention is simple, and in particular, drilling with an ultrasonic drill can be performed with an accuracy of about 0.1 mm. This makes it possible to suppress the deterioration of crosstalk characteristics and increase in transmission loss caused by this, and to realize an absolutely single polarization optical fiber as designed.

[実施例] 以下に、図面を参照して、本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.

衷h」0゜ 第1図に本発明の実施例の断面構造を示す。コア1に接
してコア1の直径方向の反対側にそれぞれ第1中間層2
^および2Bが設けられている。2個の第1中間層の配
列方向と直交する方向に第2中間層3^および3Bが配
設されている。
Figure 1 shows a cross-sectional structure of an embodiment of the present invention. A first intermediate layer 2 is provided in contact with the core 1 and on the opposite side of the core 1 in the diametrical direction.
^ and 2B are provided. Second intermediate layers 3^ and 3B are arranged in a direction perpendicular to the arrangement direction of the two first intermediate layers.

この例ではコア1はGII02・SiO2%第1中間層
2八および2BはそれぞれSiO2、P2O5,0,、
第2中間層3^および3BはそれぞれB、03・SiO
2 %クラッド4はSiO2である。コアとクラッドの
比屈折率差は0.34%、第1中間層のクラッドに対す
る比屈折率差は−1%、第2中間層のクラッドに対する
比屈折率差は−0,5%とした。絶対単一偏波を実現す
るためには複屈折率を・SiO2、P2O5・SiO−
3以上とする必要があるため、第1中間層のクララドに
対する比屈折率差は−0,3%以下、第2中間層のクラ
ッドに対する比屈折率差は−0,5%以下とする必要が
ある。第1中間層により、コア中で電界分布の異方性お
よび応力の異方性が誘起される。
In this example, the core 1 is GII02.SiO2%, and the first intermediate layer 28 and 2B are SiO2, P2O5,0, respectively.
The second intermediate layers 3^ and 3B are B, 03.SiO, respectively.
The 2% cladding 4 is SiO2. The relative refractive index difference between the core and the cladding was 0.34%, the relative refractive index difference of the first intermediate layer with respect to the cladding was -1%, and the relative refractive index difference of the second intermediate layer with respect to the cladding was -0.5%. In order to achieve absolute single polarization, the birefringence should be changed to ・SiO2, P2O5・SiO−
3 or more, the relative refractive index difference of the first intermediate layer with respect to the cladding must be −0.3% or less, and the relative refractive index difference of the second intermediate layer with respect to the cladding must be −0.5% or less. be. The first intermediate layer induces electric field distribution anisotropy and stress anisotropy in the core.

第2中間層により、コア中に応力の異方性が誘起される
。この時の規格化応力付与部間隔r/a (aはコア半
径)とモード複屈折率の関係を第2図に示す。曲線Bに
示した第2中間層のみの場合に比べ、曲線Aに示すよう
に、第2中間層に加え第1中間層を設けることにより、
モード複屈折率が大きくなる。
The second intermediate layer induces stress anisotropy in the core. The relationship between the normalized stress applying part spacing r/a (a is the core radius) and the mode birefringence at this time is shown in FIG. Compared to the case of only the second intermediate layer shown in curve B, by providing the first intermediate layer in addition to the second intermediate layer as shown in curve A,
Mode birefringence increases.

本実施では、コア部にGeO2・SiO2、GeO2を
用いたが、GeO2・P2O5・SiO2またはP*O
s・5t(hまたはAl2O,・SiO2およびGeO
2を用いてもよい。第1中間層用の母材としては、T・
SiO2、P2O5・SiO3・SiO2を用いてもよ
い。第2中間層用の母材としては、B2O3・SiO2
、P2OSiO2またはP2O,・SiO2、P2O5
,0゜または八1203・SiO2、P2O5,02ま
たはG@02・B2O3・SiO2、GeO,を用いて
もよい。
In this implementation, GeO2・SiO2, GeO2 was used for the core part, but GeO2・P2O5・SiO2 or P*O
s・5t(h or Al2O, ・SiO2 and GeO
2 may be used. The base material for the first intermediate layer is T.
SiO2, P2O5.SiO3.SiO2 may also be used. As the base material for the second intermediate layer, B2O3・SiO2
, P2OSiO2 or P2O, ・SiO2, P2O5
,0° or 81203.SiO2, P2O5,02 or G@02.B2O3.SiO2, GeO, may also be used.

第1中間層の屈折率がクラッドの屈折率と等しい場合は
、光フアイバコア中の電界分布をX方向とX方向で均一
化することができる。
When the refractive index of the first intermediate layer is equal to the refractive index of the cladding, the electric field distribution in the optical fiber core can be made uniform in the X direction and the X direction.

第3図を参照して、第1図に示した絶対単一偏波光ファ
イバの製造方法を説明する。
With reference to FIG. 3, a method for manufacturing the absolutely single polarization optical fiber shown in FIG. 1 will be described.

コア部11およびクラッド部14よりなる母材lOに、
超音波ドリルを用いて、第1中間層用の孔12a、12
bおよび第2中間層用の孔13a、13bをあけた後、
第1中間層の母材12^、12B 、第2中間層用の母
材13^、13Bを挿入する。各母材は、例えばVAD
法により作製されたものである。コア部11の径は2m
a+ 、クラッド部14の径は40Bm、第1中間層用
用材12A、12Bの径は5111m、第2中間層用母
材13^、13Bの径は12n+mである。第1中間層
用母材は直径5IIIIllでx、X方向の電界に依存
した屈折率を誘起するためコアに接し、応力を付与する
ことを目的とする第2中間層用母材は直径12+++I
11で、その中心はコア部の中心から9+nm aすれ
たところにある。これらの孔は超音波ドリルを用いて孔
開けした後に、火炎研磨により内面処理がされている。
A base material IO consisting of a core portion 11 and a cladding portion 14,
Holes 12a, 12 for the first intermediate layer are drilled using an ultrasonic drill.
After drilling holes 13a and 13b for the second intermediate layer,
The base materials 12^, 12B for the first intermediate layer and the base materials 13^, 13B for the second intermediate layer are inserted. Each base material is, for example, VAD
It was made by the method. The diameter of the core part 11 is 2m
a+, the diameter of the cladding part 14 is 40Bm, the diameter of the first intermediate layer materials 12A and 12B is 5111m, and the diameter of the second intermediate layer base materials 13^ and 13B is 12n+m. The base material for the first intermediate layer has a diameter of 5IIIll and is in contact with the core in order to induce a refractive index depending on the electric field in the x and x directions, and the base material for the second intermediate layer has a diameter of 12++I
11 and its center is 9+nm away from the center of the core. After drilling these holes using an ultrasonic drill, the inner surfaces are treated by flame polishing.

第1中間層用の母材12^、12B 、第2中間層用の
母材13A、13Bおよびこれらに対応する母材IO中
の孔12a、12b、13a、13bは、挿入前ニフッ
酸により表面処理が施されている。母材IO中の孔に第
1中間層用の母材、第2中間層用の母材を装着した後、
1500℃でこれらを減圧しながら一体化した後、20
00℃に温度を上げ線引きを行った。作製した絶対単一
偏波光ファイバは複屈折が・SiO2、P2O5・Si
O−3、伝送損失は波長1.5μmにおいて1dB/k
mであり、設計通りの値が得られた。
The base materials 12^, 12B for the first intermediate layer, the base materials 13A, 13B for the second intermediate layer, and the holes 12a, 12b, 13a, 13b in the base material IO corresponding to these are surface-treated with difluoric acid before insertion. Processed. After installing the base material for the first intermediate layer and the base material for the second intermediate layer into the holes in the base material IO,
After integrating these under reduced pressure at 1500℃, 20
The temperature was raised to 00°C and wire drawing was performed. The fabricated absolutely single polarization optical fiber has birefringence of ・SiO2, P2O5・Si
O-3, transmission loss is 1dB/k at wavelength 1.5μm
m, and the value as designed was obtained.

亙凰11 実施例1で示したコア部とクラッド部からなるコア用の
母材として、第4図に示すようにコア部の屈折率分布を
三角分布とした母材を用いた。コア直径を1mm 、第
1中間層の径を5ma+ %第2中間層の径を12n+
Inとし、第1中間層はコア部に接し、クラッド部に対
する比屈折率差が−0,3%のSiO2、P2O5゜0
2)第2中間層は中心がコア部の中心から9mm sれ
ており、クラッド部に対する比屈折率差は−0,5%の
B2O.・SiO2、GeO,とした。
庙凰11 As the base material for the core consisting of the core part and the cladding part shown in Example 1, a base material in which the refractive index distribution of the core part was triangular as shown in FIG. 4 was used. The core diameter is 1mm, the diameter of the first intermediate layer is 5ma+, the diameter of the second intermediate layer is 12n+
In, the first intermediate layer is in contact with the core part, and is made of SiO2, P2O5°0 with a relative refractive index difference of -0.3% with respect to the cladding part.
2) The center of the second intermediate layer is spaced 9 mm from the center of the core portion, and the relative refractive index difference with respect to the cladding portion is -0.5% B2O.・SiO2 and GeO were used.

作製した絶対単一偏波光ファイバは構造不完全性による
損失が少なく伝送損失は0.5 dB/kmと小さい値
であった。
The fabricated absolute single polarization optical fiber had little loss due to structural imperfections, and the transmission loss was as small as 0.5 dB/km.

コア部の屈折率分布は三角分布以外に、α乗分布n (
r) =(C−奪コr/a)町n+  (1<a <2
.△はクラッドに対するコアの比屈折率差)としてもよ
い。
In addition to the triangular distribution, the refractive index distribution of the core part has an α-th power distribution n (
r) = (C-Koro r/a) town n+ (1<a <2
.. Δ may be the relative refractive index difference between the core and the cladding.

なお、本実施例についても、第1中間層の屈折率をクラ
ッド部の屈折率と等しくすることにより、コア内の電界
分布をx、y方向で均一にすることができる。
Also in this example, by making the refractive index of the first intermediate layer equal to the refractive index of the cladding portion, the electric field distribution within the core can be made uniform in the x and y directions.

[発明の効果] 以上説明したように、第1中間層用の母材としてクラッ
ドに対する比屈折率差が−0,3%以下の高濃度のフッ
素を含む5I02ガラス、第2中間層用の母材としてク
ラッドに対する比屈折率差が−0,5%以下の高濃度の
B2O3を含むSiO2、GeO,ガラスを用い、Ge
O2・SiO2からなるコア部、 SiO2、GeO2
からなるクラッド部を持つコア用母材のクラッド部に超
音波ドリルを用いて第1中間層用の孔、第2中間層用の
孔をあけた後、火炎研磨を施し、第1中間層用の母材、
第2中間層用の母材を装着後、一体化、線引きをするこ
とにより、複屈折率が高く、光フアイバ長手方向の線径
ゆらぎの少ない光ファイバを実現できるため、構造不完
全性による損失、クロストークの劣化が少ない絶対単一
偏波光ファイバを再現性よく製造できる。
[Effects of the Invention] As explained above, 5I02 glass containing a high concentration of fluorine with a relative refractive index difference of −0.3% or less with respect to the cladding is used as the base material for the first intermediate layer, and the base material for the second intermediate layer is SiO2, GeO, and glass containing a high concentration of B2O3 with a relative refractive index difference of -0.5% or less with respect to the cladding are used as materials.
Core part consisting of O2/SiO2, SiO2, GeO2
After drilling a hole for the first intermediate layer and a hole for the second intermediate layer using an ultrasonic drill in the cladding part of the base material for the core, which has a cladding part consisting of base material,
By integrating and drawing the base material for the second intermediate layer, it is possible to create an optical fiber with a high birefringence and little fluctuation in the diameter in the longitudinal direction of the optical fiber, resulting in loss due to structural imperfections. , an absolutely single polarization optical fiber with little crosstalk degradation can be manufactured with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造法を用いて作製した絶対単一偏波
光ファイバの断面図、 第2図は規格化応力付与直径とモード複屈折率との関係
を示す特性図、 第3図はコア部およびクラッド部からなるコア用の母材
に孔をあけ、第1中間層用の母材、第2中間層用の母材
を挿入する様子を示す図、第4図は三角コアの屈折率分
布を示す図、第5図は従来の絶対単一偏波光ファイバの
断面図、 第6図、第7図および第8図は従来の絶対単一偏波光フ
ァイバの作製方法を示す図である。 1・・・コア、 2.2^、2ト・・第1中間層、 3.3八、 3D・・・第2中間層、 4・・・クラッド、 5・・・コア用母材、 6・・・石英管、 IO・・・母材、 12^、 12B・・・第1中間層用の母材、12a、
 12b・・・第1中間層用の孔、13^、 13B・
・・第2中間層用の母材、1:la、 13b・・・第
2中間層用の孔。
Figure 1 is a cross-sectional view of an absolutely single polarization optical fiber manufactured using the manufacturing method of the present invention, Figure 2 is a characteristic diagram showing the relationship between the normalized stress-applying diameter and mode birefringence, and Figure 3 is A diagram showing how a hole is made in the base material for the core consisting of the core part and the cladding part, and the base material for the first intermediate layer and the base material for the second intermediate layer are inserted. Figure 4 shows the refraction of the triangular core. Figure 5 is a cross-sectional view of a conventional absolute single polarization optical fiber; Figures 6, 7, and 8 are diagrams showing a conventional method of manufacturing an absolutely single polarization optical fiber. . DESCRIPTION OF SYMBOLS 1...Core, 2.2^, 2T...1st intermediate layer, 3.38, 3D...2nd intermediate layer, 4...Clad, 5...Base material for core, 6 ...Quartz tube, IO...Base material, 12^, 12B...Base material for first intermediate layer, 12a,
12b... hole for first intermediate layer, 13^, 13B.
... Base material for second intermediate layer, 1:la, 13b... Hole for second intermediate layer.

Claims (1)

【特許請求の範囲】 1)クラッドと、 該クラッドの中心に位置するコアと、 それぞれ該コアと接しかつ互いに該コアの直径方向反対
側に設けた2個の第1中間層と、該2個の第1中間層の
配列方向と直角方向 にかつそれぞれ前記コアから離れかつ該コアを挟んで設
けた2個の第2中間層とからなることを特徴とする絶対
単一偏波光ファイバ。 2)特許請求の範囲第1項記載の絶対単一偏波光ファイ
バにおいて、前記コアがGeO_2・SiO_2であり
、前記第1中間層がF・SiO_2であり、かつ前記第
2中間層がB_2O_3・SiO_2であって、第1中
間層のクラッドに対する比屈折率差が−0.3%以下、
第2中間層のクラッドに対する比屈折率差が−0.5%
以下であることを特徴とする絶対単一偏波光ファイバ。 3)特許請求の範囲第1項記載の絶対単一偏波光ファイ
バにおいて、前記コアがGeO_2・SiO_2、Ge
O_2・P_2O_5・SiO_2、P_2O_5・S
iO_2およびAl_2O_3・SiO_2のうちの一
種であり、前記第2中間層がB_2O_3・SiO_2
、B_2O_3・P_2O_5・SiO_2、B_2O
_3・P_2O_5・Al_2O_3・SiO_2、B
_2O_3・Al_2O_3・SiO_2、B_2O_
3・F・SiO_2、P_2O_5・F・SiO_2、
Al_2O_3・F・SiO_2およびGeO_2・B
_2O_3・SiO_2のうちの一種であることを特徴
とする絶対単一偏波光ファイバ。 4)線引き後それぞれコアおよびクラッドとなるコア部
およびクラッド部を有する母材に、前記コア部に接しか
つ該コア部の直径方向反対側にそれぞれ第1中間層用の
孔を、該2個の孔の中心を結ぶ方向と直角方向で、前記
コア部を挟む位置にそれぞれ第2中間層用の孔を開け、
前記それぞれ2個の第1中間層用の孔および第2中間層
の孔にそれぞれ第1中間層用母材および第2中間層用母
材を挿入して一体化し、 線引きして光ファイバとすることを特徴とする絶対単一
偏波光ファイバの製造方法。 5)特許請求の範囲第4項記載の絶対単一偏波光ファイ
バの製造方法において、前記孔あけが超音波ドリルによ
る穿孔であることを特徴とする絶対単一偏波光ファイバ
の製造方法。 6)特許請求の範囲第4項または第5項に記載の絶対単
一偏波光ファイバの製造方法において、コア母材として
GeO_2・SiO_2、前記第1中間層用母材として
F・SiO_2、前記第2中間層用母材としてB_2O
_3・SiO_2を用い、第1中間層のクラッドに対す
る比屈折率差が−0.3%以下、第2中間層のクラッド
に対する比屈折率差が−0.5%以下であることを特徴
とする絶対単一偏波光ファイバの製造方法。 7)特許請求の範囲第4項または第5項に記載の絶対単
一偏波光ファイバの製造方法において、コア母材として
GeO_2・SiO_2、GeO_2・P_2O_5・
SiO_2、P_2O_5・SiO_2およびAl_2
O_3・SiO_2のうちの一種を用い、前記第2中間
層用母材としてB_2O_3・SiO_2、B_2O_
3・P_2O_5・SiO_2、B_2O_3・P_2
O_5・Al_2O_3・SiO_2、B_2O_3・
Al_2O_3・SiO_2、B_2O_3・F・Si
O_2、P_2O_5・F・SiO_2、Al_2O_
3・F・SiO_2およびGeO_2・B_2O_3・
SiO_2のうちの一種を用いることを特徴とする絶対
単一偏波光ファイバの製造方法。
[Claims] 1) A cladding, a core located at the center of the cladding, two first intermediate layers each in contact with the core and provided on diametrically opposite sides of the core; 1. An absolutely single polarization optical fiber comprising two second intermediate layers provided in a direction perpendicular to the arrangement direction of the first intermediate layer, separated from the core, and sandwiching the core. 2) In the absolute single polarization optical fiber according to claim 1, the core is GeO_2.SiO_2, the first intermediate layer is F.SiO_2, and the second intermediate layer is B_2O_3.SiO_2. and the relative refractive index difference of the first intermediate layer with respect to the cladding is -0.3% or less,
The relative refractive index difference of the second intermediate layer with respect to the cladding is -0.5%
An absolutely single polarization optical fiber characterized by: 3) In the absolute single polarization optical fiber according to claim 1, the core is made of GeO_2・SiO_2, Ge
O_2・P_2O_5・SiO_2, P_2O_5・S
iO_2 and Al_2O_3・SiO_2, and the second intermediate layer is B_2O_3・SiO_2.
, B_2O_3・P_2O_5・SiO_2, B_2O
_3・P_2O_5・Al_2O_3・SiO_2, B
_2O_3・Al_2O_3・SiO_2, B_2O_
3.F.SiO_2, P_2O_5.F.SiO_2,
Al_2O_3・F・SiO_2 and GeO_2・B
An absolutely single polarization optical fiber characterized by being one of _2O_3 and SiO_2. 4) A hole for the first intermediate layer is provided in the base material having a core part and a clad part, which will become the core and clad respectively after wire drawing, in contact with the core part and on the opposite side in the diametrical direction of the core part. Drilling holes for the second intermediate layer at positions sandwiching the core portion in a direction perpendicular to the direction connecting the centers of the holes,
A first intermediate layer base material and a second intermediate layer base material are inserted into each of the two holes for the first intermediate layer and the hole for the second intermediate layer, and are integrated, and then drawn to form an optical fiber. A method of manufacturing an absolutely single polarization optical fiber, characterized by: 5) The method for manufacturing an absolutely single polarized optical fiber according to claim 4, characterized in that the drilling is performed using an ultrasonic drill. 6) In the method for manufacturing an absolutely single polarized optical fiber according to claim 4 or 5, the core base material is GeO_2.SiO_2, the first intermediate layer base material is F.SiO_2, and the first intermediate layer base material is F.SiO_2. 2 B_2O as the base material for the intermediate layer
_3.SiO_2 is used, and the first intermediate layer has a relative refractive index difference of -0.3% or less with respect to the cladding, and the second intermediate layer has a relative refractive index difference of -0.5% or less with respect to the cladding. A method for manufacturing absolutely single polarization optical fiber. 7) In the method for manufacturing an absolutely single polarization optical fiber according to claim 4 or 5, GeO_2.SiO_2, GeO_2.P_2O_5.
SiO_2, P_2O_5・SiO_2 and Al_2
One type of O_3.SiO_2 is used as the base material for the second intermediate layer, B_2O_3.SiO_2, B_2O_
3・P_2O_5・SiO_2, B_2O_3・P_2
O_5・Al_2O_3・SiO_2, B_2O_3・
Al_2O_3・SiO_2, B_2O_3・F・Si
O_2, P_2O_5・F・SiO_2, Al_2O_
3.F.SiO_2 and GeO_2.B_2O_3.
A method for manufacturing an absolutely single polarization optical fiber, characterized by using one type of SiO_2.
JP62039231A 1987-02-24 1987-02-24 Absolute single polarization optical fiber and its production Pending JPS63206710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62039231A JPS63206710A (en) 1987-02-24 1987-02-24 Absolute single polarization optical fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62039231A JPS63206710A (en) 1987-02-24 1987-02-24 Absolute single polarization optical fiber and its production

Publications (1)

Publication Number Publication Date
JPS63206710A true JPS63206710A (en) 1988-08-26

Family

ID=12547351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62039231A Pending JPS63206710A (en) 1987-02-24 1987-02-24 Absolute single polarization optical fiber and its production

Country Status (1)

Country Link
JP (1) JPS63206710A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687442B2 (en) 2001-01-17 2004-02-03 Fujikura Ltd. Optical fiber for preserving plane of polarization
JP2011237796A (en) * 2010-04-30 2011-11-24 Corning Inc Optical fiber with differential birefringence mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687442B2 (en) 2001-01-17 2004-02-03 Fujikura Ltd. Optical fiber for preserving plane of polarization
JP2011237796A (en) * 2010-04-30 2011-11-24 Corning Inc Optical fiber with differential birefringence mechanism

Similar Documents

Publication Publication Date Title
EP0212954B1 (en) Method of making low loss fiber optic coupler
US4842359A (en) Optical star coupler and method of manufacturing the same
US7308173B2 (en) Optical fiber coupler with low loss and high coupling coefficient and method of fabrication thereof
IL102713A (en) Mount for polarization-maintaining optical fiber coupler
EP1486804B1 (en) Polarization preserving optical fiber
CN111552025A (en) Multi-core fiber Fan-in/out device with concave triple-clad transition fiber
JPS63206710A (en) Absolute single polarization optical fiber and its production
CN115124231A (en) Air-clad anti-bending multi-core optical fiber and manufacturing method thereof
JPH0574804B2 (en)
JPS61215225A (en) Production of optical fiber preserving plane of polarization
JPS6212626A (en) Production of optical fiber of constant polarized electromagnetic radiation
JPH01279211A (en) Polarized wave maintaining optical fiber
JP2828276B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JPH0350505A (en) Single polarization optical fiber
US20240085618A1 (en) Polarization maintaining optical fiber and polarization maintaining optical fiber manufacturing method
JPH01314209A (en) Constant polarization optical fiber
JPS60242406A (en) Single polarization optical fiber
JPH0210093B2 (en)
JPS62148333A (en) Preparation of constant polarization optical fiber
JPS5929218A (en) Production of optical coupler
JPS5884138A (en) Manufacture of preform rod for optical fiber sustaining polarization
JPWO2022172910A5 (en)
JPS58115403A (en) Multicore constant polarization optical fiber and its manufacture
JPH01148724A (en) Production of polarization retaining fiber
JPS62276510A (en) Stress imparting type polarized wave maintaining optical fiber