JPH02141436A - Production of polarized wave maintaining optical fiber - Google Patents

Production of polarized wave maintaining optical fiber

Info

Publication number
JPH02141436A
JPH02141436A JP63292503A JP29250388A JPH02141436A JP H02141436 A JPH02141436 A JP H02141436A JP 63292503 A JP63292503 A JP 63292503A JP 29250388 A JP29250388 A JP 29250388A JP H02141436 A JPH02141436 A JP H02141436A
Authority
JP
Japan
Prior art keywords
optical fiber
maintaining optical
pit
quartz
side pit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63292503A
Other languages
Japanese (ja)
Inventor
Hideyori Sasaoka
英資 笹岡
Shigeru Tanaka
茂 田中
Hiroshi Yokota
弘 横田
Hiroshi Suganuma
寛 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63292503A priority Critical patent/JPH02141436A/en
Publication of JPH02141436A publication Critical patent/JPH02141436A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • C03B2203/31Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres by use of stress-imparting rods, e.g. by insertion

Abstract

PURPOSE:To easily obtain the anisotropic side-pit type polarized wave maintaining optical fiber by inserting a shaped side pit material into a quartz pipe in the base material stage, and collapsing the assembly to obtain a preform. CONSTITUTION:The side pit material 2 is concentrically formed on the periphery of a core 1. Both side surfaces of the columnar member are flatly cut to obtain a plate wherein the side pit material 2 is arranged symmetrically to the core 1. The member is then inserted into the quartz pipe 4, and a semicolumnar quartz rod 3 is inserted between the inner periphery of the pipe 4 and the member. The assembly is collapsed, and integrated to obtain a preform. As a result, a side pit-type polarized wave maintaining optical fiber, wherein the side pit having a lower refractive index than a clad is arranged symmetrically to the core, is obtained.

Description

【発明の詳細な説明】 〈産業上の利用分舒〉 本発明はサイドピット型の偏波保持光ファイバの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application> The present invention relates to a method for manufacturing a side pit type polarization maintaining optical fiber.

〈従来の技術〉 従来のサイドピット型の偏波保持光ファイバの製造方法
としてはMCVD法によるものがある。このMCVD法
による製造方法では、第2図(alに示すように石英バ
イブロの内周面にクラツド材6を析出させ、次いで同図
(blに示すようにクラツド材6の内側にサイドピット
材8を析出させている。この際、サイドピットに異方性
を持たせなければならないため、サイドピット材析出中
(よ、石英バイブロの回転速度を周期的に変化させてサ
イドピット材8の析出量に異方性を持たせている。その
後、第2図(elのようにコア材9をサイドピット材8
の内側に析出させ、同図(d)に示すようにコラプスし
てプリフォームを製造している。第2図中、7はバーナ
である。
<Prior Art> As a conventional method for manufacturing a side-pit type polarization-maintaining optical fiber, there is a method using the MCVD method. In this manufacturing method using the MCVD method, a cladding material 6 is deposited on the inner circumferential surface of a quartz vibro as shown in FIG. At this time, since the side pits must have anisotropy, the amount of side pit material 8 to be deposited is controlled by periodically changing the rotational speed of the quartz vibro during the side pit material precipitation. After that, as shown in Fig. 2 (el), the core material 9 is coated with the side pit material 8.
The preform is produced by depositing it on the inside of the container and collapsing it as shown in the figure (d). In FIG. 2, 7 is a burner.

〈発明が解決しようとする課題〉 従来のサイドピット型偏波保持光ファイバの製造方法で
は、サイドピットに異方性を持たせるため、サイドピッ
ト析出中に石英パイプの回転速度を周期的に変化させて
いたが、このためには煩雑な制御が必要となっていた。
<Problem to be solved by the invention> In the conventional manufacturing method of side-pit type polarization-maintaining optical fiber, in order to give anisotropy to the side pits, the rotation speed of the quartz pipe is periodically changed during side pit precipitation. However, this required complicated control.

また、回転速度を十分精度良く制御しても、所望のサイ
ドピット形状とするのは容易ではなかった。
Further, even if the rotational speed is controlled with sufficient accuracy, it is not easy to form the desired side pit shape.

つまり、従来の製造方法においては、設計通り所望の断
面形状を得ることは困難であった。
That is, in the conventional manufacturing method, it was difficult to obtain a desired cross-sectional shape as designed.

本発明は上記従来技術に鑑みてなされたもので、異方性
のあるサイドピット型の偏波保持光ファイバを容易かつ
高精度に、しかも再現性良く製造できる方法を提供する
ととを目的とする。
The present invention has been made in view of the above-mentioned prior art, and it is an object of the present invention to provide a method for manufacturing an anisotropic side-pit type polarization-maintaining optical fiber easily, with high precision, and with good reproducibility. .

く課題を解決するための手段〉 斯かる目的を達成する本発明の構成は、屈折率がクラッ
ドよりも小さいサイドピットをコアに対して対称に配置
したサイドピット型偏波保持光ファイバを製造する方法
において、コア材の外周にサイドピット材を同心円状に
形成した円柱状部材の両側面を平坦に加工した後、石英
パイプに挿入し、該円柱状部材の両側面と該石英パイプ
の内周面との間に半円柱状の石英ロッドを各々挿入して
、これらをコラプスにより一体化し、プリフォームとす
ることを特徴とする。
Means for Solving the Problems> The configuration of the present invention to achieve the above object is to manufacture a side pit type polarization maintaining optical fiber in which side pits having a refractive index smaller than that of the cladding are arranged symmetrically with respect to the core. In this method, after flattening both sides of a cylindrical member in which side pit materials are formed concentrically around the outer periphery of a core material, the cylindrical member is inserted into a quartz pipe, and both sides of the cylindrical member and the inner periphery of the quartz pipe are flattened. It is characterized by inserting semi-cylindrical quartz rods between the surfaces and integrating them by collapse to form a preform.

〈実 施 例〉 以下、本発明の実施例について図面を参照して詳細に説
明する。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図に本発明の一実施例を示す。同図(a)に示すよ
うにVAD法によりコア材1の外周にサイドピット材2
を同心円状に形成して円柱状部材となし、その後同図(
b)に示すようにその両側面(つまり、サイドピット材
2の部分)を平坦に加工し、コア材1に対してサイドピ
ット材2が対称に配置された板状とする。
FIG. 1 shows an embodiment of the present invention. As shown in Figure (a), the side pit material 2 is attached to the outer periphery of the core material 1 by the VAD method.
are formed into concentric circles to form a cylindrical member, and then the same figure (
As shown in b), both side surfaces (that is, the side pit material 2 portions) are flattened to form a plate shape in which the side pit material 2 is arranged symmetrically with respect to the core material 1.

この後、第1図(clに示すように石英パイプ4に挿入
すると共にその両側面と石英パイプ4との間に半円柱状
の石英ロッド3,4を挿入して、隙間を埋めるようにす
る。その後、これらをコラプスして一体化し、第1図(
d)に示すプリフォームを製造する。得られたブリフ一 オームよりサイドピット型偏波保持光ファイバを線引す
る。
After this, as shown in Fig. 1 (cl), insert into the quartz pipe 4 and insert semi-cylindrical quartz rods 3 and 4 between both sides of the quartz pipe 4 and the quartz pipe 4 to fill the gap. .After that, these are collapsed and integrated to create the image shown in Figure 1 (
Manufacture the preform shown in d). A side pit type polarization maintaining optical fiber is drawn from the obtained brif 1 ohm.

線引されたサイドピット型偏波保持光ファイバは第3図
に示すような断面形状を有し、異方性形状となっている
。即ち、中央のコア10に対しサイドピット10が対称
に配置され、その外側にはクラッド12が形成されてい
る。サイドピット10ばクラッド12よりも屈折率が低
いため、第4図(a) (b)に示すX。
The drawn side-pit type polarization-maintaining optical fiber has a cross-sectional shape as shown in FIG. 3, and has an anisotropic shape. That is, the side pits 10 are arranged symmetrically with respect to the central core 10, and the cladding 12 is formed on the outside thereof. Since the side pits 10 have a lower refractive index than the cladding 12, the side pits 10 have a lower refractive index than the cladding 12, so the side pits 10 have a lower refractive index than the cladding 12.

Y方向屈折率分布は互いに異なることとなる。The Y-direction refractive index distributions are different from each other.

このため、X偏波、Y偏波では光の伝搬定数が異なり、
偏波間の結合が防止されて、偏波保持ができることとな
る。
Therefore, the propagation constant of light is different for X polarization and Y polarization,
Coupling between polarized waves is prevented, and polarization can be maintained.

このように本発明の偏波保持光ファイバの製造方法は、
母材段階においてサイドピットの形状加工を行うので、
第3図に示す異方性断面形状を容易に実現することがで
きる。これは、従来のMCVD法による製造方法におい
てはサイドピット材の析出に際し石英パイプの回転速度
の制御など煩雑な作業を必要としていたのに比べ、大幅
な簡略化が可能となる。また、従来のMCVD法による
製造方法においては、サイドピット材析出時にサイドピ
ット形状を設計通りに保持することが困難であったが、
本発明によればサイドピット材加工後、その形状の変化
は非常に小さく、なおかつ、サイドピット材の加工は現
状の技術で非常に高精度に行うことができる。
In this way, the method for manufacturing a polarization-maintaining optical fiber of the present invention includes:
Since the shape of the side pit is processed at the base material stage,
The anisotropic cross-sectional shape shown in FIG. 3 can be easily realized. This can be significantly simplified compared to the conventional manufacturing method using MCVD, which required complicated operations such as controlling the rotational speed of the quartz pipe when depositing the side pit material. In addition, in the conventional manufacturing method using the MCVD method, it was difficult to maintain the side pit shape as designed during side pit material precipitation.
According to the present invention, after the side pit material is processed, the change in its shape is very small, and the side pit material can be processed with very high precision using the current technology.

次に、更に具体的な実施例について第5図を参照して説
明する。
Next, a more specific embodiment will be described with reference to FIG. 5.

まず、第5図(a)に示すようにVAD法によりコア材
13の外周にサイドピット材14を同心円状に形成して
円柱状部材とした。コア材13はゲルマニウムを添加し
た石英ガラス、サイドピット材14はホウ素を添加した
石英ガラスから成る。コア材13、サイドピット材14
の純粋石英ガラスに対する比屈折率差はそれぞれ、+0
.3%、−0,6%である。また、コア材13の直径は
10閣、サイドピット材14の直径は30mである。次
いで、第5図(a)に示す円柱状部材の両側面を平面研
摩し、その形状を同図(b)に示すように板状とした。
First, as shown in FIG. 5(a), the side pit material 14 was formed concentrically around the outer periphery of the core material 13 by the VAD method to form a cylindrical member. The core material 13 is made of quartz glass doped with germanium, and the side pit material 14 is made of quartz glass doped with boron. Core material 13, side pit material 14
The relative refractive index difference with respect to pure silica glass is +0
.. 3%, -0.6%. Further, the diameter of the core material 13 is 10 m, and the diameter of the side pit material 14 is 30 m. Next, both side surfaces of the cylindrical member shown in FIG. 5(a) were polished to form a plate-like shape as shown in FIG. 5(b).

つまり、研摩された両側面が互いに平行となり、しかも
、その表面からコア材13が露出するように研摩する。
That is, the core material 13 is polished so that both polished side surfaces are parallel to each other and the core material 13 is exposed from the surface.

このように板状に研摩されたコア材13及びサイドピッ
ト材14の厚さは9.8 wan 、幅は30.0mで
ある。引き続き、板状に研摩されたコア材13及びサイ
ドピット材14を第5図[6)に示すように石英パイプ
16に挿入すると共に板状体の側面と石英パイプ16の
内周面との間に半円柱状の石英ロッド15を挿入し、そ
の同の1lfilを埋めるようにする。この半円柱状の
石英ロッド15は第5図(0)に示す純粋石英ロッドを
VAD法により作成し、これを破線から2等分した後、
同図(d)に示す形状となるまで切断面を平面研摩した
もので、正確には半円柱ではなく、その幅は28.3m
、その厚さは10mである。
The core material 13 and side pit material 14 polished into a plate shape in this manner have a thickness of 9.8 wan and a width of 30.0 m. Subsequently, the core material 13 and side pit material 14 that have been polished into a plate shape are inserted into the quartz pipe 16 as shown in FIG. A semi-cylindrical quartz rod 15 is inserted into the hole so as to fill the same 1lfil. This semi-cylindrical quartz rod 15 is made by creating a pure quartz rod shown in FIG.
The cut surface was flat-polished until it had the shape shown in Figure (d), and it is not exactly a semi-cylindrical shape, but its width is 28.3 m.
, its thickness is 10m.

これらが押入される石英パイプ16は内径32−2外径
45隠の純粋石英ガラス製であり、挿入後、これらと一
体にコラプスされ一体化される。その後、延伸し、ロッ
ドイン、コラプスを繰返す乙とにより、第5図(f)に
示すようなりラッド直径28m+、:+ア直径2.3 
m 。
The quartz pipe 16 into which these are inserted is made of pure quartz glass and has an inner diameter of 32-2 and an outer diameter of 45. After insertion, it is collapsed and integrated with these pipes. After that, by repeating stretching, rod-in, and collapse, the rad diameter is 28 m +, as shown in Fig. 5 (f), and the rod diameter is 2.3 m.
m.

サイドピット幅6.9+w+のプリフォームを製作した
A preform with a side pit width of 6.9+w+ was manufactured.

上記プリフォームを線引し、クラツド径125μmのフ
ァイバを試作し、その特性を評価したところ、カットオ
フ波長1.20μm、波長1.3μmでの複屈折率が1
.5 X 10−’、波長1.3μm、ファイバ長5m
でのクロストークが−32dBであった。
The above preform was drawn to make a prototype fiber with a cladding diameter of 125 μm, and its characteristics were evaluated. The birefringence at a cutoff wavelength of 1.20 μm and a wavelength of 1.3 μm was 1.
.. 5 x 10-', wavelength 1.3 μm, fiber length 5 m
The crosstalk was -32dB.

尚、上記実施例ではコア材13.サイドピット材14.
クラッド材として、それぞれGeO2+5i02.B2
O3+5i02,5i02を用いているが、これらの材
料については特に制限はなく、屈折率がコア材、クラッ
ド材、サイドピット材の順に小さくなっていれば良い。
In the above embodiment, the core material 13. Side pit material 14.
As cladding materials, GeO2+5i02. B2
Although O3+5i02 and 5i02 are used, there are no particular restrictions on these materials, as long as the refractive index decreases in the order of core material, cladding material, and side pit material.

〈発明の効果〉 以上、実施例に基づいて具体的に説明したように本発明
はサイドピット型の偏波保持光ファイバを容易かつ高精
度に、しがも再現性良く製造することができ、偏波保持
光ファイバの量産化に効果的である。
<Effects of the Invention> As described above in detail based on the examples, the present invention enables the manufacture of side pit type polarization maintaining optical fibers easily, with high precision, and with good reproducibility. This is effective for mass production of polarization-maintaining optical fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b)、 (07,(d)は本発明の
一実施例にかかる偏波保持光ファイバの製造方法を示す
工程図、第2図(aL (bL (0)、 (d)は従
来の調波保持光ファイバの製造方法を示す工程図、第3
図はプリフォームの断面図、第4図Ta)、 (blは
プリフォームのX軸、Y軸方向の屈折率分布を示すグラ
フ、第5図(alt (bL (c)、 (dL (e
L (f)は本発明の他の実施例にかかる偏波保持光フ
ァイバの製造方法を示す工程図である。 図面中、 1.13はコア材、 2.14はサイドピット材、 3.15は半円柱状の石英ロッド、 4.16は石英パイプである。
FIGS. 1(a), (b), (07, (d) are process diagrams showing a method for manufacturing a polarization-maintaining optical fiber according to an embodiment of the present invention, and FIG. 2(aL (bL (0), (d) is a process diagram showing a conventional method for manufacturing a harmonic-maintaining optical fiber;
The figure is a cross-sectional view of the preform;
L(f) is a process diagram showing a method for manufacturing a polarization maintaining optical fiber according to another embodiment of the present invention. In the drawings, 1.13 is a core material, 2.14 is a side pit material, 3.15 is a semi-cylindrical quartz rod, and 4.16 is a quartz pipe.

Claims (1)

【特許請求の範囲】[Claims] 屈折率がクラッドよりも小さいサイドピットをコアに対
して対称に配置したサイドピット型偏波保持光ファイバ
を製造する方法において、コア材の外周にサイドピット
材を同心円状に形成した円柱状部材の両側面を平坦に加
工した後、石英パイプに挿入し、該円柱状部材の両側面
と該石英パイプの内周面との間に半円柱状の石英ロッド
を各々挿入して、これらをコラプスにより一体化し、プ
リフォームとすることを特徴とする偏波保持光ファイバ
の製造方法。
In a method for manufacturing a side-pit type polarization-maintaining optical fiber in which side pits with a refractive index smaller than that of the cladding are arranged symmetrically with respect to the core, a cylindrical member in which side pit materials are formed concentrically around the outer periphery of a core material is used. After processing both sides to be flat, it is inserted into a quartz pipe, and semi-cylindrical quartz rods are inserted between both sides of the cylindrical member and the inner peripheral surface of the quartz pipe, and these are collapsed. A method for manufacturing a polarization-maintaining optical fiber, characterized by integrating it into a preform.
JP63292503A 1988-11-21 1988-11-21 Production of polarized wave maintaining optical fiber Pending JPH02141436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63292503A JPH02141436A (en) 1988-11-21 1988-11-21 Production of polarized wave maintaining optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63292503A JPH02141436A (en) 1988-11-21 1988-11-21 Production of polarized wave maintaining optical fiber

Publications (1)

Publication Number Publication Date
JPH02141436A true JPH02141436A (en) 1990-05-30

Family

ID=17782659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63292503A Pending JPH02141436A (en) 1988-11-21 1988-11-21 Production of polarized wave maintaining optical fiber

Country Status (1)

Country Link
JP (1) JPH02141436A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683053A1 (en) * 1991-10-29 1993-04-30 Thomson Csf OPTICAL FIBER AND METHOD OF MANUFACTURE.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954635A (en) * 1982-09-20 1984-03-29 Hitachi Cable Ltd Preparation of optical fiber preserving plane of polarization
JPS60260442A (en) * 1984-06-06 1985-12-23 Sumitomo Electric Ind Ltd Preparation of fixed polarisation fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954635A (en) * 1982-09-20 1984-03-29 Hitachi Cable Ltd Preparation of optical fiber preserving plane of polarization
JPS60260442A (en) * 1984-06-06 1985-12-23 Sumitomo Electric Ind Ltd Preparation of fixed polarisation fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683053A1 (en) * 1991-10-29 1993-04-30 Thomson Csf OPTICAL FIBER AND METHOD OF MANUFACTURE.
US5309540A (en) * 1991-10-29 1994-05-03 Thomson-Csf Optical fiber sensor and a manufacturing process for making same

Similar Documents

Publication Publication Date Title
US4529426A (en) Method of fabricating high birefringence fibers
US4283213A (en) Method of fabrication of single mode optical fibers or waveguides
KR101500819B1 (en) Method for manufacturing a birefringent microstructured optical fiber
GB2221903A (en) Method of producing elliptic core type polarization-maintaining optical fibre
JP3903987B2 (en) Polarization-maintaining optical fiber manufacturing method
JP2002318315A (en) Optical fiber and method for manufacturing the same
JPH0753591B2 (en) Method for manufacturing base material for optical fiber
EP1156018B1 (en) Process for fabricating optical fiber involving tuning of core diameter profile
EP0098102B1 (en) Method of making optical fibre preforms and optical fibre preform
JPH037613B2 (en)
JP2002293563A (en) Method for producing optical fiber preform
JPH02141436A (en) Production of polarized wave maintaining optical fiber
JPH0627010B2 (en) Method of manufacturing polarization-maintaining optical fiber
JPH06235838A (en) Production of polarization maintaining optical fiber
JPS6218492B2 (en)
JPH02135304A (en) Manufacture of polarized light maintaining optical fiber
JPS6350291B2 (en)
JPS6150887B2 (en)
JPH02212328A (en) Production of optical fiber
JPH03218938A (en) Production of elliptic core-type polarization plane maintaining optical fiber
JPH0210093B2 (en)
JPS6140832A (en) Process for forming hollow hole for parent material for fixed polarization optical fiber and preparation of fixed polarization optical fiber
JPS58135147A (en) Preparation of base material for optical fiber
JPS59456B2 (en) Manufacturing method of optical glass fiber
JPS62153136A (en) Production of elliptic core constant polarization optical fiber