JPH0364707A - Manufacture of spot size converting optical fiber - Google Patents

Manufacture of spot size converting optical fiber

Info

Publication number
JPH0364707A
JPH0364707A JP1199358A JP19935889A JPH0364707A JP H0364707 A JPH0364707 A JP H0364707A JP 1199358 A JP1199358 A JP 1199358A JP 19935889 A JP19935889 A JP 19935889A JP H0364707 A JPH0364707 A JP H0364707A
Authority
JP
Japan
Prior art keywords
optical fiber
spot size
core
glass
elliptic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1199358A
Other languages
Japanese (ja)
Inventor
Takeyoshi Takuma
詫摩 勇悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1199358A priority Critical patent/JPH0364707A/en
Publication of JPH0364707A publication Critical patent/JPH0364707A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the formation and to reduce the connection loss by heating a part of an elliptic core type polarization plane maintaining optical fiber which has noncircular spot size and making its elliptic core round. CONSTITUTION:Quartz soot is provided externally on the outer periphery of a glass rod by an external CVD method or VAD method to obtain calcined glass and at this time, the sectional shape of the worked rod is made noncircular according to its viscosity difference to form the elliptic core 1. Then a glass base material is used as an optical fiber base material and drawn in a drawing furnace into a fiber with the drawing tensile force within a range wherein the initial noncircular sectional shape can be maintained. Then the obtained optical fiber which is as long as desired is prepared and a part of it is heated with a burner to make the core 1 which is in an elliptic shape close to a rectangular shape into a circular core 11 gradually. Consequently, the spot size converting optical fiber which can perform conversion from an ellipse to circular spot size without any loss can easily be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光ファイバ、特にスポットサイズを変換する光
ファイバの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an optical fiber, and in particular to a method for manufacturing an optical fiber that converts spot size.

[従来の技術] 薄膜先導波路と光ファイバを結合ずゐ際、そのまま付合
わせるとスポットサイズが異なる7゜め接続損失が大き
い。そこで第1図のような、コアの形状が長手方向に変
化しているスポットサイズ変換器が必要である。
[Prior Art] When connecting a thin film guiding waveguide and an optical fiber, if they are joined as is, the connection loss will be large at 7° due to the difference in spot size. Therefore, a spot size converter as shown in FIG. 1 is required, in which the shape of the core changes in the longitudinal direction.

これまで第1図のような光ファイバはなく、直接付合わ
せるか、レンズを介して結合したり、あるいは薄膜光導
波路のスポットサイズをなるべく光ファイバのスポット
サイズに近(なるようにしていた。
Until now, there was no optical fiber like the one shown in Figure 1, and the spot size of the thin film optical waveguide was made to be as close as possible to the spot size of the optical fiber.

[発明が解決j−ようヒする課題] しかし、従来のスボ・7トザイズ変摸千法では下記のよ
うな問題点がある。
[Problems to be Solved by the Invention] However, the conventional subo-7 size modification method has the following problems.

(1)直接結合では、接続損が大きい。(1) Direct coupling has a large connection loss.

(2)レンズを介して結合ずゐ方法では、素子(モジス
ール)全体の寸法が大きくなり構成が複雑となる。
(2) In the method of coupling through a lens, the dimensions of the entire element (module) become large and the configuration becomes complicated.

(3)光導波路のスポットサイズを光ファイバのスポッ
トサイズに近づけるには、屈折率分布や先導波路の寸法
等を変える必要があり、先導波路の構成が複雑となる。
(3) In order to bring the spot size of the optical waveguide closer to the spot size of the optical fiber, it is necessary to change the refractive index distribution, the dimensions of the leading waveguide, etc., and the configuration of the leading waveguide becomes complicated.

また5、光導波路0スボツI・サイズは非円のため、完
全11.:光フ)・イバのスポットサイズと一致さぜる
4゛:とはで゛きない。
5. Since the optical waveguide 0 slot I size is non-circular, it is completely 11. : It is not possible to match the spot size of the light beam with the spot size of the iba.

本発明の目的は、前記[、):従来抜術の欠点を解消し
、製作が容易で接続損失の少ないスポットサイズ変換光
ファイバの製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a spot size conversion optical fiber that is easy to manufacture and has low splice loss, which eliminates the drawbacks of the conventional extraction method.

[課題を解決するための手段1 本発明は、外付は法と機械研削法によって得られる楕円
コア型前波面保存光ファイバを所望の長さ用意し、その
長さ方向の一部分に熟を印加して端面に向かって徐々に
コア断面を円形にしてスポットサイズ変換光ファイバを
製造する方法である。
[Means for Solving the Problems 1] The present invention involves preparing a desired length of an elliptical core front wavefront preserving optical fiber obtained by an external method and a mechanical grinding method, and applying stress to a portion of the length. In this method, the spot size conversion optical fiber is manufactured by gradually making the core cross section circular toward the end face.

外付は法には、気相軸付は法(VAD法)と外付けCV
D法の両者が含まれる。
External attachment is method, vapor phase shaft attachment is method (VAD method) and external CV
Both methods of D are included.

[作用] もともと非円のスポットサイズを持つ楕円コア型偏波面
保存光ファイバは、熱を印加すると楕円コアが丸化する
。従って、その長さ方向の一部分に熱を印加すると、コ
アの一端は楕円で他端になるにつれ円形断面のコアとな
り、これによりスポットサイズの変換が損失無く行える
スポットサイズ変換光ファイバが得られる。
[Function] In an elliptical core type polarization maintaining optical fiber that originally has a non-circular spot size, the elliptical core becomes rounded when heat is applied. Therefore, when heat is applied to a portion of the length, one end of the core becomes elliptical and the other end becomes a core with a circular cross section, thereby providing a spot size conversion optical fiber in which the spot size can be converted without loss.

また、熱を印加することでコアに含まれるドーパント(
Gc)が揮散し、これによってコア径が小さくとも、ス
ポットサイズを大きくすることができる。
In addition, by applying heat, the dopant contained in the core (
Gc) is volatilized, thereby making it possible to increase the spot size even if the core diameter is small.

[実施例] 以下、本発明の実施例を図面を参照しながら説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図はスポットサイズ変換光ファイバの概略を示した
もので、非円のスポットサイズを持つ楕円コア型偏波面
保存光ファイバを採用し、一部分に熟を印加することで
楕円コアを丸化した構成になっている。
Figure 1 shows the outline of the spot size conversion optical fiber. It uses an elliptical core type polarization maintaining optical fiber with a non-circular spot size, and the elliptical core is rounded by applying a radius to a part of it. It is configured.

ここでは、波長1.55μm帯の薄膜光導波路器と、1
.55μm用SM光ファイバを接続するスポットサイズ
変換光ファイバを例にして説明する。
Here, a thin film optical waveguide with a wavelength of 1.55 μm and a
.. A description will be given by taking as an example a spot size conversion optical fiber that connects a 55 μm SM optical fiber.

薄膜光導波路はコアのサイズが約2×5μm。The core size of the thin film optical waveguide is approximately 2 x 5 μm.

比屈折率差0.3%のものであり、スポットサイズは約
3×6μmの楕円形状である。一方、SM(単一モード
)光ファイバのコアは真円で、コア径約10μm、スポ
ットサイズ約12μm、コアのクラッドに対する比屈折
率差は0.3%である。
The relative refractive index difference is 0.3%, and the spot size is an ellipse of approximately 3×6 μm. On the other hand, the core of an SM (single mode) optical fiber is a perfect circle, with a core diameter of about 10 μm, a spot size of about 12 μm, and a relative refractive index difference between the core and the cladding of 0.3%.

まず、波長1,55μmで単一モードとなり、光導波路
及び8M光フアイバとの整合がとれるよう、楕円コア型
面波面保存光ファイバの構造パラメータを設計し制作し
た。第2図にその断面図を示す。
First, we designed and produced the structural parameters of an elliptical core type surface wavefront preserving optical fiber so that it becomes a single mode at a wavelength of 1.55 μm and can be matched with an optical waveguide and an 8M optical fiber. FIG. 2 shows its cross-sectional view.

コア1は長軸径5μm、短軸径2μmのほぼ矩形に近い
楕円であり、楕円コア1のクラッド2に対する比屈折率
差は0.3%、スポットサイズは3.2×6.1μmで
あった。このような楕円コア型信波面保存光ファイバは
、外付は法と機械研削法により、例えば次のようにして
得られる。
The core 1 is an almost rectangular ellipse with a major axis diameter of 5 μm and a minor axis diameter of 2 μm, the relative refractive index difference of the elliptical core 1 with respect to the cladding 2 is 0.3%, and the spot size is 3.2 × 6.1 μm. Ta. Such an elliptical core type signal wavefront preserving optical fiber can be obtained by external method and mechanical grinding method, for example, as follows.

即ち、コアとなる石英ガラスロッドの両側面を軸方向に
沿って機械加工により除去し、得られた断面非円形の加
工ロッドの外周に、加工ロッドより軟化点の高い石英ガ
ラスを加工ロッドとほぼ相似の断面形状に外付けした後
、初期の断面形状が保てる範囲の線引張力で線引きする
方法である。
That is, both sides of the quartz glass rod serving as the core are removed by machining along the axial direction, and quartz glass, which has a softening point higher than that of the processed rod, is placed around the outer periphery of the resulting processed rod, which has a non-circular cross section. This is a method in which a wire is attached externally to a similar cross-sectional shape, and then a wire is drawn with a drawing tension within a range that maintains the initial cross-sectional shape.

具体的な製造方法の手順は、まずコアとなるガラスロッ
ドをV^0法又は外付けCVD法などにより作製し、次
に、このコアロッドの断面形状を研削加工により非円化
し、或いは多孔質のスートロッドの段階で、例えば高温
加熱したカッター等によりカットして、非円化する。
The specific steps of the manufacturing method are as follows: First, a glass rod serving as a core is manufactured using the V^0 method or external CVD method, and then the cross-sectional shape of this core rod is made non-circular by grinding, or a porous glass rod is manufactured. At the soot rod stage, the soot rod is cut into a non-circular shape by, for example, using a cutter heated to a high temperature.

次いで、上記されたガラスロッド(加工ロッド)の外周
に外付けCVD法またはVAD法により石英スートを外
付けし、焼結ガラス化する。この焼結ガラス化時に、加
工ロッドの断面形状は、粘性差に基づき非円化し、楕円
コアとなる。そして、得られたガラス母材は、必要に応
じて石英ガラスの両側面を研削して整形を施したり、延
伸したりする。
Next, quartz soot is externally attached to the outer periphery of the above-mentioned glass rod (processed rod) by an external CVD method or a VAD method, and sintered and vitrified. During this sintering and vitrification, the cross-sectional shape of the processed rod becomes non-circular due to the viscosity difference, and becomes an elliptical core. Then, the obtained glass base material is shaped by grinding both sides of the quartz glass, or stretched, if necessary.

なお、石英スート段階で両開面を除去して整形するよう
にしてもよい。
Incidentally, both open faces may be removed and shaped at the quartz soot stage.

その後、上記ガラス母材を光フアイバ母材として線引炉
で初期の非円の断面形状を保持できる範囲の線引張力で
線引し、ファイバ化する。
Thereafter, the glass base material is used as an optical fiber base material and is drawn in a drawing furnace with a drawing tension within a range that can maintain the initial non-circular cross-sectional shape to form a fiber.

また別の方法としては、酸化ゲルマニウムを含有するコ
ア用ガラス層及びこれを囲むふっ素を含むクラッド用ガ
ラス層から成るガラスロッドを形成し、このガラスロッ
ドの両開面を軸方向に沿って機械加工により除去して断
面非円形の加工ロッドを形成し、この加工ロッドの外周
部にクラッド用カラス層より粘化温度の高いガラス組成
のガラス微粒子を堆積させると共に、これを焼結1.て
ザボー1−ガラス層を形成した後、4二のザボートガラ
ス層を削り収ることにより断面円形状のガラス母材を作
製し、このガラスfE、Hの外周囲に上記クラヅド用ガ
ラス層と同一組成のガラス層を形成!7、得られたガラ
ス母材を光ファイバD°材として線引きするようにして
もよい。
Another method is to form a glass rod consisting of a core glass layer containing germanium oxide and a cladding glass layer containing fluorine surrounding it, and then machine both open faces of this glass rod along the axial direction. to form a processed rod with a non-circular cross section, glass fine particles having a glass composition having a higher viscosity temperature than the glass layer for cladding are deposited on the outer periphery of this processed rod, and this is sintered in step 1. After forming the glass layer No. 4 and 2, a glass base material having a circular cross section is prepared by cutting off the glass layer No. 42, and the above-mentioned glass layer for cladding is formed around the outer periphery of the glasses fE and H. Forming glass layers with the same composition! 7. The obtained glass preform may be drawn as an optical fiber D° material.

第2図に戻り、上記のように1−で得られノこ光フアイ
バ3を5. OcIm用意し、手分の2.5cmをバー
ナにより熱を印加し、徐々にコア1が矩形に近い楕円か
ら真円のコア11になるようにした。熱を加えた端面で
の断面図を第3図に示す。コア1jのコア径は3.6μ
mと小さいが、然を加えることでコア部に含まり、てい
るG(3が揮散するl: ?I>、スポットサイズは1
1.2μmさなった。
Returning to FIG. 2, the sawn optical fiber 3 obtained in 1- as described above is connected to 5. An OcIm was prepared, and heat was applied to a 2.5 cm portion of the core using a burner, so that the core 1 gradually changed from a nearly rectangular ellipse to a perfectly circular core 11. A cross-sectional view of the heated end face is shown in FIG. The core diameter of core 1j is 3.6μ
Although it is small as m, by adding natural gas, G (3 is vaporized l: ?I>, the spot size is 1
The thickness decreased by 1.2 μm.

かくして得られたスボットサイズ変換器としての光フア
イバ4を、上記の光導波路と3M光フアイバとの間に挿
入し、光導波路側はCO21/−ザにより、3M光ファ
イバ側は通常の融着接続機により溶着+、 プロ、その
結果、接続損失は0.11dBと低損失であつ)、′l
に のように、3M光フアイバと薄膜先導波路が低損失で接
続で・きるため、システム全体のパフォーマンスが向J
二する。また、量産性に富む楕円コア型面波面保存光フ
ァイバを用い、簡単な製法でスボッI・サイズ変換器が
得られるため、本デバイス自体は低コストで量産性に富
む。従ってレンズ径で、あるいは薄膜光導波路の構造パ
ラメータを変えて、SM光ファイバε結合する素子(モ
ジュール)に比べ大幅な低コスト化が期待できる7[発
明の効果] 以上述べたように、本発明によれば、楕円から円形のス
ボヅl−サイズへの変換が損失無く行えるスポットサイ
ズ変換光ファイバが容易に得られる。
The optical fiber 4 thus obtained as a sbot size converter is inserted between the above optical waveguide and the 3M optical fiber, and the optical waveguide side is connected by CO21/-, and the 3M optical fiber side is connected by ordinary fusion splicing. As a result, the connection loss is as low as 0.11 dB),'l
As shown in Figure 2, 3M optical fiber and thin film guided waveguide can be connected with low loss, improving overall system performance.
Two. In addition, since the Subop I/Size converter can be obtained by a simple manufacturing method using an elliptical core type surface wavefront preserving optical fiber that is highly mass-producible, the device itself is low cost and highly mass-producible. Therefore, by changing the lens diameter or the structural parameters of the thin film optical waveguide, a significant cost reduction can be expected compared to an element (module) that couples SM optical fiber ε.7 [Effects of the Invention] As described above, the present invention According to the method, it is possible to easily obtain a spot size conversion optical fiber that can perform the conversion from an ellipse to a circular size without loss.

そして、このスポットサイズ変換光ファイバによれば、
i) M光フアイバと薄膜光導波路が低損失で接続でき
るため、システム全体のパフォーマンスが向J二する。
And according to this spot size conversion optical fiber,
i) Since the M optical fiber and the thin film optical waveguide can be connected with low loss, the performance of the entire system is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスポットサイズ変換光ファイバの概略図、第2
図はスポットサイズ変換光ファイバに用いる楕円コア型
偏波面保存光ファイバの断面図、第3図はそのスポット
サイズ変換光ファイバの熱を印加し円形コア部した部分
を示す断面図である。 図中、1は楕円コア型面波面保存光ファイバのコア、2
はクララF、3は楕円コア梨渇波面保存光ファイバ、4
はスポットサイズ変換光ファイバ、11は円形コア部を
示すや
Figure 1 is a schematic diagram of a spot size conversion optical fiber, Figure 2 is a schematic diagram of a spot size conversion optical fiber.
The figure is a sectional view of an elliptical core type polarization maintaining optical fiber used as a spot size conversion optical fiber, and FIG. 3 is a sectional view showing a portion of the spot size conversion optical fiber to which heat is applied and a circular core is formed. In the figure, 1 is the core of an elliptical core type surface wavefront preserving optical fiber, 2
is Clara F, 3 is elliptical core pear wavefront preserving optical fiber, 4
11 indicates a spot size conversion optical fiber, and 11 indicates a circular core.

Claims (1)

【特許請求の範囲】[Claims] 1、外付け法と機械研削法によって得られる楕円コア型
偏波面保存光ファイバを所望の長さ用意し、その長さ方
向の一部分に熱を印加して端面に向かって徐々にコア断
面を円形にすることを特徴とするスポットサイズ変換光
ファイバの製造方法。
1. Prepare a desired length of elliptical core polarization-maintaining optical fiber obtained by external attachment method and mechanical grinding method, and apply heat to a portion of the length direction to gradually make the core cross section circular toward the end face. A method of manufacturing a spot size conversion optical fiber, characterized in that:
JP1199358A 1989-08-02 1989-08-02 Manufacture of spot size converting optical fiber Pending JPH0364707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1199358A JPH0364707A (en) 1989-08-02 1989-08-02 Manufacture of spot size converting optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1199358A JPH0364707A (en) 1989-08-02 1989-08-02 Manufacture of spot size converting optical fiber

Publications (1)

Publication Number Publication Date
JPH0364707A true JPH0364707A (en) 1991-03-20

Family

ID=16406436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1199358A Pending JPH0364707A (en) 1989-08-02 1989-08-02 Manufacture of spot size converting optical fiber

Country Status (1)

Country Link
JP (1) JPH0364707A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5615295A (en) * 1994-09-14 1997-03-25 The Furukawa Electric Co., Ltd. Optical fiber and process of producing the same
JP2007079225A (en) * 2005-09-15 2007-03-29 Nippon Telegr & Teleph Corp <Ntt> Connecting method of wavelength conversion element and connecting member
WO2009066571A1 (en) * 2007-11-19 2009-05-28 Miyachi Corporation Laser light application device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5615295A (en) * 1994-09-14 1997-03-25 The Furukawa Electric Co., Ltd. Optical fiber and process of producing the same
JP2007079225A (en) * 2005-09-15 2007-03-29 Nippon Telegr & Teleph Corp <Ntt> Connecting method of wavelength conversion element and connecting member
WO2009066571A1 (en) * 2007-11-19 2009-05-28 Miyachi Corporation Laser light application device
US8378255B2 (en) 2007-11-19 2013-02-19 Miyachi Corporation Laser beam irradiation apparatus
JP5391077B2 (en) * 2007-11-19 2014-01-15 ミヤチテクノス株式会社 Laser beam irradiation device
TWI450785B (en) * 2007-11-19 2014-09-01

Similar Documents

Publication Publication Date Title
CA1277124C (en) Method of making low loss fiber optic coupler
US4490163A (en) Method of manufacturing a fiber-optical coupling element
JP2903185B2 (en) Achromatic fiber optic coupler and method of manufacturing the same
US5295210A (en) Optical waveguide fiber achromatic coupler
JP3057331B2 (en) Fiber optic coupler and method of manufacturing the same
GB2221903A (en) Method of producing elliptic core type polarization-maintaining optical fibre
JPH03182704A (en) Passive optical part and manufacture thereof
GB2189900A (en) Optical fibre devices
EP0436112B1 (en) Method of making 1XN fiber optic coupler
JPH0364707A (en) Manufacture of spot size converting optical fiber
JP2616087B2 (en) Manufacturing method of elliptical core type polarization maintaining optical fiber
JPH01279211A (en) Polarized wave maintaining optical fiber
JP2677640B2 (en) Optical fiber coupler manufacturing method
JPH0439605A (en) Elliptic core type polarization plane maintaining optical fiber and optical fiber polarizer
JPH04118607A (en) Mutual connecting method for single-mode optical fiber
JPH04317432A (en) Production of elliptic-core type polarization plane maintaining optical fiber
JP2875818B2 (en) Fiberscope end structure and manufacturing method thereof
JPH02157133A (en) Production of elliptic core type polarization plane maintaining optical fiber
JPH0662310B2 (en) Method of manufacturing elliptical core type polarization-maintaining optical fiber
JPH0364458B2 (en)
JPH0378713A (en) Fusion stretched type polarization plane maintaining optical fiber coupler
JPS60260442A (en) Preparation of fixed polarisation fiber
JPS6241733A (en) Production of optical waveguide path rod
JPS62262005A (en) Light focusing type rod lens
JPS60215542A (en) Production of fiber for constantly polarized waves