JPH0548445B2 - - Google Patents

Info

Publication number
JPH0548445B2
JPH0548445B2 JP58037382A JP3738283A JPH0548445B2 JP H0548445 B2 JPH0548445 B2 JP H0548445B2 JP 58037382 A JP58037382 A JP 58037382A JP 3738283 A JP3738283 A JP 3738283A JP H0548445 B2 JPH0548445 B2 JP H0548445B2
Authority
JP
Japan
Prior art keywords
glass tube
optical fiber
optical
hollow glass
optical fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58037382A
Other languages
Japanese (ja)
Other versions
JPS59164522A (en
Inventor
Katsuyuki Imoto
Akihiro Hori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3738283A priority Critical patent/JPS59164522A/en
Publication of JPS59164522A publication Critical patent/JPS59164522A/en
Publication of JPH0548445B2 publication Critical patent/JPH0548445B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2856Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers formed or shaped by thermal heating means, e.g. splitting, branching and/or combining elements

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光フアイバを伝搬する光ビームを複数
本の光フアイバに分配する光分配回路の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing an optical distribution circuit that distributes a light beam propagating through an optical fiber to a plurality of optical fibers.

[従来の技術] 光フアイバ伝送技術の急速な進歩に伴い、コン
ピユータ−コンピユータ間やコンピユータ端末間
のデータ伝送に光フアイバを使用する光データリ
ンクの研究開発が盛んに行われている。この光デ
ータリンクを構成する上で、複数本の入力用光フ
アイバからの光信号をミキシングして複数本の出
力用光フアイバの低損失で、かつ均等に分配し得
る光分配回路は必須のデバイスである。
[Background Art] With the rapid progress of optical fiber transmission technology, research and development of optical data links that use optical fibers for data transmission between computers or between computer terminals is being actively conducted. In configuring this optical data link, an optical distribution circuit that can mix optical signals from multiple input optical fibers and distribute them evenly and with low loss to multiple output optical fibers is an essential device. It is.

従来、この種の光分配回路として、第1図に示
すように、多数本の光フアイバを1個所でまと
め、加熱しながらねじりを加えて融着し、その中
央部にテーパ状の領域5を形成することによつて
分配するものがある。このような構成にすること
により、たとえば光フアイバ1からの伝搬光ビー
ムを光フアイバ6,7,8および9に分配するよ
うになつている。しかしながら、テーパ状の細い
領域5は加熱溶融によつてその外径が1本の光フ
アイバの外径とほぼ等しい径にまで延伸されるの
で、中央部が折れ易くなり、信頼に欠ける。ま
た、このような細径延伸技術は熟練を要するた
め、その製造歩留りは悪く、量産には向かない方
法であつた。またテーパ部の表面状態によつて挿
入損失が変動するという問題点もあつた。そして
最大の問題点が、中央部の断面外径は加熱延伸前
は円ではなかつたものを加熱しながらねじりを加
えて融着、延伸してその断面外径を延するため
に、その断面内での各々の光フアイバの断面形状
はそのしわよせがきてそれぞれ不均一な形状にな
ることである。そのため、各々の光フアイバ間の
光結合も不均一となり、分配バラツキが大きくな
る点であつた。
Conventionally, as shown in FIG. 1, this type of optical distribution circuit has been constructed by combining a large number of optical fibers in one place, twisting and fusing them while heating, and forming a tapered region 5 in the center. There are things that are distributed by forming. With this configuration, for example, a propagating light beam from the optical fiber 1 is distributed to the optical fibers 6, 7, 8, and 9. However, since the tapered narrow region 5 is stretched by heating and melting until its outer diameter is approximately equal to the outer diameter of a single optical fiber, the central portion tends to break, resulting in a lack of reliability. Further, since such a narrow diameter stretching technique requires skill, the manufacturing yield is poor, and the method is not suitable for mass production. Another problem was that the insertion loss varied depending on the surface condition of the tapered portion. The biggest problem is that the cross-sectional outside diameter of the center part was not circular before heating and stretching, but in order to fuse and stretch it while heating, the cross-sectional outside diameter of the central part is extended. The cross-sectional shape of each optical fiber becomes uneven due to the wrinkles. Therefore, the optical coupling between the respective optical fibers also becomes non-uniform, resulting in large distribution variations.

第2図は1本の光フアイバを伝搬する光ビーム
を複数本の光フアイバに分配する従来の光分配回
路の製造法の工程を示す斜視図である。これは、
複数本の光フアイバ10の一方の端11を一つに
まとめ、ガラス管12の中を貫通させる工程と、
ガラス管の外側から加熱源14で加熱し、一体と
なつた溶融光フアイバを形成しながら、上記複数
本の光フアイバに一方の端11から引張り力13
を加え、上記溶融光フアイバをテーパ状15に形
成する工程と、1本の光フアイバ径と等しい所で
上記テーパ部を切断する工程と、その切断面に他
の1本の光フアイバ16を融着する工程からなる
光分配回路の製造法である。この方法がテーパ部
がガラス管で覆われているため、第1図の場合の
ような折れ易い、テーパ部の表面状態によつて挿
入損失が変動する。製造歩留りが悪いといつた問
題点は軽減される。しかし、ガラス管内が複数本
の光フアイバで中実されることはなく、必ず隙間
ができるので、このような状態でテーパ状に延伸
した場合には、他の1本の光フアイバを融着する
切断面の各々の光フアイバの断面形状も不均一に
なる。その不均一の度合いは第1図の場合よりも
少ないがやはり問題になる。またこの方法ではテ
ーパ状の切断面と他の1本の光フアイバとの融着
の際に精密な光学軸調整が必要であり、融着端面
の位置ずれによる分配バラツキを生じ易いといつ
た問題がある。
FIG. 2 is a perspective view showing the steps of a conventional method for manufacturing an optical distribution circuit that distributes a light beam propagating through one optical fiber to a plurality of optical fibers. this is,
A step of combining one end 11 of the plurality of optical fibers 10 into one and passing it through the glass tube 12;
While heating the glass tube from the outside with a heat source 14 to form an integrated fused optical fiber, a tensile force 13 is applied to the plurality of optical fibers from one end 11.
a step of forming the fused optical fiber into a tapered shape 15, a step of cutting the tapered portion at a location equal to the diameter of one optical fiber, and fusion of another optical fiber 16 on the cut surface. This is a method of manufacturing an optical distribution circuit, which consists of a step of attaching the optical distribution circuit. In this method, since the tapered part is covered with a glass tube, the insertion loss varies depending on the surface condition of the tapered part, which is easily broken as in the case of FIG. The problem of poor manufacturing yield is alleviated. However, the inside of the glass tube is never filled with multiple optical fibers, and there is always a gap, so if the glass tube is stretched into a tapered shape in this condition, another optical fiber must be fused. The cross-sectional shape of each optical fiber at the cut surface also becomes non-uniform. Although the degree of non-uniformity is less than in the case of FIG. 1, it is still a problem. Another problem with this method is that precise optical axis adjustment is required when fusing the tapered cut surface with another optical fiber, which tends to cause distribution variations due to misalignment of the fused end face. There is.

本発明は、前記問題点を解決すべく創案された
ものであり、その目的は、挿入損失分配バラツキ
が小さい光分配回路を容易に製造することができ
る量産性に適した製造方法を提供することにあ
る。
The present invention was devised to solve the above-mentioned problems, and its purpose is to provide a manufacturing method suitable for mass production that can easily manufacture an optical distribution circuit with small insertion loss distribution variation. It is in.

[課題を解決するための手段] 上記目的を達成するために、本発明は、中空ガ
ラス管内に複数本の光フアイバを束にして挿入
し、その中空ガラス管の外周を加熱源で加熱しな
がら中空ガラス管の両端側(あるいは片端側の
み)から中空ガラス管の軸方向に引張り力を加え
て中空ガラス管をテーパ状に延伸し、中空ガラス
管と光フアイバ束とを融着することにより、入力
側および出力側光フアイバがn本(n>2)から
なる光分配回路を製造する方法において、上記中
空ガラス管内に挿入する光フアイバを予め中間部
で切断し、その端面処理後またはそのままの状態
で中空ガラス管の両端から上記切断した光フアイ
バ束を挿入して切断面同志を突き合わせ、ガラス
管と光フアイバ束、光フアイバと光フアイバの隙
間に、乾燥、加熱処理によりガラス化するガラス
原料液を充填してテーパ状に延伸するようにし
た。
[Means for Solving the Problems] In order to achieve the above object, the present invention involves inserting a plurality of optical fibers into a bundle into a hollow glass tube, and heating the outer periphery of the hollow glass tube with a heating source. By applying a tensile force in the axial direction of the hollow glass tube from both ends (or only one end) of the hollow glass tube, stretching the hollow glass tube into a tapered shape, and fusing the hollow glass tube and the optical fiber bundle, In a method for manufacturing an optical distribution circuit consisting of n optical fibers on the input side and output side (n>2), the optical fiber to be inserted into the hollow glass tube is cut in advance at the middle part, and the end face is treated or left as is. In this state, the cut optical fiber bundle is inserted from both ends of the hollow glass tube, the cut surfaces are butted together, and the glass raw material to be vitrified by drying and heat treatment is inserted into the gaps between the glass tube and the optical fiber bundle, and between the optical fibers. It was filled with liquid and stretched into a tapered shape.

[実施例] 次に、本発明の実施例について第3図乃至第8
図を用いて説明する。
[Example] Next, FIGS. 3 to 8 show examples of the present invention.
This will be explained using figures.

第3図a,bは本発明の光分配回路の製造方法
を説明するための概略図である。17はガラス旋
盤で、中空ガラス管18をチヤツクするチヤツク
部25,25′と、中空ガラス管18を矢印22
方法(あるいはその反対方向)に回転させる機構
と、主軸台21,21′を矢印23,23′方向
(あるいはそれぞれの反対方向)に移動させる機
構を有している。まずaに示すように、複数本の
光フアイバ19を中空ガラス管18内に挿入す
る。その場合、光フアイバ19は予めその中間部
で切断したものを使用し、その端面処理後または
そのままの状態で図6に示すように中空ガラス管
18の両端から挿入し、中空ガラス管18の中間
部29にて切断面同志を突き合わせる。さらに第
4図及び第5図に示すように、中空ガラス管18
内には乾燥、加熱処理によりガラス化するガラス
原料液(ガラス27)を充填しておく。その中空
ガラス管18をガラス旋盤17のチヤツク部2
5,25′にチヤツクし、矢印22方向へ回転さ
せる。中空ガラス管18の中央部付近を加熱源2
0(都市ガス,プロパンガス、あるいは酸水素ガ
スを用いたバーナまたは抵抗加熱ヒータ、高周波
加熱ヒータ、さらにはCO2レーザなどでもよい。)
で加熱する。加熱方法は、中空ガラス管の外周か
ら一方向、または複数の方向、さらには同心状に
加熱する。この実施例の場合には1本バーナを用
いて加熱してある。なお、中空ガラス管の外周か
ら一様に加熱できる場合には中空ガラス管は矢印
22方向へ回転させなくもよい。中空ガラス管が
軟化し始めたら、ガラス旋盤の主軸台21,2
1′の両方(あるいはどちらか一方のみ)を矢印
23,23′方向(あるいは、23か23′方向の
いずれかのみ)へ延伸し中空ガラス管18と光フ
アイバ束19とを融着させ、テーパ部24を形成
させる(第3図b参照)。この過程で、上記ガラ
ス原料液が中空ガラス管18の光フアイバ束1
9、光フアイバと光フアイバの隙間を埋めた状態
でガラス化する。ここで延伸はテーパ部24の中
央付近の延伸された光フアイバ束の外径が1本の
光フアイバの直径とほぼ同程度になるまで続け
る。この作業はたとえばレーザを用いた光学的非
接触型寸法測定器で上記ガラス管の内径あるいは
外径を観測しながら延伸することによつて精度良
く行える。また上記測定器の出力信号を生後回路
を通して主軸台の移動機構にフイードバツクすれ
ば自動的に再現性よく作れるようになる。加熱源
20は所望の直径にまで延伸するまで加熱してい
てもよいが、延伸前あるいはその途中で断にして
もよい。これはガラス管18がすでに軟化状態に
なつていれば十分に延伸することができるという
事実に基づいた結果である。
FIGS. 3a and 3b are schematic diagrams for explaining the method of manufacturing the optical distribution circuit of the present invention. Reference numeral 17 denotes a glass lathe, which has chuck parts 25 and 25' for chucking the hollow glass tube 18, and a chuck part 25, 25' for chucking the hollow glass tube 18, and
(or in the opposite direction), and a mechanism to move the headstocks 21, 21' in the directions of arrows 23, 23' (or in the opposite directions). First, as shown in a, a plurality of optical fibers 19 are inserted into the hollow glass tube 18. In that case, the optical fiber 19 is cut in advance at its midpoint, and is inserted from both ends of the hollow glass tube 18 after its end face treatment or as is, as shown in FIG. At section 29, the cut surfaces are butted against each other. Furthermore, as shown in FIGS. 4 and 5, the hollow glass tube 18
The inside is filled with a glass raw material liquid (glass 27) which is to be vitrified by drying and heat treatment. The hollow glass tube 18 is turned into the chuck part 2 of the glass lathe 17.
5, 25' and rotate in the direction of arrow 22. The heating source 2 is placed near the center of the hollow glass tube 18.
0 (A burner using city gas, propane gas, or oxyhydrogen gas, a resistance heater, a high-frequency heater, or even a CO 2 laser may be used.)
Heat it up. The heating method is to heat the hollow glass tube in one direction, in multiple directions, or even concentrically from the outer periphery of the hollow glass tube. In this example, one burner is used for heating. Note that if the hollow glass tube can be heated uniformly from the outer periphery, the hollow glass tube does not need to be rotated in the direction of arrow 22. When the hollow glass tube starts to soften, turn the headstock 21, 2 of the glass lathe
1' (or only one of them) is stretched in the direction of arrows 23, 23' (or only in the direction of 23 or 23'), the hollow glass tube 18 and the optical fiber bundle 19 are fused, and the taper is formed. 24 (see FIG. 3b). In this process, the glass raw material liquid is transferred to the optical fiber bundle 1 of the hollow glass tube 18.
9. Vitrify with the gaps between the optical fibers filled. Here, the stretching is continued until the outer diameter of the stretched optical fiber bundle near the center of the tapered portion 24 becomes approximately the same as the diameter of one optical fiber. This work can be carried out with high precision by, for example, stretching the glass tube while observing its inner diameter or outer diameter with an optical non-contact dimension measuring device using a laser. Furthermore, if the output signal of the measuring device is fed back to the headstock movement mechanism through the post-production circuit, it becomes possible to automatically generate the signal with good reproducibility. The heating source 20 may heat the material until it is stretched to a desired diameter, or may be cut off before or during the stretching. This is based on the fact that the glass tube 18 can be sufficiently stretched if it is already in a softened state.

第4図は中空ガラス管18内に7本の光フアイ
バ19−1〜19−7を挿入した場合の延伸され
る前における中空ガラス管の中央部付近の断面図
を示したものである。この場合光フアイバは中空
ガラス管内に対称に配置されている。また、中空
ガラス管18内には乾燥、加熱処理によりガラス
化するガラス原料液を充填し、上記隙間をガラス
27で埋めている。このような構成で第3図の方
法により中空ガラス管を延伸して外径を真円にし
た場合、相似の断面構造となり、光の結合、分配
が均一に行われるようになる。これに対し、上記
ガラス原料液を中空ガラス管18内に充填せずに
延伸処理を行なつた場合、隙間の部分のしわよせ
が若干光フアイバにおよぼされる。ここで上記隙
間に充填するガラス原料としては、金属アルコオ
キサイド(たとえば、Si(OC2H54,Si(OCH34
B(OC2H53、など)と水の混合液、有機シラン
系のアルコール溶液(商品名シリカフイルム)、
水ガラス(たとえばK2O・nSiO2・xH2O)、コ
ロイダルシリカ、などを用いることができ、光フ
アイバのクラツドの屈折率に応じて種々使いわけ
ることができる。
FIG. 4 shows a cross-sectional view of the vicinity of the center of the hollow glass tube 18 before it is stretched when seven optical fibers 19-1 to 19-7 are inserted into the hollow glass tube. In this case, the optical fibers are arranged symmetrically within a hollow glass tube. Further, the hollow glass tube 18 is filled with a glass raw material liquid that is vitrified by drying and heat treatment, and the gap is filled with glass 27. When a hollow glass tube with such a configuration is stretched to have a perfect circular outer diameter by the method shown in FIG. 3, the cross-sectional structures will be similar, and light will be evenly coupled and distributed. On the other hand, if the drawing process is performed without filling the glass raw material liquid into the hollow glass tube 18, the optical fiber will be slightly wrinkled in the gap. Here, as the glass raw material to be filled in the above-mentioned gap, metal alkoxides (for example, Si(OC 2 H 5 ) 4 , Si(OCH 3 ) 4 ,
B (OC 2 H 5 ) 3 , etc.) and water, an organic silane alcohol solution (trade name: Silica Film),
Water glass (for example, K 2 O.nSiO 2.xH 2 O), colloidal silica, etc. can be used, and various materials can be used depending on the refractive index of the cladding of the optical fiber.

第5図は中空ガラス管18内に光フアイバ19
を10本挿入した場合の延伸する前における中空ガ
ラス管の中央部付近の断面図を示したものであ
る。この場合光フアイバは中空ガラス管18内に
非対称に配置されており、隙間はガラス27で完
全に埋め込まれている。このようにすれば、光フ
アイバが対称に配置されていない場合でも隙間の
しわよせが光フアイバにおよぼされず、延伸によ
り各々の光フアイバの断面形状を相対的に減少さ
せ、均一に保つことができる。従つて、光の分配
バラツキが生じない。
FIG. 5 shows an optical fiber 19 inside a hollow glass tube 18.
This figure shows a cross-sectional view of the vicinity of the center of a hollow glass tube before stretching when 10 tubes are inserted. In this case, the optical fibers are arranged asymmetrically in the hollow glass tube 18, and the gaps are completely filled with glass 27. In this way, even if the optical fibers are not arranged symmetrically, the wrinkling of the gap will not affect the optical fibers, and the cross-sectional shape of each optical fiber can be relatively reduced and kept uniform by stretching. I can do it. Therefore, variations in light distribution do not occur.

第7図は、第6図に用いる光フアイバの端面部
の縦断面を示したものである。この実施例の光フ
アイバはコア部34、中間層部33、クラツド部
32、ジヤケツト部31からなる構造のものであ
る。aのように端面近傍のジヤケツト部31のみ
を剥離した光フアイバ、bのようにコア部34の
みをむきだしにした光フアイバ、さらには先端部
を丸めた光フアイバ、などを用いることができ
る。また、光フアイバの構造としては、グレーデ
ツド型、ステツプ型のいずれの屈折率分布のもの
でもよい。
FIG. 7 shows a longitudinal section of the end face portion of the optical fiber used in FIG. 6. The optical fiber of this embodiment has a structure consisting of a core section 34, an intermediate layer section 33, a clad section 32, and a jacket section 31. An optical fiber with only the jacket portion 31 in the vicinity of the end face peeled off as shown in a, an optical fiber with only the core portion 34 exposed as shown in b, and an optical fiber with a rounded tip can be used. Further, the structure of the optical fiber may be either a graded type or a step type with refractive index distribution.

第8図は本発明に適用できる中空ガラス管の構
造を示したものである。aは同一径の中空ガラス
管、bは中空ガラス管の内壁に光フアイバのクラ
ツドの屈折率と同等かそれよりも低い屈折率のガ
ラス膜45を堆積した中空ガラス管である。中空
ガラス管の材質としては、光フアイバに石英系の
ものを用いた場合には、石英ガラス、バイコール
ガラス、屈折率制御用ドーパントを含んだ石英ガ
ラスなどを用いる。多成分系フアイバを用いる場
合にはパイレツクスなどの低軟化点ガラスを用い
る。ガラス膜45は、たとえばCVD法で堆積さ
せるが、その軟化点をクラツド部のそれよりも小
さくすることが望ましい。なお中空ガラス管の構
造は第8図のものに限定されない。たとえば、中
空ガラス管の両端部は光フアイバを挿入し易くす
るためにテーパ状に拡径されていてもよい。また
融着時の気泡残留を防ぐために中空ガラス管のど
こかに孔をあけておいてもよい。
FIG. 8 shows the structure of a hollow glass tube applicable to the present invention. A is a hollow glass tube of the same diameter, and b is a hollow glass tube in which a glass film 45 having a refractive index equal to or lower than the refractive index of the optical fiber cladding is deposited on the inner wall of the hollow glass tube. As the material of the hollow glass tube, when a quartz-based optical fiber is used, silica glass, Vycor glass, quartz glass containing a refractive index control dopant, etc. are used. When using a multi-component fiber, a low softening point glass such as Pyrex is used. The glass film 45 is deposited, for example, by CVD, and it is desirable that its softening point be lower than that of the cladding. Note that the structure of the hollow glass tube is not limited to that shown in FIG. For example, both ends of the hollow glass tube may be tapered to facilitate insertion of the optical fiber. Further, a hole may be made somewhere in the hollow glass tube in order to prevent air bubbles from remaining during fusion.

[発明の効果] 以上の説明から明らかなように本発明によれ
ば、次のような優れた効果が発揮できる。
[Effects of the Invention] As is clear from the above description, according to the present invention, the following excellent effects can be exhibited.

(1) 光の結合、分配が行われるテーパ状が十分に
厚いガラスで覆われているので、機械的強度が
高く、また光学的特性も安定となる。さらにテ
ーパ部の外径は数百μm以上にできるので製造
し易く、製造歩留りもあがる。
(1) The tapered shape where light is coupled and distributed is covered with sufficiently thick glass, so it has high mechanical strength and stable optical properties. Furthermore, since the outer diameter of the tapered portion can be several hundred μm or more, it is easy to manufacture and the manufacturing yield is increased.

(2) テーパ部の各々の光フアイバの断面形状が、
延伸前とほぼ相似形の円形に保てるので、光の
分配バラツキを小さく抑えることができる。
(2) The cross-sectional shape of each optical fiber in the tapered part is
Since the circular shape can be maintained almost similar to that before stretching, variations in light distribution can be suppressed to a small level.

(3) 製造方法が簡単で、かつ光学軸調整などを不
要とし、低挿入損失、低分配バラツキの光分配
回路を容易に得ることができる。
(3) The manufacturing method is simple, optical axis adjustment, etc. are not required, and an optical distribution circuit with low insertion loss and low distribution variation can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光分配回路の概略図、第2図は
従来の光分配回路の製造方法の工程を示す斜視
図、第3図a,bは本発明の光分配回路の製造方
法を説明するための概略図、第4図,第5図は中
空ガラス管内に光フアイバ束を挿入した場合の中
空ガラス管の中央部付近の断面図、第6図は本発
明の光分配回路用中空ガラス管と光フアイバ束の
構成例、第7図は本発明に用いる光フアイバの端
面付近の長手方向に沿う断面図、第8図は本発明
に用いる中空ガラス管の長手方向に沿う断面図で
ある。 図中、1〜4,6〜9,10,11,16,1
9,19−1〜19−7,28,28′,31は
光フアイバ、5は融着、テーパ部、12,18は
中空ガラス管、14,20は回転方向、21,2
1′は主軸台、25,25′はチヤツク部、13,
23,23′は引張り方向、24,30はテーパ
部、27はガラス化原料(ガラス)である。
FIG. 1 is a schematic diagram of a conventional optical distribution circuit, FIG. 2 is a perspective view showing the steps of a conventional method of manufacturing an optical distribution circuit, and FIGS. 3a and 3b illustrate a method of manufacturing an optical distribution circuit of the present invention. 4 and 5 are cross-sectional views of the vicinity of the center of the hollow glass tube when an optical fiber bundle is inserted into the hollow glass tube, and FIG. 6 is a schematic diagram of the hollow glass for optical distribution circuit of the present invention. An example of the structure of a tube and an optical fiber bundle, FIG. 7 is a sectional view along the longitudinal direction of the vicinity of the end face of the optical fiber used in the present invention, and FIG. 8 is a sectional view along the longitudinal direction of the hollow glass tube used in the present invention. . In the figure, 1-4, 6-9, 10, 11, 16, 1
9, 19-1 to 19-7, 28, 28', 31 are optical fibers, 5 is a fused tapered part, 12, 18 is a hollow glass tube, 14, 20 is a rotation direction, 21, 2
1' is the headstock, 25, 25' is the chuck part, 13,
23 and 23' are the tensile directions, 24 and 30 are tapered parts, and 27 is a vitrification raw material (glass).

Claims (1)

【特許請求の範囲】[Claims] 1 中空ガラス管内にn本(n>2)の光フアイ
バを束にして挿入し、上記ガラス管の外周を加熱
源で加熱しながら上記ガラス管の端部から上記ガ
ラス管の軸方向に引張りを加えて光フアイバ束と
上記ガラス管を融着しつつ延伸する光分配回路の
製造方法において、上記中空ガラス管内に挿入す
る光フアイバを予め中間部で切断し、その端面処
理後またはそのままの状態で中空ガラス管の両端
から上記切断した光フアイバ束を挿入して切断面
同志を突き合わせ、ガラス管と光フアイバ束、光
フアイバと光フアイバの隙間に、乾燥、加熱処理
によりガラス化するガラス原料液を充填してテー
パ状に延伸することを特徴とする光分配回路の製
造方法。
1 Insert a bundle of n optical fibers (n>2) into a hollow glass tube, and while heating the outer periphery of the glass tube with a heat source, pull it in the axial direction of the glass tube from the end of the glass tube. In addition, in the method for manufacturing an optical distribution circuit in which an optical fiber bundle and the glass tube are fused and stretched, the optical fibers to be inserted into the hollow glass tube are cut in advance at the middle part, and the end face is treated or left as is. The cut optical fiber bundle is inserted from both ends of the hollow glass tube, the cut surfaces are butted together, and a glass raw material liquid to be vitrified by drying and heat treatment is poured into the gaps between the glass tube and the optical fiber bundle, and between the optical fibers. A method for manufacturing an optical distribution circuit, characterized by filling it and stretching it into a tapered shape.
JP3738283A 1983-03-09 1983-03-09 Manufacture of optical distributing circuit Granted JPS59164522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3738283A JPS59164522A (en) 1983-03-09 1983-03-09 Manufacture of optical distributing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3738283A JPS59164522A (en) 1983-03-09 1983-03-09 Manufacture of optical distributing circuit

Publications (2)

Publication Number Publication Date
JPS59164522A JPS59164522A (en) 1984-09-17
JPH0548445B2 true JPH0548445B2 (en) 1993-07-21

Family

ID=12495971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3738283A Granted JPS59164522A (en) 1983-03-09 1983-03-09 Manufacture of optical distributing circuit

Country Status (1)

Country Link
JP (1) JPS59164522A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721567B2 (en) * 1984-10-31 1995-03-08 株式会社日立製作所 Optical distribution circuit and manufacturing method thereof
JPS61226711A (en) * 1985-04-01 1986-10-08 Hitachi Ltd Manufacture of optical distributing circuit
JPH0721569B2 (en) * 1985-06-19 1995-03-08 株式会社日立製作所 Optical fiber type distribution circuit and manufacturing method thereof
JPH0731291B2 (en) * 1985-06-19 1995-04-10 株式会社日立製作所 Method for manufacturing optical fiber type distribution circuit
JPS6299705A (en) * 1985-10-28 1987-05-09 Hitachi Ltd Optical fiber type distributing circuit and its manufacture
US6658896B2 (en) * 2002-01-18 2003-12-09 Sunoptic Technologies Llc Method of making a fiberoptic light guide
JP5671706B2 (en) * 2012-05-17 2015-02-18 パナソニックIpマネジメント株式会社 Fiber laser oscillator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186730A (en) * 1981-05-13 1982-11-17 Nippon Telegr & Teleph Corp <Ntt> Manufacture of optical distributor
JPS5918921A (en) * 1982-07-23 1984-01-31 Nippon Telegr & Teleph Corp <Ntt> Fiber type coupler and its manufacture
JPS59142521A (en) * 1983-02-03 1984-08-15 Sumitomo Electric Ind Ltd Optical branch element and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186730A (en) * 1981-05-13 1982-11-17 Nippon Telegr & Teleph Corp <Ntt> Manufacture of optical distributor
JPS5918921A (en) * 1982-07-23 1984-01-31 Nippon Telegr & Teleph Corp <Ntt> Fiber type coupler and its manufacture
JPS59142521A (en) * 1983-02-03 1984-08-15 Sumitomo Electric Ind Ltd Optical branch element and its manufacture

Also Published As

Publication number Publication date
JPS59164522A (en) 1984-09-17

Similar Documents

Publication Publication Date Title
US4799949A (en) Method of making low loss fiber optic coupler
US5891210A (en) Method of connecting optical fibers
JPH0283505A (en) Optical fiber-coupler and manufacture thereof
JPH06235841A (en) Manufacture of 1xn achromatic coupler, fiber optic coupler and 1xn fiber optic coupler
US4602926A (en) Optical fibre fabrication
JPH0548445B2 (en)
CN105866880A (en) Preparation method of polarization-maintaining optical fibers
JPH06194540A (en) Fiber optic coupler and formation thereof
JPS627130B2 (en)
JPH0574804B2 (en)
JPS5992940A (en) Production of optical fiber having pore
JPS6024505A (en) Optical star coupler and its production
JPS61215225A (en) Production of optical fiber preserving plane of polarization
JPS6150887B2 (en)
JPH0130768B2 (en)
JPS60242406A (en) Single polarization optical fiber
JPH0210093B2 (en)
JPS6011244A (en) Manufacture of optical fiber
JPS596265B2 (en) Optical fiber manufacturing method
JPS593029A (en) Manufacture of preform for optical fiber retaining plane of polarization
JPH1039148A (en) Production of ribbon-like multicore fiber
JPH0572563B2 (en)
JPS6070402A (en) Production of optical fiber for laser guide
JPH0378713A (en) Fusion stretched type polarization plane maintaining optical fiber coupler
JPS6288B2 (en)