JPS5918921A - Fiber type coupler and its manufacture - Google Patents

Fiber type coupler and its manufacture

Info

Publication number
JPS5918921A
JPS5918921A JP12842582A JP12842582A JPS5918921A JP S5918921 A JPS5918921 A JP S5918921A JP 12842582 A JP12842582 A JP 12842582A JP 12842582 A JP12842582 A JP 12842582A JP S5918921 A JPS5918921 A JP S5918921A
Authority
JP
Japan
Prior art keywords
core
cladding
optical fibers
refractive index
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12842582A
Other languages
Japanese (ja)
Inventor
Takao Edahiro
枝広 隆夫
Toshito Hosaka
保坂 敏人
Katsunari Okamoto
勝就 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12842582A priority Critical patent/JPS5918921A/en
Publication of JPS5918921A publication Critical patent/JPS5918921A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2835Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2826Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals using mechanical machining means for shaping of the couplers, e.g. grinding or polishing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2826Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals using mechanical machining means for shaping of the couplers, e.g. grinding or polishing
    • G02B6/283Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals using mechanical machining means for shaping of the couplers, e.g. grinding or polishing couplers being tunable or adjustable

Abstract

PURPOSE:To form a small-sized optical fiber type coupler with low insertion loss by jointing side surfaces of a couple of semicylindrical optical fibers which have respectively one side surface of a clad part removed almost to a core part. CONSTITUTION:The clad part 12 which has a low refractive index and surrounds the core part 11 having a high refractive index is removed in parallel to a core axis almost to the core part 11. Nearly semicylindrical optical fibers 10 are used. Namely, said optical fibers 10 are jointed mutually with one over the other to length l in the side surfaces where the clad parts are removed. (The overlap part may be coated with a glass capillary.) In this case, said nearly semicylindrical optical fibers 10 are formed easily by polishing one side of a base material consisting of a core 16 and a clad 15 into a surface 17 parallel to the core center axis and then drawing the obtained nearly semicylindrical base material at about 2,100 deg.C.

Description

【発明の詳細な説明】 結合子およびその製造方法に関するものである。[Detailed description of the invention] The present invention relates to a connector and a method for manufacturing the same.

従来この種のファイバ形結合子には第1図に示すような
構造のものが提案されている。す々わちM. J. l
i’. Digonnet; and Herbert
 ( ” Analysisof a tunable
 single mode optical fibe
rcoupler :’ IEEE Journal 
of Quantum Ele!OtrOniCS。
Conventionally, a fiber type connector of this type having a structure as shown in FIG. 1 has been proposed. Suwachi M. J. l
i'. Digonnet; and Herbert
(”Analysis of a tunable
single mode optical fiber
rcoupler:' IEEE Journal
of Quantum Ele! OtrOniCS.

vol. QE− 1 8 、A4 − pp− 74
6 − 754 )は、ファイバ1を基体2中に曲率半
径Rで埋め込み、埋め込んだ光ファイバのフ了1′が表
面に現われる程度にクラッド1′を基体2とともに研磨
する。2個の同様に加工した物をその研磨面8を互いに
接触させ、コア内を伝ばんする光を結合させるものであ
る。第1図において明らかなように、この方法によれば
、ファイバ側面をきわめて高精度に研磨加工する必要が
あり、その要求される精度はlμm以下である.。
vol. QE-18, A4-pp-74
6-754), the fiber 1 is embedded in the base 2 with a radius of curvature R, and the cladding 1' is polished together with the base 2 to such an extent that the fiber 1' of the embedded optical fiber appears on the surface. Two similarly processed objects are brought into contact with each other with their polished surfaces 8, and the light propagating within the core is combined. As is clear from FIG. 1, according to this method, it is necessary to polish the fiber side surface with extremely high precision, and the required precision is 1 μm or less. .

しかもこの方法では得られる結合子の大きさも大きなも
のになり、小形化するにはこの方法は不適当である。
Furthermore, the size of the connector obtained by this method is also large, making this method inappropriate for miniaturization.

本発明はこれらの欠点を解決し、小形で低挿入損失しか
も再現性の高いファイバ形結合子およびその製造方法を
提供するもので、あらかじめ加工された光ファイバを利
用することを特徴としている。以下図面により本発明の
詳細な説明する。
The present invention solves these drawbacks and provides a compact, low-insertion-loss, highly reproducible fiber-type coupler and its manufacturing method, and is characterized by the use of pre-processed optical fibers. The present invention will be explained in detail below with reference to the drawings.

第2図は本発明の一実施例図であって、lOは半円柱状
の光ファイバ、1lはコア、l2は光ファイバのクラッ
ド部が除去された面を示す。あらかじめ準備された光フ
ァイバー0の除去された而12を互いに第2図(b)に
示すように長さlの部分を合わせる。長さlの部分の断
面を見ると、第2図(C)に示すように、互いの光ファ
イバIOのコアは近接して存在する。このような平行す
るコア間の光の結合はE. A. J. Marcat
ili (DielectricReotangula
r Waveguide an(i pirectio
nal (3oupxerfor Integrate
a Optics 、 Bell Sypt. Tec
h. J. 。
FIG. 2 is a diagram showing an embodiment of the present invention, in which lO represents a semi-cylindrical optical fiber, 1l represents the core, and 12 represents the surface of the optical fiber from which the cladding portion has been removed. The removed fibers 12 of the optical fibers 0 prepared in advance are aligned at length l as shown in FIG. 2(b). When looking at the cross section of a portion of length l, as shown in FIG. 2(C), the cores of the optical fibers IO are located close to each other. Such light coupling between parallel cores is caused by E. A. J. Marcat
ili (Dielectric Reotangula
r Waveguide an (i pirectio
nal (3upxerfor Integrate
a Optics, Bell Sypt. Tec
h. J. .

voi. 48 、pp. 207 1−2 102 
(1969) )が詳細に取、吸扱っているように、そ
の結合効率は上記参考文献中成(34)によって与えら
れる。すなわち正規化結合係数に〆は次式で与えられる
voi. 48, pp. 207 1-2 102
(1969)), the coupling efficiency is given by Nari (34) in the above reference. In other words, the normalized coupling coefficient is given by the following equation.

±J ただし、ここでLは結合長、aはコア径、nlはコアの
屈折率、n,はクラッドの屈折率、koはコア中の光の
伝ばん定数、A2は2方向の伝ばん定数であって、伝ば
んモードに依存する、A2は定数、Cはコア間の距離で
ある。この式をもとにそれぞれの定数を与えると結合係
数に/が求まり、対応する結合長Lが得られる。例えば
、コアとしてGem,約2モル%添加されたSin,、
クラッドがSin,とすると、それぞれの屈折率は1.
461 。
±J where L is the bond length, a is the core diameter, nl is the refractive index of the core, n is the refractive index of the cladding, ko is the propagation constant of light in the core, and A2 is the propagation constant in two directions. , where A2 is a constant and C is the distance between cores, which depends on the propagation mode. When each constant is given based on this formula, / is determined for the coupling coefficient, and the corresponding coupling length L is obtained. For example, Gem as the core, Sin added about 2 mol%,
Assuming that the cladding is Sin, the refractive index of each is 1.
461.

1、458である。コア径aを6μmとすると、個々の
光ファイバは0.6μmに高次モードの遮断波長が存在
し、0.6μmより長い波長領域で単一モード動作をす
る。このとき光フアイバ間の距離Cと結合距離L′fr
:櫨々に変えると広い範囲の結合状態を得ることができ
る。例えばC−10μmとするとL中3.4關、O −
 2 0 11mとするとL.+681+lffl。
It is 1,458. When the core diameter a is 6 μm, each optical fiber has a higher-order mode cutoff wavelength at 0.6 μm and operates in a single mode in a wavelength region longer than 0.6 μm. At this time, the distance C between the optical fibers and the coupling distance L'fr
: If you change it to a straight line, you can obtain a wide range of bonding states. For example, if C-10 μm, 3.4 mm in L, O −
2 0 11m, L. +681+lffl.

C−5μmのときL,中IQ,75 mになる。When C-5 μm, L, medium IQ, and 75 m are obtained.

第2図(b)でlをL/2に等しくすると、・8dB結
合子になる。言うまでもなくLの奇数倍の長さにlを定
めることも可能である。
If l is equal to L/2 in FIG. 2(b), it becomes an 8 dB coupler. Needless to say, it is also possible to set l to an odd number multiple of L.

第8図は不発明の池の実施例図であって、上記の実施例
と同様な断面構造をもつ光ファイバ10を2本合わせて
ガラスキャピラリ13に挿入する。
FIG. 8 shows an embodiment of the invention, in which two optical fibers 10 having a cross-sectional structure similar to that of the above embodiment are inserted into a glass capillary 13.

キャピラリの孔径は2一本の光フ“γイドを合わせた最
大外径よりもわずかに大きいものが望ましい。
It is desirable that the pore diameter of the capillary be slightly larger than the maximum outer diameter of the two optical fibers combined.

また、第4図は第8図に示すようにキャピラリに挿入し
た光ファイバを外部かり加熱して、キャピラリを融着す
るかもしくは一部延伸すれば、光ファイバ10も同時に
延伸され、光ファイバのコア相互間距離は実質的に小さ
くなり、光コアイノく相互間の光結合が効率的に行なわ
れるか、もしくは延伸して細径化する条件を変えること
により、結合状態を変えることができる。第4図(a)
のA−AIにおける断面を拡大して第4図(b)に示す
Further, FIG. 4 shows that as shown in FIG. 8, if the optical fiber inserted into the capillary is heated externally to fuse the capillary or partially stretch it, the optical fiber 10 will also be stretched at the same time, and the optical fiber 10 will be The distance between the cores becomes substantially smaller, and the optical coupling between the optical cores is efficiently performed, or the bonding state can be changed by changing the conditions for stretching and reducing the diameter. Figure 4(a)
An enlarged cross section taken along A-AI is shown in FIG. 4(b).

第5図は本発明の別の実施例図であって、半円柱状に加
工された光ファイバ10をそれぞれ所望の大きさの溝が
形成された基体14上に接着剤等により固定する。光フ
ァイバが固定された基体14を相対向させて、その光フ
アイバ軸間の角度θを変化させる。このとき使用する基
板としてはガラス基板もしくはSi基板でもよい。
FIG. 5 shows another embodiment of the present invention, in which an optical fiber 10 processed into a semi-cylindrical shape is fixed onto a base 14 in which a groove of a desired size is formed, using an adhesive or the like. The base bodies 14 to which the optical fibers are fixed are opposed to each other, and the angle θ between the axes of the optical fibers is changed. The substrate used at this time may be a glass substrate or a Si substrate.

次にファイバ形結合子の製造方法を述べる。第6図(a
)に示すコア16、クラッド15からなる母材の一側を
、第6図(b)&こ示すように、コア中心軸に平行な而
17を研削加工する。この研削加工母材の横断面を第6
図(りもしくは第6図(d)に示すように、単一モード
用結合子−母材および多モード用結合子の母材としてそ
れぞれ所望の形状に相似の構造に加工する。コア中心か
ら研削面に至る距離C′は必要とする結合子の条件に合
わせる。
Next, a method for manufacturing the fiber type connector will be described. Figure 6 (a
One side of the base material consisting of the core 16 and cladding 15 shown in FIG. The cross section of this ground base material is
As shown in Figure 6(d), the single-mode connector base material and the multi-mode connector base material are processed into structures similar to the desired shapes.Grinding from the center of the core The distance C' to the surface is adjusted to the required conditions of the connector.

多モード光ファイバの場合の結合子は、通常コアを含む
領域まで研磨してもよく、研削面の位置は任意に変える
ことができる。
A coupler in the case of a multimode optical fiber may be polished to a region that usually includes the core, and the position of the polished surface can be changed arbitrarily.

例えばコアの屈折率1,462 、クラッドの屈折率1
.458 、コア直径1闘、母材外径を25鰭としてコ
ア中心からの研削面距離をQ、7smとして加工する。
For example, the refractive index of the core is 1,462, and the refractive index of the cladding is 1.
.. 458, the core diameter is 1mm, the outer diameter of the base material is 25mm, and the grinding surface distance from the core center is Q, 7sm.

次いでこの母材を2100″Cの温度で線引すれば、コ
ア直径8.1μm1外径202μm1またコア中心から
研削面までの距離は5.7μmになる。
If this base material is then drawn at a temperature of 2100''C, the core diameter will be 8.1 μm, the outer diameter will be 202 μm, and the distance from the center of the core to the grinding surface will be 5.7 μm.

このようにして得られた牛円柱状光ファイバがファイバ
形結合子になるとともに、必要Gこ応じてフッ酸もしく
はフッ化アンモニアとフッ酸の混液(こよりエツチング
すれば、コアイノく形状は微細Gこ変えることができる
The cylindrical optical fiber obtained in this way becomes a fiber-type connector, and if etched with hydrofluoric acid or a mixture of ammonia fluoride and hydrofluoric acid (according to the required G), the core shape becomes a fine G. It can be changed.

以上説明したよう(こ、本発明による〕了イノく形結合
子は、あらかじめ形成されたコアイノくを利用するので
、ファイバに曲率をもたせクラッドの一部を研削する必
要がなく、機械精度も高く、低損失の結合子を得ること
ができる。しかも母材が線引により結合子胴元コアイノ
くを得るので、最産性にも優れているなどの利点がある
As explained above, since the cylindrical connector (according to the present invention) utilizes a pre-formed core diaphragm, there is no need to give the fiber a curvature or grind a part of the cladding, and the mechanical precision is high. , it is possible to obtain a connector with low loss.Furthermore, since the base material is drawn to obtain the core ingot of the connector body, there are advantages such as excellent productivity.

なお本発明の詳細な説明において、半円柱ファイバを挿
入するキャピラリとしてガラスを用し)だが、ガラスに
限定されるものでなく、熱収縮形高分子キャピラリやセ
ラミックス、メタルであっても本発明の意義は失なわな
いことは言うまでもない0
In the detailed description of the present invention, glass is used as the capillary into which the semi-cylindrical fiber is inserted. However, the present invention is not limited to glass, and may be a heat-shrinkable polymer capillary, ceramics, or metal. It goes without saying that the meaning is not lost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のファイバ形結合子の構成を示す断面図、 第2図は本発明のファイバ形結合子の構成図、第8図は
本発明の能の実施例を示す図、第4図は本発明の池の実
施例の側面図、第5図は本発明の別の実施例の構成を示
す概要斜視図、 第6図は本発明のファイバ形結合子を製造する工程を示
す図である。 l・・・光ファイバ、2・・・基体、8・・・研磨面、
IO・・・光ファイバ、11・・・コア、12・・・研
削面、18・・・ガラスキャピラリ、■4・・・基体、
15・・・クラッド、16・・・コア、17・・・研削
面。 特許出願人  日本電信電話公社
Figure 1 is a sectional view showing the configuration of a conventional fiber type connector, Figure 2 is a configuration diagram of the fiber type connector of the present invention, Figure 8 is a diagram showing an embodiment of the present invention, and Figure 4. 5 is a schematic perspective view showing the configuration of another embodiment of the present invention, and FIG. 6 is a diagram showing the process of manufacturing the fiber type connector of the present invention. be. l... Optical fiber, 2... Base, 8... Polished surface,
IO...optical fiber, 11...core, 12...ground surface, 18...glass capillary, ■4...substrate,
15...Clad, 16...Core, 17...Grinded surface. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 L 屈折率の高いコア部とそれを取り囲むコアよりも屈
折率が低いクラッドからなり、クラッドの一部がコア中
心軸に平行になるようコア直近もしくはコアを含む領域
まで除去されている2本の光ファイバをクラッド部が除
去された側面を相対向させるか、または相対向させた2
本の光ファイバの外側に2本の光ファイバの最大径より
も大きな内径を有するガラスもしくは高分子からなるキ
ャピラリにより被覆されてなることを特徴とするファイ
バ形結合子。 龜 屈折率の高いコア部とそれを取り囲むコアよりも屈
折率が低いクラッドからなり、クラッドの一部がコア中
心軸に平行になるよう直近もしくはコアを含む領域まで
除去されている2本の光ファイバをクラッド部が除去さ
れた側面を相対向させてなるコアイノく形結合子におい
て、相対向L%する領域があらかじめ溝の形成されたガ
ラス板もしくはSi板に、前記2本の光ファイバを相対
向するように、もしくは互いの光フアイバ中心軸が所望
の角度で交わるように配置して固定したことを特徴とす
るファイバ形結合子0 & 屈折率の高いコアおよび屈折率の低いクラッドから
なる光フアイバ母材のクラッド部一部をコア中心軸に平
行にコア直近もしくはコアを含む領域まで研磨により除
去してなる半円柱状光フアイバ母材を加熱延伸し、次い
で該光ファイバを、クラッド部が一部除失された面を互
に相対向させて、接着剤で固定するか、または相対向さ
せた状態で、相対向させた光ファイバの最大外径よりも
わずかに大きなガラス管中に挿入した後、該ガラス管の
一部を加熱して管内に挿入した光フアイバ同志を融着さ
せるか、もしくは加熱によりガラス管および挿入した光
ファイバを軟化させて、ガラス管外直径を縮小せしめる
ことを特徴とするファイバ形結合子の製造方法。 表 屈折率の高いコアおよび屈折率の低いクラッドから
なる元ファイバ母材のクラッド部一部をコア中心軸に平
行にコア直近もしくはコアを含む領域まで研磨により除
去してなる半円柱状光ファイバを、光ファイバのクラッ
ド部が除去された面を上方に向け、あらかじめ形成され
た溝を有するガラス板もしくはSl板等基体上の溝部分
に固定し、該固定された光ファイバを相対向するように
、もしくは互いの光フアイバ中心軸が所望の角度で交わ
るように接触させることを特徴とするコアイノく形結合
子の製造方法。
[Claims] L Consists of a core with a high refractive index and a cladding with a lower refractive index than the core surrounding it, and a part of the cladding is removed to the vicinity of the core or to the area containing the core so that it is parallel to the central axis of the core. Two optical fibers with the cladding removed facing each other, or two optical fibers facing each other.
1. A fiber-type coupler characterized in that an optical fiber is coated on the outside with a capillary made of glass or polymer and having an inner diameter larger than the maximum diameter of the two optical fibers. Two beams consisting of a core with a high refractive index and a surrounding cladding with a lower refractive index than the core, with part of the cladding being removed to the nearest area or the area containing the core so that it is parallel to the central axis of the core. In a core ino rectangular connector in which the sides of the fibers from which the cladding portions have been removed face each other, the two optical fibers are placed facing each other on a glass plate or a Si plate in which grooves have been previously formed in the area facing L%. A fiber-type coupler characterized by being arranged and fixed so that the central axes of the optical fibers face each other or so that their central axes intersect at a desired angle. A semi-cylindrical optical fiber base material obtained by removing a part of the cladding part of the fiber base material by polishing parallel to the core central axis to a region adjacent to or including the core is heated and drawn, and then the optical fiber is drawn so that the cladding part is removed by polishing. Place the partially removed surfaces facing each other and fix them with adhesive, or insert them into a glass tube slightly larger than the maximum outer diameter of the facing optical fibers. After that, a part of the glass tube is heated to fuse the optical fibers inserted into the tube, or the glass tube and the inserted optical fibers are softened by heating to reduce the outer diameter of the glass tube. A method for manufacturing a characteristic fiber type connector. Table A semi-cylindrical optical fiber is produced by removing part of the cladding part of the original fiber base material, which consists of a core with a high refractive index and a cladding with a low refractive index, by polishing parallel to the core central axis to the area immediately adjacent to the core or including the core. , the surface of the optical fiber from which the cladding part has been removed faces upward, and is fixed to a groove part on a substrate such as a glass plate or an Sl plate having a pre-formed groove, and the fixed optical fiber is placed so as to face each other. Alternatively, a method for producing a core ino rectangular connector characterized in that the optical fibers are brought into contact with each other so that their central axes intersect at a desired angle.
JP12842582A 1982-07-23 1982-07-23 Fiber type coupler and its manufacture Pending JPS5918921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12842582A JPS5918921A (en) 1982-07-23 1982-07-23 Fiber type coupler and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12842582A JPS5918921A (en) 1982-07-23 1982-07-23 Fiber type coupler and its manufacture

Publications (1)

Publication Number Publication Date
JPS5918921A true JPS5918921A (en) 1984-01-31

Family

ID=14984433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12842582A Pending JPS5918921A (en) 1982-07-23 1982-07-23 Fiber type coupler and its manufacture

Country Status (1)

Country Link
JP (1) JPS5918921A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164522A (en) * 1983-03-09 1984-09-17 Hitachi Ltd Manufacture of optical distributing circuit
JPS62160406A (en) * 1986-01-07 1987-07-16 リツトン・システムズ・インコ−ポレ−テツド Optical fiber coupler and making thereof
JPS6344607A (en) * 1986-08-13 1988-02-25 Hitachi Ltd Plastic optical fiber coupler and its manufacture
EP0780709A3 (en) * 1995-12-22 1997-11-05 Gould Electronics Inc. Broadband coupler

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101334A (en) * 1978-01-27 1979-08-09 Nippon Telegr & Teleph Corp <Ntt> Optical fiber coupling element and production of the same
JPS5576308A (en) * 1978-12-05 1980-06-09 Nippon Telegr & Teleph Corp <Ntt> Optical period waveform branching filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101334A (en) * 1978-01-27 1979-08-09 Nippon Telegr & Teleph Corp <Ntt> Optical fiber coupling element and production of the same
JPS5576308A (en) * 1978-12-05 1980-06-09 Nippon Telegr & Teleph Corp <Ntt> Optical period waveform branching filter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164522A (en) * 1983-03-09 1984-09-17 Hitachi Ltd Manufacture of optical distributing circuit
JPH0548445B2 (en) * 1983-03-09 1993-07-21 Hitachi Ltd
JPS62160406A (en) * 1986-01-07 1987-07-16 リツトン・システムズ・インコ−ポレ−テツド Optical fiber coupler and making thereof
JPS6344607A (en) * 1986-08-13 1988-02-25 Hitachi Ltd Plastic optical fiber coupler and its manufacture
EP0780709A3 (en) * 1995-12-22 1997-11-05 Gould Electronics Inc. Broadband coupler
EP0780709B1 (en) * 1995-12-22 2003-04-23 Gould Optronics Inc. Broadband coupler

Similar Documents

Publication Publication Date Title
US5553179A (en) Varied insertion loss fiber optic coupling and method of making same
US5301252A (en) Mode field conversion fiber component
JPH01260405A (en) Optical fiber
JPH07110415A (en) Optical waveguide, connecting device for optical waveguide and optical fiber
KR100358418B1 (en) Method of fabricating fused-type mode selective coupler
JPS5918921A (en) Fiber type coupler and its manufacture
JPH05107428A (en) End structure of optic fiber and manufacture thereof
JPH04140702A (en) Method and device for connection between optical fiber and optical waveguide
JPH03189607A (en) Production of fiber type optical coupler
JPS5937503A (en) Mode scrambler
JP2619130B2 (en) Single Mode Optical Fiber Interconnection Method
JPS5929218A (en) Production of optical coupler
JPS59143119A (en) Light branching device
JP2505416B2 (en) Optical circuit and manufacturing method thereof
JPS6243609A (en) Optical circuit element
JPS58196521A (en) Optical coupling circuit
JPS6017083B2 (en) Method for manufacturing fiber polarizer
JPH01287603A (en) Absolute single mode polarization optical fiber
JPH0130768B2 (en)
JP3303269B2 (en) Different diameter optical connector adapter part and method of manufacturing the same
JP2805526B2 (en) Optical fiber core eccentricity method
JPH0356907A (en) Production of polarization maintaining type optical fiber coupler
JPS58202402A (en) Mode scrambler
JP2842968B2 (en) Waveguide directional coupler
JPH0882718A (en) Method for making core of elliptic core optical fiber completely round and production of optical fiber by using this method