JPS60122744A - Manufacture of simple-mode fiber - Google Patents

Manufacture of simple-mode fiber

Info

Publication number
JPS60122744A
JPS60122744A JP23210383A JP23210383A JPS60122744A JP S60122744 A JPS60122744 A JP S60122744A JP 23210383 A JP23210383 A JP 23210383A JP 23210383 A JP23210383 A JP 23210383A JP S60122744 A JPS60122744 A JP S60122744A
Authority
JP
Japan
Prior art keywords
core
clad
mode fiber
cladding
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23210383A
Other languages
Japanese (ja)
Inventor
Hiroshi Kajioka
博 梶岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP23210383A priority Critical patent/JPS60122744A/en
Publication of JPS60122744A publication Critical patent/JPS60122744A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02754Solid fibres drawn from hollow preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/24Single mode [SM or monomode]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/12Drawing solid optical fibre directly from a hollow preform
    • C03B2205/14Drawing solid optical fibre directly from a hollow preform comprising collapse of an outer tube onto an inner central solid preform rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/12Drawing solid optical fibre directly from a hollow preform
    • C03B2205/16Drawing solid optical fibre directly from a hollow preform the drawn fibre consisting of circularly symmetric core and clad

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To manufacture easily a simple-mode fiber having a large thickness ratio of the clad to the core by inserting a core rod attached with a clad into a quartz tube having an innner lining layer of a material identical to the clad, heating, and wiredrawing in manufacturing a parent material for the simple- mode fiber. CONSTITUTION:A core rod attached with a clad having 4-5 deposition ratio of the core to the clad is manufactured as a parent material for a simple-mode fiber. The clad core rod 3a attached with a clad layer 2a having the thickness about 1-2 times the radius of a core 1 on the outer circumference of the core 1 is inserted into a quartz tube 4a whose inner wall is lined with a rigid glass 8 consisting of phosphorus oxide silica or fluorine oxide silica and having the same composition as the clad 2a. The thickness is regulated to >=2 times the radius of the core 1. The whole body is heated by a heater 5, and the clad layer 2a and the glass 8 are fused into a body which is wiredrawn. A simple-mode fiber 6a having a large thickness ratio of the clad layer to the core can be easily manufactured.

Description

【発明の詳細な説明】 〔発明の背景と目的〕 本発明は単一モードファイバ(以下、3Mファイバと称
する)の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Background and Objects of the Invention] The present invention relates to a method of manufacturing a single mode fiber (hereinafter referred to as 3M fiber).

SMファイバ用ブ・リフォームの製造方法として気相軸
付は法(VAD法)はよく知られており、従来はコアと
クラットのガラス材料とキャリアガスとを夫々異なった
バーナーから供給し、コアとクラッドとの堆積層の厚さ
の比も4から5倍程度にとっていた。従って長尺化のた
めにコア層の実効的な厚さを十分とろうとした場合には
スート外径が大型となり、透明ガラス化工程に無理が生
していたが、このようにして製作したプリフォームをロ
ッドインチューブ(RT)法で線引きし、3Mファイバ
を製造していた。
The vapor phase attachment method (VAD method) is well known as a manufacturing method for reforming SM fibers. Conventionally, the core and crat glass materials and carrier gas were supplied from different burners, and the core and crat were supplied from different burners. The ratio of the thickness of the deposited layer to that of the cladding was also set to about 4 to 5 times. Therefore, when attempting to increase the effective thickness of the core layer to increase its length, the outer diameter of the soot would become large, making the transparent vitrification process difficult. The reform was drawn using the rod-in-tube (RT) method to produce 3M fiber.

すなわち第1図に示されているようにコアlとクラット
2との堆積層の厚さの比が4から5倍の厚肉のクラッド
付コアロッド3に寸法調整用の石英管4をジャケットし
、これらクラッド付コアロッド3と石英管4とをカーボ
ン炉5て一体に加熱溶着しながら所定の径に線引し、フ
ァイバ6を製造していた。
That is, as shown in FIG. 1, a quartz tube 4 for size adjustment is jacketed around a thick-walled core rod 3 with a cladding in which the ratio of the thickness of the deposited layer between the core l and the crat 2 is 4 to 5 times, The clad core rod 3 and the quartz tube 4 were heated and welded together in a carbon furnace 5 and drawn to a predetermined diameter to produce a fiber 6.

この従来の製造方法の場合に厚肉のクラッド2の材質と
しては通常石英ガラスが使用されており、ぶつ化ガラス
等融点を低下させるのに有効なガラスを多量に使用する
ことは例えばスートの形状変形9割れ、揮散等の問題が
あって難しかった。また従来のファイバ6の組成は石英
に近いため適正なファイバ強度を得るためには線引温度
を十分高くする必要があり、石英管4からコア1部へ水
酸基であるOH基が拡散する問題があった。
In the case of this conventional manufacturing method, quartz glass is usually used as the material for the thick cladding 2, and the use of a large amount of glass that is effective in lowering the melting point, such as fused glass, is important for example in the shape of the soot. It was difficult because of problems such as deformation, cracking, and volatilization. Furthermore, since the composition of the conventional fiber 6 is close to quartz, it is necessary to draw the fiber at a sufficiently high temperature in order to obtain appropriate fiber strength, which causes the problem of OH groups, which are hydroxyl groups, diffusing from the quartz tube 4 to the core 1. there were.

本発明は以上の点に鑑みなされたものであり、クラッド
(=Iココアッドの製作を容易にした単一モードファイ
バの製造方法を提供することを目的とするものである。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a method for manufacturing a single mode fiber that facilitates the manufacture of a cladding (=I cocoad).

〔発明の概要〕[Summary of the invention]

すなわち本発明はコアの外周側にクラッドを設けてクラ
ッド付コアロッドをつくり、次いでこのクラッド付コア
ロッドを石英管の中に挿入し、これらを一体に加熱溶着
しながら所定の径に線引する単一モードファイバの製造
方法において、前記クラッドを、前記コアの外周に設け
たその厚さが前記コアの半径の約1から2倍のクララ1
ζJごと、前記石英管の内面に前記クラッド層とほぼ同
じ屈折率を有する合成ガラスを内付は化学的気相堆積法
で前記コアの半径の少なくとも2倍以上に堆積させた内
ぼり層とで形成したことを特徴とするものであり、これ
によってコアの外周側に設けられるクラッドがコアの外
周と石英管の内面とにわけて形成されるようになる。
That is, in the present invention, a cladding core rod is produced by providing a cladding on the outer peripheral side of the core, and then this cladding core rod is inserted into a quartz tube, and the core rod is heated and welded together while being drawn to a predetermined diameter. In the method for manufacturing a mode fiber, the cladding is provided on the outer periphery of the core and has a thickness of about 1 to 2 times the radius of the core.
For each ζJ, an inner layer of synthetic glass having approximately the same refractive index as the cladding layer is deposited on the inner surface of the quartz tube to a depth at least twice the radius of the core by a chemical vapor deposition method. As a result, the cladding provided on the outer circumferential side of the core is formed separately on the outer circumference of the core and the inner surface of the quartz tube.

〔実施例〕〔Example〕

以下、図示した実施例に基づいて本発明を説明する。第
2図には本発明の一実施例がボされている。なお従来と
同じ部品には同じ符号を付したので説明を省略する。本
実施例ではクラッド7を、コア1の外周に設けたその厚
さがコア1の半径の約1から2倍のクラッドN2aと、
石英管4aの内面にクラッドF12 aとほぼ同じ屈折
率を有する合成ガラスを内付は化学的気相堆積法でコア
lの半径の少なくとも2倍以上に堆積させた内ばり層8
とで形成した。このようにすることによりコアlの外周
側に設けられるクラッド7がコア1の外周と石英管4a
の内面とにわけて作られるようになって、クラッド付コ
アロッド3aの製作を容易にした5Mファイバ6aの製
造方法を得ることができる。
The present invention will be explained below based on the illustrated embodiments. FIG. 2 shows an embodiment of the present invention. Note that parts that are the same as those in the conventional system are given the same reference numerals, and therefore their explanations will be omitted. In this embodiment, the clad 7 is a clad N2a provided around the outer periphery of the core 1 and whose thickness is approximately 1 to 2 times the radius of the core 1;
On the inner surface of the quartz tube 4a, a synthetic glass having approximately the same refractive index as the cladding F12a is deposited using a chemical vapor deposition method to form an inner burr layer 8 that is at least twice the radius of the core I.
It was formed with. By doing this, the cladding 7 provided on the outer circumferential side of the core l is connected to the outer circumference of the core 1 and the quartz tube 4a.
It is possible to obtain a manufacturing method of the 5M fiber 6a in which the cladded core rod 3a can be easily manufactured.

すなわち石英管4aの内面にふっ素とリンとをドープし
た内ばりN8を形成し、この中にクラッド付コアロッド
3aを挿入してこれらを溶着一体化すると同時に所定の
外径に線引する。そしてコア1の外周側のクラッド7を
コア1の外周に設けたクラッド層2aと石英管4aの内
面に設けた合成ガラスの内ばりN8とで形成したので、
コア1の外周に設けるクラッドN2aの厚さを大きくし
なくてもよくなって、クラッド付コアロッド3aの製作
を容易にすることができ、コアlの実質的な厚さを十分
にとることが、T:きる。ざらにふフ化ガラス等が多量
に使用できるようになり、また、コア1.クラッド層2
a、内ばり層8のガラス組成を適当に組合わぜることに
よって種々の屈折率分布を有する5Mファイバ6aが得
られる。
That is, an inner burr N8 doped with fluorine and phosphorus is formed on the inner surface of the quartz tube 4a, and the cladded core rod 3a is inserted into the inner burr N8 and these are welded and integrated, and at the same time, a wire is drawn to a predetermined outer diameter. Since the cladding 7 on the outer circumferential side of the core 1 is formed of the cladding layer 2a provided on the outer periphery of the core 1 and the synthetic glass inner burr N8 provided on the inner surface of the quartz tube 4a,
There is no need to increase the thickness of the cladding N2a provided on the outer periphery of the core 1, making it easier to manufacture the cladded core rod 3a, and ensuring a sufficient substantial thickness of the core 1. T: I can. It has become possible to use a large amount of fluorinated glass, etc., and core 1. Cladding layer 2
a. By appropriately combining the glass compositions of the inner burr layer 8, 5M fibers 6a having various refractive index distributions can be obtained.

すなわち第3図に示されている5Mファイバ6aの屈折
率分布はコア1/クラット層2a/内ばり層8の順にゲ
ルマドープ/シリカドープ/ふっ素ナリンドーブ構成の
分布であり、第4図に示されているものは同様にゲルマ
ニウム/ふっ素/シリカまたはふっ素構成の分布であり
、第5図に示されているものは同様にシリカ/ふっ素/
ふっ素構成の分布であり、これらの中で特に第5図に示
されている構成の5Mファイバ6aの伝送損失の耐放射
線特性が良好であった。またこれらの8Mファイバ6&
は線引温度が従来に比べ約50℃低い設定値でも強度が
十分であり、かつ1.3μ鞘帯の伝送損失に大きな影響
を及ぼす水酸基であるOH基による吸収損失が低いため
、低損失であった。
That is, the refractive index distribution of the 5M fiber 6a shown in FIG. 3 is a distribution of a germa-doped/silica-doped/fluorine-doped structure in the order of core 1/crut layer 2a/inner burr layer 8, and is shown in FIG. are similarly germanium/fluorine/silica or fluorine composition distributions, and those shown in Figure 5 are likewise silica/fluorine/fluorine/fluorine composition distributions.
Among these, the radiation resistance characteristics of the transmission loss of the 5M fiber 6a having the configuration shown in FIG. 5 were particularly good. Also these 8M fiber 6&
has sufficient strength even when the drawing temperature is approximately 50°C lower than conventional wires, and has low absorption loss due to OH groups, which are hydroxyl groups, which have a large effect on the transmission loss of the 1.3μ sheath band, resulting in low loss. there were.

このように本実施例によればコア1の外周側に設けるク
ラッド7の製作が簡略化され、歩留りがよくなる。クラ
ッド7の材質がある程度自由に選択できるので伝送損失
、分散の改良が可能である。
As described above, according to this embodiment, the production of the cladding 7 provided on the outer peripheral side of the core 1 is simplified, and the yield is improved. Since the material of the cladding 7 can be selected freely to some extent, transmission loss and dispersion can be improved.

低OH基化による低損失化かり能である。It has low loss performance due to low OH grouping.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明はコアの外周側に設けられるクラッ
ドがわけて作られるようになって、クラッド付コアロッ
ドの製作が容易となり、クラッド付コアロッドの製作を
容易にした単一モードファイバの製造方法−を得ること
ができる。
As described above, the present invention provides a single mode fiber manufacturing method in which the cladding provided on the outer peripheral side of the core is made separately, making it easier to manufacture a cladded core rod. − can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の単一モードファイバの製造方法の線引の
状態を示す斜視図、第2図は本発明の単一モードファイ
バの製造方法の一実施例の線引の状態を示す斜視図、第
3図から第5図は本発明の単一モードファイバの製造方
法の一実施例による単一モードファイバの屈折率分布図
である。 l:コア、2a:クラッド層。 3a:クラッド付コアロッド、4a:石英管。 5:カーボン炉。 6a:ファイバ(5Mファイバ)、7:クラッド。 8:内ばり層。
FIG. 1 is a perspective view showing a drawing state in a conventional single mode fiber manufacturing method, and FIG. 2 is a perspective view showing a drawing state in an embodiment of the single mode fiber manufacturing method of the present invention. , and FIGS. 3 to 5 are refractive index distribution diagrams of a single mode fiber according to an embodiment of the method for manufacturing a single mode fiber of the present invention. l: core, 2a: cladding layer. 3a: core rod with cladding, 4a: quartz tube. 5: Carbon furnace. 6a: Fiber (5M fiber), 7: Clad. 8: Inner burr layer.

Claims (1)

【特許請求の範囲】 0)コアの外周側にクラッドを設けてクラッド付コアロ
ッドをつくり、次いでこのクラッド付コアロッドを石英
管の中に挿入し、これらを一体に加熱溶着しながら所定
の径に線引する単一モードファイバの製造方法において
、前記クラッドを、前記コアの外周に設けたその厚さが
前記コアの半径の約lから2倍のクラッド層と、前記石
英管の内面に前記クラッド層とほぼ同じ屈折率を有する
剛性ガラスを肉付は化学的気相堆積法で前記コアの半径
の少なくとも2倍以上に堆積させた内ぼり層とで形成し
たことを特徴とする単一モードファイバの製造方法。 (2)前記剛性ガラスが、酸化リン系シリカまたは酸化
ふっ素光シリカである特許請求の範囲第1項記載の単一
モードファイバの製造方法。
[Claims] 0) A cladded core rod is made by providing a cladding on the outer peripheral side of the core, and then this cladded core rod is inserted into a quartz tube, and the wire is heated and welded together to a predetermined diameter. In the method for manufacturing a single mode fiber, the cladding includes a cladding layer provided around the outer periphery of the core and having a thickness of about l to twice the radius of the core, and the cladding layer on the inner surface of the quartz tube. A single mode fiber characterized in that it is formed of a rigid glass having a refractive index that is approximately the same as that of the core, and a hollow layer that is deposited by chemical vapor deposition to a radius of at least twice the radius of the core. Production method. (2) The method for manufacturing a single mode fiber according to claim 1, wherein the rigid glass is phosphorous oxide silica or fluorine oxide optical silica.
JP23210383A 1983-12-07 1983-12-07 Manufacture of simple-mode fiber Pending JPS60122744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23210383A JPS60122744A (en) 1983-12-07 1983-12-07 Manufacture of simple-mode fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23210383A JPS60122744A (en) 1983-12-07 1983-12-07 Manufacture of simple-mode fiber

Publications (1)

Publication Number Publication Date
JPS60122744A true JPS60122744A (en) 1985-07-01

Family

ID=16934050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23210383A Pending JPS60122744A (en) 1983-12-07 1983-12-07 Manufacture of simple-mode fiber

Country Status (1)

Country Link
JP (1) JPS60122744A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176933A (en) * 1986-01-29 1987-08-03 Sumitomo Electric Ind Ltd Production of preform for optical fiber
JPS6325239A (en) * 1986-07-14 1988-02-02 エヌ・ベ−・フィリップス・フル−イランペンファブリケン Glass core using rod-in-tube procedure and manufacture of optical fiber with clad
JPH01103924A (en) * 1987-09-19 1989-04-21 Philips Gloeilampenfab:Nv Manufacture of single mode optical fiber
EP0767147A1 (en) * 1995-06-30 1997-04-09 AT&T IPM Corp. Single mode optical transmission fiber, and method of making the fiber
JP2007230862A (en) * 2006-03-02 2007-09-13 Furukawa Electric North America Inc Manufacture of depressed index optical fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176933A (en) * 1986-01-29 1987-08-03 Sumitomo Electric Ind Ltd Production of preform for optical fiber
JPH048380B2 (en) * 1986-01-29 1992-02-14 Sumitomo Electric Industries
JPS6325239A (en) * 1986-07-14 1988-02-02 エヌ・ベ−・フィリップス・フル−イランペンファブリケン Glass core using rod-in-tube procedure and manufacture of optical fiber with clad
JPH01103924A (en) * 1987-09-19 1989-04-21 Philips Gloeilampenfab:Nv Manufacture of single mode optical fiber
EP0767147A1 (en) * 1995-06-30 1997-04-09 AT&T IPM Corp. Single mode optical transmission fiber, and method of making the fiber
JP2007230862A (en) * 2006-03-02 2007-09-13 Furukawa Electric North America Inc Manufacture of depressed index optical fiber
JP2012133388A (en) * 2006-03-02 2012-07-12 Furukawa Electric North America Inc Manufacture of depressed index optical fibers

Similar Documents

Publication Publication Date Title
US4157906A (en) Method of drawing glass optical waveguides
CA1261179A (en) Single mode optical fiber
US4832720A (en) Method for producing multi-core optical fiber
US4126436A (en) Apparatus for minimizing drawn filament diameter variation
KR900002047B1 (en) Preparation method of preform for optical fibers
JPH0559051B2 (en)
JPS60257408A (en) Optical fiber and its production
US4749396A (en) Method of forming an optical fiber preform
CA1121160A (en) Method of manufacturing optical fibers
US4165152A (en) Process for producing optical transmission fiber
US4880452A (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JPS6313944B2 (en)
EP0181595A2 (en) Dielectric waveguide with chlorine dopant
CA1171744A (en) Method of producing preform rod for optical transmission fiber
JPS60122744A (en) Manufacture of simple-mode fiber
JPS627130B2 (en)
JPS61191543A (en) Quartz base optical fiber
US4318726A (en) Process for producing optical fiber preform
GB2123810A (en) Fabrication of single polarization optical fibres
JP2521186B2 (en) Glass body manufacturing method
EP0185975A1 (en) Process for fabricating a glass preform
JPH01160840A (en) Preform for dispersion-shift optical fiber and production thereof
JPH0327491B2 (en)
JP2645710B2 (en) Preform for optical fiber and method of manufacturing the same
JPS60218607A (en) Image guide of two-layer structure