JPS621219A - Forming method for soi structure - Google Patents

Forming method for soi structure

Info

Publication number
JPS621219A
JPS621219A JP13913485A JP13913485A JPS621219A JP S621219 A JPS621219 A JP S621219A JP 13913485 A JP13913485 A JP 13913485A JP 13913485 A JP13913485 A JP 13913485A JP S621219 A JPS621219 A JP S621219A
Authority
JP
Japan
Prior art keywords
film
region
polysilicon film
single crystal
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13913485A
Other languages
Japanese (ja)
Inventor
Kenichi Koyama
健一 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13913485A priority Critical patent/JPS621219A/en
Publication of JPS621219A publication Critical patent/JPS621219A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To make the temperature of the end section of a region, which must be single-crystallized, sufficiently higher than the inside by projecting laser beams having beam width irradiating at least two insular semiconductor films and turning a first semiconductor film existing between the two insular semiconductor films into the single crystal. CONSTITUTION:An silicon oxide film 2 is formed onto an silicon substrate 1, and a polysilicon film 3, an silicon oxide film 4 as a cap film, an silicon nitride film 5 and a polysilicon film 7 are each shaped onto the oxide film 2. The polysilicon film 7 is formed to a striped shape while leaving both sides on a region 9, in which a SOI single crystal must be formed, at that time to expose the silicon nitride film 5, and an silicon nitride film 6 is shaped onto the film 7. Multiplayer films consisting of the silicon oxide film 4, the silicon nitride film 5, the polysilicon film 7 and the silicon nitride film 6 function as an antireflection film to Ar laser beams, and multilayer films on the region 9, in which the single crystal composed of the silicon oxide film 4 and the silicon nitride films 5, 6 must be shaped, serve as a reflecting film to laser beams.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レーザビームアニールにより、絶縁膜上に、
半導体単結晶領域を持つ5OI(セミコンダクタ・オン
・インシュレータ:Sem1conductor on
 1n−sulator)基板を形成する方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention provides a method for forming an insulating film on an insulating film by laser beam annealing.
5OI (semiconductor on insulator) with semiconductor single crystal region
1n-sulator) substrate.

(従来技術とその問題点) 従来、SOI構造を形成する際には、下地半導体基板と
してシリコン基板、絶縁膜としてシリコン酸化膜、半導
体膜としてポリシリコン膜を用い、シリコン酸化膜上の
ポリシリコン膜にレーザアニールを施し、ポリシリコン
膜を溶融、再結晶化させていた。又、大気中でレーザア
ニールを実行した場合に生じるポリシリコン膜の汚染を
防ぐ目的で、ポリシリコン膜の上に、絶縁膜のキャップ
膜を形成する方法をもとられている。しかしながらレー
ザ発振管から出射されるレーザビームの空間パワー分布
は、ふつうがウス分布であるので、ポリシリコン膜の溶
融領域の端部ではその領域内側より低温となる。このた
め、再結晶化は、前記溶融領域の端部から始まり、内側
へと進む。この時、前記溶融領域の外側はポリシリコン
膜であるため、再結晶化領域は多結晶となり、溶融した
領域を単結晶化する事は出来ない。(電子通信学会技術
研究報告CPM83−13)この問題を解決するために
、次の方法が用いられている。
(Prior art and its problems) Conventionally, when forming an SOI structure, a silicon substrate is used as the base semiconductor substrate, a silicon oxide film is used as the insulating film, a polysilicon film is used as the semiconductor film, and a polysilicon film on the silicon oxide film is used. The polysilicon film was melted and recrystallized by laser annealing. Furthermore, in order to prevent contamination of the polysilicon film that occurs when laser annealing is performed in the atmosphere, a method has been adopted in which a cap film of an insulating film is formed on the polysilicon film. However, since the spatial power distribution of the laser beam emitted from the laser oscillation tube is usually a Gaussian distribution, the temperature at the end of the melted region of the polysilicon film is lower than that inside the region. Recrystallization therefore starts from the edge of the melted region and proceeds inward. At this time, since the outside of the melted region is a polysilicon film, the recrystallized region becomes polycrystalline, and the melted region cannot be made into a single crystal. (IEICE technical research report CPM83-13) To solve this problem, the following method is used.

まず、第2図の様に、シリコン基板1上にシリコン酸化
膜2を形成し、その上にポリシリコン膜3をCVD法で
形成し、表面を酸化してシリコン酸化膜4とシリコン窒
化膜5を形成する。そのあと単結晶シリコン膜を形成し
たい領域9の上にポリシリコン膜7を形成し、さらに基
板全面にシリコン窒化膜6を形成する。この際、ポリシ
リコン膜7の存在する領域においてレーザ光に対する反
射率R1が、ポリシリコン膜7の存在しない領域の反射
率R2がよりも大きくなる(R1> R2)様に、ポリ
シリコン膜7の膜厚を決める。次にポリシリコン膜7の
幅量上のビーム径8を持ったレーザビームで、第2図(
a)の様に、SOI単結晶を形成したい領域9の端部の
方が内側よりも大きい分布10に整形する事が出来る。
First, as shown in FIG. 2, a silicon oxide film 2 is formed on a silicon substrate 1, a polysilicon film 3 is formed thereon by the CVD method, and the surface is oxidized to form a silicon oxide film 4 and a silicon nitride film 5. form. Thereafter, a polysilicon film 7 is formed on the region 9 where a single crystal silicon film is to be formed, and a silicon nitride film 6 is further formed on the entire surface of the substrate. At this time, the polysilicon film 7 is adjusted so that the reflectance R1 for the laser beam in the region where the polysilicon film 7 is present is greater than the reflectance R2 in the region where the polysilicon film 7 is not present (R1>R2). Determine the film thickness. Next, a laser beam with a beam diameter 8 equal to the width of the polysilicon film 7 is used as shown in FIG.
As shown in a), it is possible to shape the distribution 10 so that the end portion of the region 9 where the SOI single crystal is desired to be formed is larger than the inside portion.

又、レーザアニール時にはポリシリコン膜7にもレーザ
パワーは吸収され、このポリシリコン膜7に蓄えられた
熱が、再結晶化時に、SOI単結晶を形成したい領域9
に伝えられる。このときの、ポリシリコン膜3内での温
度分布は第2図(b)の11の様に、SOI単結晶を形
成したい領域9の端部の方が内側より高い分布になる。
Furthermore, during laser annealing, the laser power is also absorbed by the polysilicon film 7, and the heat stored in this polysilicon film 7 is used during recrystallization to direct the region 9 where an SOI single crystal is to be formed.
can be conveyed to. At this time, the temperature distribution within the polysilicon film 3 is higher at the end of the region 9 where the SOI single crystal is desired to be formed than at the inside, as shown by 11 in FIG. 2(b).

この結果、SOI単結晶を形成したい領域9では、この
領域の内側から外側へ再結晶化が進み、領域9は単結晶
領域となる。(第3目新機能素子技術シンポジウム予稿
集、p、243〜256)しかしながら、ポリシリコン
膜7は周囲を絶縁膜でかこまれているための保温性がよ
い。従って、ビームアニールによって生じた熱が蓄えら
れてしまい、再結晶化時の熱伝導によって、ポリシリコ
ン膜3に伝えられる。一方ポリシリコン膜3はポリシリ
コン膜7より面積が大きいため熱が周囲へ逃げやすい。
As a result, in the region 9 where it is desired to form an SOI single crystal, recrystallization progresses from the inside to the outside of this region, and the region 9 becomes a single crystal region. (Third Novel Functional Device Technology Symposium Proceedings, p. 243-256) However, the polysilicon film 7 has good heat retention because it is surrounded by an insulating film. Therefore, the heat generated by the beam annealing is stored and transferred to the polysilicon film 3 by heat conduction during recrystallization. On the other hand, since the polysilicon film 3 has a larger area than the polysilicon film 7, heat easily escapes to the surroundings.

つまりSOI単結晶を形成したい領域9の中心部分の温
度を引き上げる端部の温度を引き下げる作用がある。こ
のため、この従来方法では意図したほどの温度差をつけ
られない。従って2単結晶化できない場合もでてくる。
In other words, it has the effect of raising the temperature at the center of the region 9 where the SOI single crystal is to be formed and lowering the temperature at the end. Therefore, with this conventional method, it is not possible to create a temperature difference as large as intended. Therefore, there may be cases where 2 single crystals cannot be formed.

それに加えて各薄膜の膜厚むらによってR1とR2の差
が最初の設計よりれ第2図(c)、(d)の10の様に
なる。この場合には、ポリシリコン膜3内での温度分布
はそれぞれ第2図(C)。
In addition, due to the uneven thickness of each thin film, the difference between R1 and R2 is different from the initial design, and becomes 10 in FIGS. 2(c) and 2(d). In this case, the temperature distribution within the polysilicon film 3 is as shown in FIG. 2(C).

(d)の11の様に、SOI単結晶を形成した領域9の
端部の温度が内側より低いと言う最初の意図とは逆の温
度分布になり、その結果、再結晶化時の結晶成長は、前
記領域9の端部から内側へと進むため、単結晶領域は得
られなくなる。
As shown in 11 of (d), the temperature distribution is opposite to the initial intention that the temperature at the end of the region 9 where the SOI single crystal is formed is lower than the inside, and as a result, the crystal growth during recrystallization proceeds inward from the end of the region 9, so a single crystal region cannot be obtained.

(発明の目的) ができるSOI構造形成方法を提供することである。(Purpose of the invention) An object of the present invention is to provide a method for forming an SOI structure that allows for the formation of an SOI structure.

(発明の構成) 本発明によれば、少なくとも表面に絶縁層が形成された
基板上に多結晶または非晶質の第一の半導体膜を形成し
、次にその上に第一の絶縁膜を形成し、その上に複数腹
側の島状に分割された第二の半導体膜を形成し、第一の
絶縁膜及び第二の半導体膜上に第二の絶縁膜を形成して
第一、第二の絶縁膜と第二の半導体膜からなる多層膜の
レーザ半導体膜の間に存在する第一の半導体膜を単結晶
化することを特徴とするSOI構造形成方法が得られる
(Structure of the Invention) According to the present invention, a polycrystalline or amorphous first semiconductor film is formed on a substrate having an insulating layer formed on at least the surface, and then a first insulating film is formed thereon. forming a second semiconductor film divided into a plurality of ventral island shapes thereon; forming a second insulating film on the first insulating film and the second semiconductor film; A method for forming an SOI structure is obtained, characterized in that a first semiconductor film existing between a laser semiconductor film of a multilayer film consisting of a second insulating film and a second semiconductor film is made into a single crystal.

(実施例) 以下、本発、明について実施例を用いて説明する。本実
施例においては、半導体膜とし工ポリシリコン膜、絶縁
膜としてシリコン酸化膜、レーザビームとしてアルゴン
ガスレーザを用いている。
(Examples) Hereinafter, the present invention will be explained using examples. In this embodiment, a polysilicon film is used as the semiconductor film, a silicon oxide film is used as the insulating film, and an argon gas laser is used as the laser beam.

第1図(a)はレーザアニールを施す試料の断面図であ
る。まず、第1図(a)に示すように、シリコン基板1
上にシリコン酸化膜2を厚さlpm形成した後、この上
にポリシリコン膜3を厚さ0.5pm形成する。この上
に、キャップ膜としてシリコン酸化膜4.シリコン窒化
膜5.ポリシリコン膜7をそれぞれ厚さ900人、 1
400人、 1700人形成する。ここで、SOI単結
晶を形成したい領域9上の両脇10数12m幅の領域を
残してポリシリコン膜7をストライプ状に形成し、シリ
コン窒化膜5を露出させ、この上にシリコン窒化膜6を
厚さ900人形成する。このときシリコン酸化膜4、シ
リコン窒化膜5.ポリシリコン膜7.シリコン窒化膜6
からなる多層膜はん申−ザ光に対して反射防止膜となり
、シリコン酸化膜4.シリコン窒化膜5゜6からなる多
層膜つまり単結晶を形成したい領域9の上の多層膜は、
レーザ光に対して反射膜となる。
FIG. 1(a) is a cross-sectional view of a sample subjected to laser annealing. First, as shown in FIG. 1(a), a silicon substrate 1
A silicon oxide film 2 is formed thereon to a thickness of lpm, and then a polysilicon film 3 is formed thereon to a thickness of 0.5pm. On top of this, a silicon oxide film 4 is applied as a cap film. Silicon nitride film 5. Each polysilicon film 7 has a thickness of 900 mm, 1
Form 400 and 1700 people. Here, a polysilicon film 7 is formed in a stripe shape, leaving a region of about 10 to 12 meters wide on both sides of the region 9 in which the SOI single crystal is to be formed, exposing the silicon nitride film 5. 900 people thick. At this time, silicon oxide film 4, silicon nitride film 5. Polysilicon film7. Silicon nitride film 6
A multilayer film consisting of a silicon oxide film 4. serves as an anti-reflection film against the light. The multilayer film made of silicon nitride film 5°6, that is, the multilayer film on the region 9 where a single crystal is to be formed, is as follows.
It becomes a reflective film for laser light.

つぎにこの試料に対し14両側のポリシリコン7のスト
ライプ状の部分及びこれらの内側の部分を同時に照射で
きるビーム径8を持ったガウシアン分布様に単結晶を形
成したい領域9で小さく、ポリシリコン膜7の下の領域
で大きくなる。又、ポリシリコン膜7でもレーザパワー
の吸収が行なわれ、このポリシリコン膜7に蓄積した熱
はシリコン膜3が再結晶化するときに、ポリシリコン膜
7の下に位置するシリコン膜3の領域に伝えられる。こ
のため、ポリシリコン膜3での温度分布は第1図すの1
1に示す様に、SOI単結晶を形成したい領域9の端部
の方が、内側より高い分布となる。つまり従来法では温
度差を小さくするように働いて単結晶化領域の形成を妨
害していたポリシリコン膜7からの熱の伝導が、本発明
では逆に温度差を大きくするように働くので単結晶化を
促進させる要因となる。
Next, a small polysilicon film is applied to this sample in a region 9 where a single crystal is to be formed in a Gaussian distribution with a beam diameter 8 that can simultaneously irradiate the striped portions of the polysilicon 7 on both sides of the sample 14 and the inner portions thereof. It becomes larger in the area below 7. The laser power is also absorbed by the polysilicon film 7, and when the silicon film 3 recrystallizes, the heat accumulated in the polysilicon film 7 is absorbed into the region of the silicon film 3 located below the polysilicon film 7. can be conveyed to. Therefore, the temperature distribution in the polysilicon film 3 is as shown in Figure 1.
As shown in FIG. 1, the distribution is higher at the edge of the region 9 where it is desired to form an SOI single crystal than at the inside. In other words, in the conventional method, heat conduction from the polysilicon film 7 works to reduce the temperature difference and hinders the formation of a single crystallized region, but in the present invention, the heat conduction works to increase the temperature difference. This is a factor that promotes crystallization.

以上の結果より、ポリシリコン膜3が再結晶化する際に
は、単結晶を形成したい領域9では、その端部の方が内
側より温度が高く、従って結晶成長は内側から端部へと
進行する。この結果、望む位置に単結晶シリコン領域を
形成する事ができる様になる。
From the above results, when the polysilicon film 3 is recrystallized, in the region 9 where a single crystal is desired to be formed, the temperature is higher at the edges than inside, and therefore crystal growth progresses from the inside to the edges. do. As a result, a single crystal silicon region can be formed at a desired position.

また、ポリシリコン膜7からの熱伝導が、SOI単分布
の変化が生じても、それぞれ第1図(c)、 (d)に
示したようにポリシリコン膜3内での温度分布は、ポリ
シリコン膜7からの熱伝導の助けによりSOI単結晶化
に適した温度分布になる。このため、従来法より容易に
SOI単結晶を形成する事ができる。
Furthermore, even if the heat conduction from the polysilicon film 7 changes in the SOI mono-distribution, the temperature distribution within the polysilicon film 3 will change as shown in FIGS. 1(c) and 1(d), respectively. With the aid of heat conduction from the silicon film 7, a temperature distribution suitable for SOI single crystallization is achieved. Therefore, an SOI single crystal can be formed more easily than the conventional method.

前記実施例では半導体膜として多結晶膜を使ったが非晶
質膜でもよいことは明らかである。
Although a polycrystalline film was used as the semiconductor film in the above embodiment, it is clear that an amorphous film may also be used.

また前記実施例では蓄熱用に使っているポリシリコン膜
7をストライプ状に形成したが、形状はこれに限らずビ
ームを照射する範囲において島状に分離されていればよ
い。ただし島がレーザビームで照射しきれないほど幅が
大きいと、レーザビームを照射されない半導体部分へ熱
が逃げてしまい蓄熱の役割を果たさなくなるので、島の
大きさはビーム径に応じて設定するとよい。
Further, in the embodiment described above, the polysilicon film 7 used for heat storage is formed in a striped shape, but the shape is not limited to this, and may be separated into islands in the range to be irradiated with the beam. However, if the island is so wide that it cannot be irradiated with the laser beam, heat will escape to the semiconductor parts that are not irradiated with the laser beam, and it will not play the role of heat storage, so it is better to set the size of the island according to the beam diameter. .

また反射防止膜、反射膜を構成する絶縁膜は前記実施例
に限らず、単結晶を形成したい領域上で反射膜他の部分
で反射防止膜となるようなくみあわせであればよい。
Further, the anti-reflection film and the insulating film constituting the reflective film are not limited to those in the above embodiments, and may be arranged so that the reflective film and other parts serve as an anti-reflection film on the region where a single crystal is desired to be formed.

(発明の効果) るのを防害していたポリシリコン膜7に蓄えられた熱が
、本発明では単結晶成長を促す要因となっているので単
結晶化すべき領域の端部を内側より十分温度を高(する
ことができ良好な単結晶膜が得られる。
(Effects of the Invention) In the present invention, the heat stored in the polysilicon film 7, which was used to prevent damage, is a factor that promotes single crystal growth. (can obtain a good single crystal film.

また試料形成時に各薄膜に膜厚むらが生じ反・対車の差
が小さくなっても、またビームの目合わせの位置の誤差
からパワー分布が変化しても1.単結晶化すべき領域の
端部と内側の温度差を十分大きくとれる。
Furthermore, even if the difference between the opposite wheel and the opposite wheel becomes smaller due to unevenness in the thickness of each thin film during sample formation, or the power distribution changes due to an error in the alignment position of the beam, 1. The temperature difference between the end and the inside of the region to be single crystallized can be made sufficiently large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明における試料の断面図、第1図(
b)は本発明を用いた時のポリシリコン膜3に入射され
たレーザパワー分布及び温度分布を示す図、第1図(C
)は本発明において各薄膜の膜厚むらがあった場合の、
ポリシリコン膜3に入射されたレーザパワー分布、及び
温度分布を示す図、第1図(d)は本発明において、レ
ーザ位置の目合せずれが生じた時のポリシリコン膜3内
でのレーザパワー分布及び温度分布を示す図、第2図(
a)は従来法を用いた場合のれたレーザパワー分布及び
温度分布を示す図、第2図(d)は従来法においてレー
ザ位置の目合せずれが生じた時のポリシリコン膜3内で
のレーザパワー分布及び温度分布を示す図である。 第1図、第2図において、 1はシリコン基板    2,4はシリコン酸化膜3.
7はポリシリコン膜  5,6はシリコン窒化膜8はレ
ーザビーム径 9はSOI単結晶を形成したい領域 10はポリシリコン膜3に入射されたレーザパワー分布 11はポリシリコン膜3内での温度分布である。 工業技術院長 オ  1  図 8 レーザビーム径     9S01単結晶を形成し
た領域10ポリシリコン膜3に入射されたレーザパワー
分布11ポリシリコン膜3内での1度分布 71−1  図 8レーザビーム径 9S01単結晶を形成したい領域 10ポリシリコン膜3に入射されたレーザパワー分布1
1ポリシリコン膜3内での温度分布 1−2   図 位置 1シリコン基板      2,4シリフ4化膜   
   3,1ポリシリコン膜5.6シリコン窒化膜 8 レーザビーム径    9S01単結晶を形成した
い領域10ポリシリコン膜3に入射されたレーザパワー
分布11ポリシリコン膜3内での温度分布 オ 2 図 位置 (d) 8レーザビーム径
FIG. 1(a) is a cross-sectional view of the sample in the present invention, FIG.
b) is a diagram showing the laser power distribution and temperature distribution incident on the polysilicon film 3 when the present invention is used, and FIG.
) is the case when there is unevenness in the thickness of each thin film in the present invention.
A diagram showing the laser power distribution and temperature distribution incident on the polysilicon film 3, FIG. 1(d) shows the laser power within the polysilicon film 3 when misalignment of the laser position occurs in the present invention. Diagram showing distribution and temperature distribution, Figure 2 (
Figure 2 (a) shows the laser power distribution and temperature distribution when using the conventional method, and Figure 2 (d) shows the distribution within the polysilicon film 3 when the laser position misalignment occurs in the conventional method. FIG. 3 is a diagram showing laser power distribution and temperature distribution. In FIGS. 1 and 2, 1 is a silicon substrate, 2 and 4 are silicon oxide films 3.
7 is a polysilicon film 5, 6 is a silicon nitride film 8 is a laser beam diameter 9 is a region where an SOI single crystal is to be formed 10 is a laser power distribution 11 incident on the polysilicon film 3 is a temperature distribution within the polysilicon film 3 It is. Director of the Institute of Industrial Science and Technology 1 Figure 8 Laser beam diameter 9S01 Single crystal formed region 10 Laser power distribution incident on the polysilicon film 3 11 1 degree distribution within the polysilicon film 3 71-1 Figure 8 Laser beam diameter 9S01 single crystal Distribution of laser power incident on the region 10 where crystals are desired to be formed 10 and the polysilicon film 3
1 Temperature distribution in polysilicon film 3 1-2 Figure position 1 Silicon substrate 2,4 silicon film 4 silicon substrate
3,1 Polysilicon film 5.6 Silicon nitride film 8 Laser beam diameter 9S01 Region where single crystal is desired to be formed 10 Laser power distribution incident on polysilicon film 3 11 Temperature distribution within polysilicon film 3 O 2 Figure position ( d) 8 laser beam diameter

Claims (1)

【特許請求の範囲】[Claims] 少なくとも表面に絶縁層が形成された基板上に多結晶ま
たは非晶質の第一の半導体膜を形成し、次にその上に第
一の絶縁膜を形成し、その上に複数個の島状に分割され
た第二の半導体膜を形成し、第一の絶縁膜及び第二の半
導体膜上に第二の絶縁膜を形成して第一、第二の絶縁膜
と第二の半導体膜からなる多層膜のレーザ光反射率が第
一、第二の絶縁膜からなる多層膜のレーザ光反射率より
小さくなるようにし、次に少なくとも2個の島状の半導
体膜を照射できるビーム幅をもったレーザビームを照射
して前記2個の島状半導体膜の間に存在する第一の半導
体膜を単結晶化することを特徴とするSOI構造形成方
法。
A polycrystalline or amorphous first semiconductor film is formed on a substrate having an insulating layer formed on at least the surface, then a first insulating film is formed thereon, and a plurality of island-shaped semiconductor films are formed on the first insulating film. A second insulating film is formed on the first insulating film and the second semiconductor film to separate the first and second insulating films and the second semiconductor film. The laser beam reflectance of the multilayer film made of the first and second insulating films is made smaller than the laser light reflectance of the multilayer film made of the first and second insulating films, and then the beam width is set such that it can irradiate at least two island-shaped semiconductor films. A method for forming an SOI structure, characterized in that a first semiconductor film existing between the two island-shaped semiconductor films is made into a single crystal by irradiating the same with a laser beam.
JP13913485A 1985-06-27 1985-06-27 Forming method for soi structure Pending JPS621219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13913485A JPS621219A (en) 1985-06-27 1985-06-27 Forming method for soi structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13913485A JPS621219A (en) 1985-06-27 1985-06-27 Forming method for soi structure

Publications (1)

Publication Number Publication Date
JPS621219A true JPS621219A (en) 1987-01-07

Family

ID=15238325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13913485A Pending JPS621219A (en) 1985-06-27 1985-06-27 Forming method for soi structure

Country Status (1)

Country Link
JP (1) JPS621219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732232A (en) * 1986-04-14 1988-03-22 Toyota Jidosha Kabushiki Kaisha Tiltable shift lever assembly for automotive vehicle transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732232A (en) * 1986-04-14 1988-03-22 Toyota Jidosha Kabushiki Kaisha Tiltable shift lever assembly for automotive vehicle transmission

Similar Documents

Publication Publication Date Title
KR900000561B1 (en) Manufacturing method of an ic and device
JPH0732124B2 (en) Method for manufacturing semiconductor device
JPS62132311A (en) Recrystallizing method for conductor film
JPS62206816A (en) Manufacture of semiconductor crystal layer
JPH027415A (en) Formation of soi thin film
JPS621219A (en) Forming method for soi structure
JPS6331108A (en) Manufacture of soi (silicon on insulator) element
KR100250182B1 (en) Method of forming semiconductor crystal and semiconductor device
JPH06140321A (en) Method of crystallizing of semiconductor film
JPS621220A (en) Manufacture of defect localized orientation silicon monocrystalline film on insulation support
JP2840081B2 (en) Semiconductor thin film manufacturing method
JP2817613B2 (en) Method for forming crystalline silicon film
JPH0442358B2 (en)
JPS62179112A (en) Formation of soi structure
JPS5825220A (en) Manufacture of semiconductor substrate
JPH0396224A (en) Manufacture of soi substrate
JPS6279614A (en) Crystallizing method for semiconductor island disposed on transparent substrate by laser
JPS6254910A (en) Manufacturing semiconductor device
KR940006697B1 (en) Manufacturing method of soi mos
JPS6216509A (en) Manufacture of substrate for semiconductor device
JPS60161396A (en) Manufacture of silicon thin film
JPS62219510A (en) Formation of single crystal island region
JPS5939023A (en) Manufacture of semiconductor thin film
JPS62250629A (en) Manufacture of semiconductor device
JPH0693428B2 (en) Method for manufacturing multilayer semiconductor substrate