JPS62106667A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62106667A
JPS62106667A JP24632185A JP24632185A JPS62106667A JP S62106667 A JPS62106667 A JP S62106667A JP 24632185 A JP24632185 A JP 24632185A JP 24632185 A JP24632185 A JP 24632185A JP S62106667 A JPS62106667 A JP S62106667A
Authority
JP
Japan
Prior art keywords
oxide film
source
film
electrode
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24632185A
Other languages
Japanese (ja)
Inventor
Junichi Ochiai
淳一 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP24632185A priority Critical patent/JPS62106667A/en
Publication of JPS62106667A publication Critical patent/JPS62106667A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To reduce a junction capacitance and improve device characteristics by a method wherein two polycrystalline silicon layers are formed and lead electrodes with side walls are formed for source-drain layers by reactive ion etching. CONSTITUTION:An oxide film 2 and a nitride film 3 for selective oxidization are formed on a silicon substrate 1. The nitride film 3 is removed except the part on an active region 4 and field oxide films 5 are formed by heat oxidization. The remaining nitride film 3 is removed and the 1st polycrystalline silicon layer 6 and an insulating film 7 are successively formed. The insulating film 7 and a 1st polycrystalline silicon layer 6 are removed except the arts where lead electrodes are formed and the lead electrodes 61 are formed. A 2nd polycrystalline silicon layer is formed over the whole surface and an impurity is introduced. The 2nd polycrystalline silicon layer is removed to form side walls 81. A gate oxide film 9 and source-drain layers 10 are formed by oxidization. A gate electrode 11 is formed and a layer insulating film 12 is applied and electrode lead aperture 13 are drilled to form source-drain electrodes.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体素子、特にMO3型トランジスタの製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing semiconductor devices, particularly MO3 type transistors.

(従来の技術) 第3図fat〜+e+により従来の製造方法を工程順に
説明する。
(Prior Art) A conventional manufacturing method will be explained step by step with reference to FIGS. 3 fat to +e+.

先づ第3図(alのことく、シリコノ基板1に選択酸化
のための酸化膜2と窒化膜3を形成する。次に第3図f
blのごとく、アクティブ領域4以外の部分にフィール
ド酸化、嘆5を形成する。次に全面をポリシリコン層で
覆い、ゲ−1・領域以外のポリシリコンを除去し、第3
図+C)のごとくゲート電掩31を形成する。このとs
−1?リシリコ〉の電気抵抗を下げろため、予め不純物
例えばリン等をドープしておく。
First, an oxide film 2 and a nitride film 3 for selective oxidation are formed on the silicon substrate 1 as shown in FIG.
As shown in bl, a field oxidation layer 5 is formed in a portion other than the active region 4. Next, the entire surface is covered with a polysilicon layer, and the polysilicon other than the gate 1 area is removed.
A gate electric cover 31 is formed as shown in Figure +C). This and s
-1? In order to lower the electrical resistance of the silico, it is doped with impurities such as phosphorus in advance.

引き続き、イオン注入法等によりソース・ドレイン領域
に不純物を導入しソース・ドレイン層32を約0.5μ
m深に形成(,5た後、第3図f、11のごとく絶縁膜
33を例文ばCVD法によって形成する。
Subsequently, impurities are introduced into the source/drain region by ion implantation or the like to form the source/drain layer 32 by approximately 0.5 μm.
After forming the insulating film 33 to a depth of m (5 m), an insulating film 33 is formed by, for example, the CVD method as shown in FIG. 3F and 11.

次に第3図(e)のごとくソース・ドレイン領域に電極
取出し孔34を開孔し、・ノース・ドレイン電極35を
形成してM OS型11−ラノンスタを完成する。
Next, as shown in FIG. 3(e), an electrode extraction hole 34 is opened in the source/drain region, and a north/drain electrode 35 is formed to complete a MOS type 11-lanon star.

第4図は上述の従来方法で製造されたM OS型トラー
ジスタのパターンレイアウト図である。この図において
、電極取出し孔34のアクティブ内余裕(間隔+フィト
マスク合わせ余裕)をW4、電極取出し孔34の大きさ
W5、ゲート31と電極取出し孔34の余裕(間隔子フ
ォトマスク合わせ余裕)をW 6 、ゲ〜!−長をW2
とし、例えば最小パターン巾2μm3最小パターン間隔
1μm1フォトマスク合わせ余裕1μmとすれば、ソー
ス、ドし2イン長(W3X2)及びアクティブ長(Wl
)はソース・ドレイJ長: W3X2= (W4+W5
+W6)X2= (1+1+2+1+1)x2 −12(μm) アクティブ長: Wl  = (W4+W5+W6)x
2+W2=12−+−2=14  Cμm) となる。
FIG. 4 is a pattern layout diagram of a MOS type transistor manufactured by the above-mentioned conventional method. In this figure, the active inner margin (space + phytomask alignment margin) of the electrode extraction hole 34 is W4, the size W5 of the electrode extraction hole 34, and the margin between the gate 31 and the electrode extraction hole 34 (spacer photomask alignment margin). W 6, ge~! - length is W2
For example, if the minimum pattern width is 2 μm, the minimum pattern spacing is 1 μm, and the photomask alignment margin is 1 μm, then the source, dot, 2-inch length (W3X2) and active length (Wl
) is the source dray J length: W3X2= (W4+W5
+W6)X2= (1+1+2+1+1)x2 -12 (μm) Active length: Wl = (W4+W5+W6)x
2+W2=12-+-2=14 Cμm).

(発明が解決しようとする問題点) 以上、従来方法によってデバイス形成を行丸ば、ソース
・ド1.・インのゲート長方向の長さは現在のパターン
ニンゲ情度では12μm程度必要であり、これをより縮
小するためにはバターニングff度の向上やマスク合わ
せ余裕の低減を強いることになり、技術的には極めて困
難であるといえろ。
(Problems to be Solved by the Invention) As described above, if the device is formed by the conventional method, the source dot 1. - The length of the in in the gate length direction is required to be approximately 12 μm based on current patterning requirements, and in order to further reduce this, it will be necessary to improve the patterning ff degree and reduce the mask alignment margin, and technology It can be said that it is extremely difficult.

本発明は前記パターンニング精度マスク合わせ余裕に負
担をかけずにデバイスの縮小化を行う製造方法を提供す
るもので、主にソース・ドレインとなる不純物拡散領域
を大巾に縮小し、接合容量を低減することにより、素子
特性の向上を計ることを目的とする。
The present invention provides a manufacturing method for reducing the size of a device without placing any burden on the patterning precision mask alignment margin, and mainly reduces the impurity diffusion regions that become the source and drain to a large extent, thereby increasing the junction capacitance. The purpose is to improve device characteristics by reducing the

(問題点を解決するための手段) 本発明の半導体素子の製造方法においては、2層のポリ
シリコン層を形成すること及びRIE法によってエツチ
ングすること、この二つを適用することによりサイドウ
オールを有する引出し電極をソース・ドレイン層に対し
て設けたことを特徴とずろものである6、 (作  用) 本発明方法では、MO3型トランジスタにおいて・ノー
ス・ドレイン領域から電極をフィールド酸化膜十に引出
すに際して、第1ポリシリコン層のアクティブ領域内終
端部とソース・ドレイン領域となるアクティブ領域内シ
リコン基板表面を第2ポリシリコン層で形成したサイド
ウオールで接続することによって、ソース・ドレイン領
域を大巾に縮小することが可能となるものであり、実効
アクティブ面S(ゲート領域+ソース・ドレイン領域)
はほぼゲート領域のみで決定される乙とになる。
(Means for solving the problem) In the method for manufacturing a semiconductor device of the present invention, the sidewall is formed by forming two polysilicon layers and etching by RIE method. 6. (Function) In the method of the present invention, an electrode is drawn out from the north drain region to the field oxide film layer in an MO3 type transistor. At this time, the source/drain regions are widened by connecting the end portion of the first polysilicon layer in the active region and the surface of the silicon substrate in the active region, which will become the source/drain regions, with a sidewall formed of the second polysilicon layer. The effective active surface S (gate region + source/drain region)
is determined almost exclusively by the gate area.

(実 施 例) 第1図ta+〜if)により本発明の製造方法を工程順
に説明する。
(Example) The manufacturing method of the present invention will be explained in order of steps with reference to FIG. 1 ta+ to if).

先づ第1図falのことく、ンリコン基板1に還択酸化
用の酸化膜2と窒化膜3を順次形成する。次に第1図(
blのごとく、アクティブ領域4以外の窒化膜3を除去
し、熱酸化によってフィールド酸化膜5を形成する。続
いて第1図(clのごとく、残存窒化膜3を除去し、第
1ポリシリコン層6及び絶縁膜7を順次形成する。この
とき第1ポリシリコン層6には電気抵抗を下げろt二め
、不純物をドープするかあるいはシリサイド化(T i
 −5i、 W−3i。
First, as shown in FIG. 1, an oxide film 2 and a nitride film 3 for selective oxidation are sequentially formed on a silicon substrate 1. Next, Figure 1 (
As shown in bl, the nitride film 3 other than the active region 4 is removed and a field oxide film 5 is formed by thermal oxidation. Subsequently, as shown in FIG. , doping with impurities or silicidation (T i
-5i, W-3i.

Mo−3i等)しておく。次に第1図(dlのごとく、
ソース・ドレインの引出し電極61となる部分以外の絶
縁膜7及び第1ポリシリコン層6を順次RIE法によっ
て除去し、引出し電極61を形成する。このとき引出し
電極61はアクティブ領域4にフォトマスク合わせ余裕
程度接していればよい。
Mo-3i etc.). Next, as shown in Figure 1 (dl),
The insulating film 7 and the first polysilicon layer 6 other than the portions that will become the source/drain extraction electrodes 61 are sequentially removed by RIE to form the extraction electrodes 61. At this time, the extraction electrode 61 only needs to be in contact with the active region 4 to the extent that there is room for photomask alignment.

さらに第2ポリシリコン層8(約0.5μm厚)で全面
を覆い、ノース・ドレイ:/層を形成する不純物をイオ
ン注入法等で該第2ポリシリコン層8に導入する。次に
第1図f、lのごとく、全面の第2ポリシリコシ層8を
RIE法によって層厚分t″、け除去し、引出し電極6
1として残された第1ポリシリコンの端部側壁に第2ポ
リシリコンのサイドウオール81が残存する。そして、
酸化によってゲート酸化膜9及びソース・ドレイン層1
0が形成される。次に第1図(flのことく、サイドウ
オール81を含む引出し電極61の一部に重なるように
ゲー)・電極11を形成し、層間絶縁膜12を被着させ
た後、電極取出し孔13を開孔しソース・ドレイン電1
砥14をそれぞれ形成してMO3型トう、/ジスクを得
る。
Further, the entire surface is covered with a second polysilicon layer 8 (about 0.5 μm thick), and impurities forming a north drain layer are introduced into the second polysilicon layer 8 by ion implantation or the like. Next, as shown in FIG.
A sidewall 81 of the second polysilicon remains on the end side wall of the first polysilicon that remains as a polysilicon. and,
Gate oxide film 9 and source/drain layer 1 are removed by oxidation.
0 is formed. Next, as shown in FIG. 1 (FIG. 1, the electrode 11 is formed so as to overlap a part of the extraction electrode 61 including the sidewall 81), and after the interlayer insulating film 12 is deposited, the electrode extraction hole 13 is Open a hole and source/drain voltage 1
The grinding wheels 14 are respectively formed to obtain MO3 type tow/disk.

第2図は上述の本発明方法で製造されたMO3型トラン
ジスタのパターンレイアウト図である。
FIG. 2 is a pattern layout diagram of an MO3 type transistor manufactured by the above-described method of the present invention.

この図において、ソース・ドレイン接合領域(斜線部)
のW3はポリシリコンのサイドウオール81で形成され
るため約0.5μmの長さと、なり、ソース・ドレイン
電極W3X2)は約1μmで形成可能となる。
In this figure, the source/drain junction region (shaded area)
Since W3 is formed of the polysilicon sidewall 81, it has a length of about 0.5 μm, and the source/drain electrode W3X2) can be formed with a length of about 1 μm.

(発明の効果) 本発明方法によって得らねろ効果を従来方法と比較して
、以下に説明する、 第2図及び第4図のパターンレイアラ1−図において、
例えばゲート巾方向の長さI−を5μmとすれば、第4
図の従来方法で必要とされる接合面積(斜線部)ば12
X5=60 (μm′)となるが、第2図の本発明方法
ではlX5=5 (μm’)となり極めて大巾な縮小が
達成される。このソース・ドレイン接合領域の縮小は接
合容量の低減となり、半導体素子の動作特性向上に寄与
するところが大きい。
(Effects of the Invention) The effects obtained by the method of the present invention will be compared with those of the conventional method, and will be explained below.
For example, if the length I- in the gate width direction is 5 μm, the fourth
The bonding area (shaded area) required by the conventional method in the figure is 12
X5=60 (μm'), but in the method of the present invention shown in FIG. 2, lX5=5 (μm'), achieving an extremely large reduction. This reduction in the source/drain junction region reduces the junction capacitance, which greatly contributes to improving the operating characteristics of the semiconductor device.

さらに本発明て(よ、・ノース・ドしイ′J層からの電
極引出しにドープドポリシリコン法が適用されているた
め、浅い接合からの電極引出しのときに問題となる電極
材の拡散によって生ずる接合’I −り電流(所謂アノ
+= Eスパイク)を懸念する必要がない等の効果も牛
ずろ。
Furthermore, in the present invention, since the doped polysilicon method is applied to lead out the electrode from the J layer, diffusion of the electrode material, which is a problem when leading out the electrode from a shallow junction, The advantageous effects include the fact that there is no need to worry about the resulting junction 'I - current (so-called Ano+=E spike).

【図面の簡単な説明】[Brief explanation of drawings]

第1図fat〜if)は本発明の製造工程を順に示す断
面図、第2図は本発明方法によって製造した半導体素子
のレイアウト図、第3図fal〜felは従来の製造工
程を順に示す断面図、第4図は従来方法によって製造し
た半導体素子のレイアウト図である。 1−シリコン基板、2・・酸化膜、3・・窒化膜、4 
アクティブ領域、5 ・フィールド酸化膜、6°第1ポ
リシリコン層、61・・引出し電極、7・・絶縁膜、8
・・第2ポリシリコン層、81 サ(ドウオール、9・
・ゲート酸化膜、10・ソース・ドレイン層、11 ゲ
ート電極、12 ・層間絶縁膜、13・・電極取出し孔
、14・・ソース・ドレイン電極、31 ゲート電極、
32 ソース・ドレイン層、33 絶縁膜、34 電極
取出し孔、35・・ソース・ドレイン電極。 3?化膿 )ご明a侶迫丁狩奢示す断面図 第1 図
Figures 1 (fat to if) are cross-sectional views sequentially showing the manufacturing process of the present invention, Figure 2 is a layout diagram of a semiconductor element manufactured by the method of the present invention, and Figures 3 fal to fel are cross-sectional views sequentially showing the conventional manufacturing process. FIG. 4 is a layout diagram of a semiconductor device manufactured by a conventional method. 1-Silicon substrate, 2...Oxide film, 3...Nitride film, 4
Active region, 5. Field oxide film, 6° first polysilicon layer, 61. Leading electrode, 7. Insulating film, 8
・・Second polysilicon layer, 81 Sa (wall, 9・
・Gate oxide film, 10. Source/drain layer, 11 Gate electrode, 12 ・Interlayer insulating film, 13. Electrode extraction hole, 14. Source/drain electrode, 31 Gate electrode,
32 source/drain layer, 33 insulating film, 34 electrode extraction hole, 35 source/drain electrode. 3? Fig. 1: Cross-sectional view showing suppuration)

Claims (1)

【特許請求の範囲】 半導体素子の製造に際して、 (a)半導体基板表面に選択酸化用の酸化膜及び窒化膜
を順次被着させ、アクティブ領域以外の前記窒化膜及び
酸化膜を順次除去した後、熱酸化によってアクティブ領
域以外にフィールド酸化膜を形成する工程と、 (b)アクティブ領域上に残存している前記窒化膜を除
去し、第1ポリシリコン層及び絶縁膜を順次形成した後
、アクティブ領域の一部からフィールド酸化膜上に延在
する部分以外の前記絶縁膜、第1ポリシリコン層及び選
択酸化用の酸化膜を順次RIE(リアクティブイオンエ
ッチング)法で除去する工程と、 (c)全面に第2ポリシリコン層を形成し、この第2ポ
リシリコン層内にのみ不純物を導入した後、この第2ポ
リシリコン層をRIE法により層厚分だけ除去しサイド
ウォールを有する引出し電極を形成する工程と、 (d)ソース・ドレイン層、ゲート酸化膜及びゲート電
極を順次形成した後、全面に層間絶縁膜を被着する工程
と、 (e)前記引出し電極の所定位置に電極取出し孔を開孔
し、ソース・ドレイン電極を形成する工程と、を順次施
すことを特徴とする半導体素子の製造方法。
[Claims] When manufacturing a semiconductor device, (a) after sequentially depositing an oxide film and a nitride film for selective oxidation on the surface of a semiconductor substrate, and sequentially removing the nitride film and oxide film in areas other than the active area, (b) removing the nitride film remaining on the active region and sequentially forming a first polysilicon layer and an insulating film; (c) sequentially removing the insulating film, the first polysilicon layer, and the oxide film for selective oxidation except for the part extending over the field oxide film from a part of the field oxide film by RIE (reactive ion etching); After forming a second polysilicon layer on the entire surface and introducing impurities only into this second polysilicon layer, this second polysilicon layer is removed by the layer thickness by RIE method to form an extraction electrode having sidewalls. (d) After sequentially forming a source/drain layer, a gate oxide film, and a gate electrode, a step of depositing an interlayer insulating film on the entire surface; (e) forming an electrode extraction hole at a predetermined position of the extraction electrode; A method for manufacturing a semiconductor device, comprising sequentially performing the steps of opening holes and forming source/drain electrodes.
JP24632185A 1985-11-05 1985-11-05 Manufacture of semiconductor device Pending JPS62106667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24632185A JPS62106667A (en) 1985-11-05 1985-11-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24632185A JPS62106667A (en) 1985-11-05 1985-11-05 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62106667A true JPS62106667A (en) 1987-05-18

Family

ID=17146815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24632185A Pending JPS62106667A (en) 1985-11-05 1985-11-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62106667A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107437500A (en) * 2016-05-26 2017-12-05 北大方正集团有限公司 The manufacture method and polysilicon gate of a kind of polysilicon gate
JP2022166322A (en) * 2009-12-04 2022-11-01 株式会社半導体エネルギー研究所 Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022166322A (en) * 2009-12-04 2022-11-01 株式会社半導体エネルギー研究所 Semiconductor device
CN107437500A (en) * 2016-05-26 2017-12-05 北大方正集团有限公司 The manufacture method and polysilicon gate of a kind of polysilicon gate

Similar Documents

Publication Publication Date Title
JP3413823B2 (en) Semiconductor device and manufacturing method thereof
JP2804539B2 (en) Semiconductor device and manufacturing method thereof
JP3199717B2 (en) Semiconductor device and method of manufacturing the same
JP2791260B2 (en) Method for manufacturing semiconductor device
JPH02263473A (en) Semiconductor device and semiconductor storage device
JPH02125623A (en) Manufacture of self-alignment transistor
JPH02166762A (en) Compact cmos device and
JP3229665B2 (en) Method of manufacturing MOSFET
JPH10107267A (en) Field-effect transistor and its manufacture
JP2000138375A (en) Semiconductor device and its manufacture
JP2571004B2 (en) Thin film transistor
JPS6123360A (en) Semiconductor memory and manufacture of the same
JPS62106667A (en) Manufacture of semiconductor device
JPH04116846A (en) Semiconductor device and its manufacture
JPH113993A (en) Semiconductor device and its manufacture
JP2596607B2 (en) Method for manufacturing MOS transistor
JPS6315749B2 (en)
JP2971085B2 (en) Method for manufacturing semiconductor device
JP3474091B2 (en) Semiconductor device and manufacturing method thereof
JPH0311765A (en) Manufacture of semiconductor device
JPH0738095A (en) Semiconductor device and its manufacturing method
JP4439678B2 (en) Manufacturing method of semiconductor device
JPH03257859A (en) Semiconductor device and manufacture thereof
JPS5933271B2 (en) Manufacturing method of semiconductor device
JP3955123B2 (en) Manufacturing method of MOS transistor