JPS62105473A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62105473A
JPS62105473A JP24544885A JP24544885A JPS62105473A JP S62105473 A JPS62105473 A JP S62105473A JP 24544885 A JP24544885 A JP 24544885A JP 24544885 A JP24544885 A JP 24544885A JP S62105473 A JPS62105473 A JP S62105473A
Authority
JP
Japan
Prior art keywords
gate electrode
gate
semiconductor substrate
region
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24544885A
Other languages
Japanese (ja)
Inventor
Koji Sudo
須藤 弘司
Hirokazu Miyoshi
三好 寛和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24544885A priority Critical patent/JPS62105473A/en
Publication of JPS62105473A publication Critical patent/JPS62105473A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor device whose interelectrode capacitance is small, by making a second gate electrode encroach in a first gate electrode as far as a position where P-N junction planes of source region and drain region come into contact with the semiconductor substrate. CONSTITUTION:An N-type impurity diffusion region of source 11b and an N-type diffusion region of drain 11a are formed separately on a main surface side of a P-type semiconductor substrate 10 made of silicon. A first gate electrode 14 made of molybdenum silicide is formed on a gate insulating film 13 on the main surface of the P-type semiconductor substrate 10, so as to span across the source region 11b and the drain region 11a. A second gate electrode made of polysilicon is formed under the gate electrode 14 contacting with it via the gate insulating film 13, in the manner in which the gate electrode is made to encroach in the gate electrode 14 as far as a position where the P-N junction planes of source region 11b and drain region 11a come into contact with the main surface of the semiconductor substrate 10. The overlap between the im purity diffusion regions 11a, 11b and the gate part is decreased, so that the interelectrode capacitance of gate.source drain can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に係シ、特に、ダイナミックメモリ
ー等の高集積度メモリーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to semiconductor devices, and particularly to highly integrated memories such as dynamic memories.

〔従来の技術〕[Conventional technology]

この種MO8)ランシスターを用いたダイナミックメモ
リー等の高集積度メモリーに於いては、近年、その高密
度化の為に、素子の微細化、配線の微細化が図られてい
る。
In high-integration memories such as dynamic memories using this type of MO8) run sister, in recent years, in order to increase the density, miniaturization of elements and wiring has been attempted.

その為、デバイスの高速動作を維持向上させる為にその
ゲート電極材料も低抵抗化を必要とし、従来の一層のポ
リシリコン膜から、ポリシリコン膜上に、モリブデンシ
リサイドやタイゲステンシリサイドのようなメタルシリ
・リイド膜を形成した二重ゲート構造化を図り、その低
抵抗化を実現していく傾向にある。
Therefore, in order to maintain and improve the high-speed operation of the device, the gate electrode material also needs to have a low resistance, so instead of the conventional single layer polysilicon film, metal silicide such as molybdenum silicide or tiegesten silicide is used on the polysilicon film.・There is a trend toward creating a double gate structure with a lead film and achieving lower resistance.

しかしながら、メモリーの高密度化に併なう素子数の増
加は、従来に比べ、ゲート電極とソースドレイン電極の
間の寄生容量の増加をきたし、デバイスの高速動作への
阻害要因となっている。
However, the increase in the number of elements associated with higher density memory has resulted in an increase in the parasitic capacitance between the gate electrode and the source/drain electrode compared to the past, which has become an impediment to high-speed operation of the device.

第6図に半導体装置における従来のゲート構造の一例を
示す。図において(1)はシリコン基板、(2)は拡散
層、(3)は素子分離酸化膜、(4)はゲート酸化膜、
(5)はポリシリコン膜、(6)はモリブデンシリサイ
ド膜でポリシリコン膜(5)とモリブデンシリサイド膜
(6)とでゲート電極(7)を構成している。
FIG. 6 shows an example of a conventional gate structure in a semiconductor device. In the figure, (1) is a silicon substrate, (2) is a diffusion layer, (3) is an element isolation oxide film, (4) is a gate oxide film,
(5) is a polysilicon film, (6) is a molybdenum silicide film, and the polysilicon film (5) and the molybdenum silicide film (6) constitute a gate electrode (7).

この様な構造の半導体装置を製造する際には、まず、半
導体基板(1)に素子分離酸化膜(3)及びゲート酸化
膜(4)を形成した後、上記半導体基板(1)上全面に
ポリシリコン膜(5)及びモリブデンシリサイド膜(6
)を形成する。次にレジストパターンをこのモリブデン
シリサイド膜(6)上のゲート電極形成領域に形成した
後、まずは、モリブデンシリサイド膜(6)を等方性プ
ラズマエツチング法にて除去し、次に異方性プラズマエ
ツチング法にてポリシリコン膜(5)を除去する。その
後、イオン注入法にて不純物を半導体基板(1)に打ち
込み更に熱拡散法にて不純物を拡散して不純物拡散71
1 (2)を形成して第6図に示す様なものを得る。
When manufacturing a semiconductor device with such a structure, first, an element isolation oxide film (3) and a gate oxide film (4) are formed on the semiconductor substrate (1), and then a film is formed on the entire surface of the semiconductor substrate (1). Polysilicon film (5) and molybdenum silicide film (6)
) to form. Next, after forming a resist pattern in the gate electrode formation region on this molybdenum silicide film (6), the molybdenum silicide film (6) is first removed by isotropic plasma etching, and then anisotropic plasma etching is performed. The polysilicon film (5) is removed by a method. After that, impurities are implanted into the semiconductor substrate (1) using the ion implantation method, and then the impurities are diffused using the thermal diffusion method to impurity diffusion 71.
1 (2) to obtain something as shown in FIG.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の半導体装置は以上のようであるので、拡散層(2
)を形成する際、デーl−電極(7)下への拡散層(2
)の入り込みが生じて、ポリシリコン膜(5)と拡散層
(2)間の容量が大とくなり、その為、ゲート電極(7
)配線への寄生容量が大きくなり、デバイスの高速動作
が阻害されるという問題点が有った。
Since the conventional semiconductor device is as described above, the diffusion layer (2
), a diffusion layer (2) below the electrode (7) is formed.
), the capacitance between the polysilicon film (5) and the diffusion layer (2) increases, and as a result, the gate electrode (7)
) There was a problem in that the parasitic capacitance to the wiring increased and the high-speed operation of the device was inhibited.

この発明は一ヒ記の様な問題点を解決するためになされ
たもので、ゲートと不純物領域との!極間容量の小さい
半導体装置を得ることを目的とする。
This invention was made to solve the problems mentioned in 1.1. The purpose is to obtain a semiconductor device with small capacitance between electrodes.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体装置は、半導体基板の一主表面に
互いに離隔して形成され、上記半導体基板と逆導電形の
ソース領域およびドレイン領域と、上記半導体基板の一
主表面上のゲート絶縁膜上に設けられ、上記ソース領域
およびドレイン領域にまたがって形成された第1のゲー
ト電極と、上記ゲート絶縁膜を介して上記第1のゲート
[極の下側にこれと接して設けられ、上記ソース領域お
よびドレイン領域のPn接合面が上記半導体基板の一主
表面と接する位置まで上記第1のゲート電極に対してく
い込ませて形成された第2のゲート電極とを備えたもの
である。
A semiconductor device according to the present invention includes a source region and a drain region formed on one main surface of a semiconductor substrate at a distance from each other, and having a source region and a drain region of opposite conductivity type to the semiconductor substrate, and a gate insulating film on one main surface of the semiconductor substrate. A first gate electrode formed across the source region and the drain region, and a first gate electrode provided on the lower side of the electrode and in contact with the first gate electrode through the gate insulating film; and a second gate electrode formed by biting into the first gate electrode to a position where a Pn junction surface of the region and the drain region contacts one main surface of the semiconductor substrate.

〔作用〕[Effect]

この発明に於ては第2のゲート電極がソース領域および
ドレイン領域のPn接合面が上記半導体基板の一主表面
と接する位置まで上記第1のゲート電極に対してくい込
ませて形成されているので、第2のゲート電極とソース
領域及びドレイン領域との重なシがほとんどないから、
電極間容量を小さくできる。
In this invention, the second gate electrode is formed by biting into the first gate electrode to a position where the Pn junction surfaces of the source region and the drain region contact one main surface of the semiconductor substrate. , since there is almost no overlap between the second gate electrode and the source and drain regions,
Capacitance between electrodes can be reduced.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、00はシリコンからなるP型半導体基板、
(lla)l (ub)は各々この半導体基板aCtの
一主表面側に互いに離隔して形成されたソース及びドレ
インのN型不純物拡散領域、(2)はゲート絶縁膜(至
)を介して第1のゲート電極α4の下側にこれと接して
設けられ、]二旧ソース領域(11,b)およびドレイ
ン領域(lla)のI’ N接合面が−に記半導体基板
αQの一主表面と接する位置まで上記第1のゲート電極
0ぐに対してくい込律せて形成されたポリシリコンから
なる第2のゲート電極、0→は上記半導体基板(1)の
−主表面上のゲート絶縁膜(6)上に設けられ、上記ソ
ース領域(11b )及びドレイン領域(Ila)にま
たがって形成されたモリブデンシリサイドからなる第1
のゲート電極、OQは上記ソース及びドレイン領域(t
lb)、 (lla)並びに第1及び第2ゲート電極(
ILQJからなる素子を素子毎に分離する素子分離酸化
膜である3、 次に上記の様に構成されjコ半導体装置の製造方法を第
1図ないし第5図に基づいて詳細に説明する。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, 00 is a P-type semiconductor substrate made of silicon;
(lla)l (ub) are source and drain N-type impurity diffusion regions formed spaced apart from each other on one main surface side of the semiconductor substrate aCt; 1 is provided under and in contact with the gate electrode α4, and the I'N junction surface of the two former source regions (11, b) and drain regions (lla) is connected to one main surface of the semiconductor substrate αQ described in -. A second gate electrode made of polysilicon is formed by penetrating into the first gate electrode 0 until it comes into contact with it, and 0→ is the gate insulating film on the -main surface of the semiconductor substrate (1). 6) A first layer made of molybdenum silicide provided on the source region (11b) and drain region (Ila) and formed over the source region (11b) and drain region (Ila).
gate electrode, OQ is the source and drain region (t
lb), (lla) and the first and second gate electrodes (
A method for manufacturing the semiconductor device constructed as described above will be described in detail with reference to FIGS. 1 to 5.

まず第2図に示す如く、シリコン基板00上に素子分離
酸化膜0す、ゲート酸化膜03を形成した後、ゲート電
極用としてポリシリコン膜0■及び、モリブデンシリサ
イド膜041を形成し、ポジレジストQ・を塗布し露光
現像を行い、第2ゲート電極形成領域にレジストパター
ンαQを作成する。
First, as shown in FIG. 2, after forming an element isolation oxide film 0 and a gate oxide film 03 on a silicon substrate 00, a polysilicon film 0 and a molybdenum silicide film 041 for gate electrodes are formed. A resist pattern αQ is formed in the second gate electrode formation region by applying Q. and performing exposure and development.

その後、レジストパターンαゆをマスクとし、異方性プ
ラズマエツチング法によシエッチングを行い第8図のも
のを達成する。更に、今度は等方性プラズマエツチング
法にて所定の時間エツチングを行うと、モリブデンシリ
サイド(I◆とポリシリコン(イ)のエツチングレート
の差異により、第4図に示すように、ポリシリコン膜の
エッチレートが速い為、くい込み部が形成される。その
後、イオン注入法に於いて第5図に示すんの打込層(l
la)、 (11b)を作り、高温の熱処理1000°
C80分N2中を行うと、第1図の不純物拡散領域(x
la)、 (1xb)が形成される。
Thereafter, using the resist pattern α as a mask, etching is carried out by an anisotropic plasma etching method to achieve what is shown in FIG. Furthermore, when etching is performed for a predetermined time using the isotropic plasma etching method, due to the difference in etching rate between molybdenum silicide (I◆) and polysilicon (A), as shown in Figure 4, the polysilicon film is etched. Since the etch rate is fast, a recessed part is formed.After that, in the ion implantation method, the implantation layer (l) shown in Figure 5 is used.
la), (11b) was made and heat treated at a high temperature of 1000°.
When C is heated in N2 for 80 minutes, the impurity diffusion region (x
la), (1xb) are formed.

本発明の二重ゲート構成の製造方法に於いては、第1図
に示すように、不純物拡散領域(lla)、 (11b
)のエッヂが、第1ゲート導電膜(2)のポリシリコン
端とほぼ一致し、従来法のような、ゲート部と重なυの
大きさが軽減され、ゲート・ソースドレインの電極間の
容量を減少する事が出来る。
In the method for manufacturing a double gate structure of the present invention, as shown in FIG.
) almost coincides with the polysilicon edge of the first gate conductive film (2), reducing the size of υ that overlaps with the gate part as in the conventional method, and reducing the capacitance between the gate and source/drain electrodes. can be reduced.

なお、本実施例に於いては、二重ゲート構造のエツチン
グは異方性エツチングの後、等方性エツチングと付加す
る事でくい込み形状が達成されたが、この方法にとられ
れる事なく種々の変形が考えられる。
In this example, the double gate structure was etched by adding isotropic etching after anisotropic etching to achieve the bite shape, but this method was not used and various methods were used. Possible variations are:

また、上記実施例に於ては、第2のゲート電極(2)を
ポリシリコン、第1のゲート電極0Φをモリブデンシリ
サイドからなるものとしたが他のものでもよく、要は、
第1のゲート導電膜041のエツチング速度が第2のゲ
ート導電膜θ擾のエツチング速度よシも遅ければ良いも
のである。。
Further, in the above embodiment, the second gate electrode (2) is made of polysilicon and the first gate electrode 0Φ is made of molybdenum silicide, but other materials may be used.
It is preferable that the etching rate of the first gate conductive film 041 is slower than the etching rate of the second gate conductive film θ. .

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、第2のゲート電極が、
ソース領域及びドレイン領域のI) N接合面が半導体
基板の一生表面と接する位置まで上記第1のゲート導電
膜にくい込ませて形成されているので、第2のゲート電
極とソース及びドレイン領域との重なりがほとんどない
から電極間容態を小さくでき、デバイスの高速動作が可
能になるという効果がある。
As explained above, in this invention, the second gate electrode is
Since the I)N junction surfaces of the source and drain regions are embedded into the first gate conductive film to the point where they are in contact with the surface of the semiconductor substrate, the contact between the second gate electrode and the source and drain regions is reduced. Since there is almost no overlap, the interelectrode condition can be reduced, which has the effect of enabling high-speed operation of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す半導体装置の断面図
、第2図ないし第5図は、上記第1図に於る半導体装置
の製造方法を工程順に示す半導体装置の断面図、第6図
は従来の半導体装置を示す断面図である。 なお、各図中同一符号は同一または相当部分を示すもの
である。
FIG. 1 is a cross-sectional view of a semiconductor device showing an embodiment of the present invention, and FIGS. 2 to 5 are cross-sectional views of the semiconductor device showing the manufacturing method of the semiconductor device shown in FIG. FIG. 6 is a sectional view showing a conventional semiconductor device. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板の一主表面に互いに離隔して形成され
、上記半導体基板と逆導電形のソース領域およびドレイ
ン領域、上記半導体基板の一主表面上のゲート絶縁膜上
に設けられ、上記ソース領域およびドレイン領域にまた
がって形成された第1のゲート電極、上記ゲート絶縁膜
を介して上記第1のゲート電極の下側にこれと接して設
けられ、上記ソース領域およびドレイン領域のPn接合
面が上記半導体基板の一主表面と接する位置まで上記第
1のゲート電極に対してくい込ませて形成された第2の
ゲート電極を備えたことを特徴とする半導体装置。
(1) A source region and a drain region formed on one main surface of the semiconductor substrate to be spaced apart from each other and having a conductivity type opposite to that of the semiconductor substrate; a first gate electrode formed across the source region and the drain region; a first gate electrode provided under and in contact with the first gate electrode via the gate insulating film; and a Pn junction surface of the source region and the drain region. A semiconductor device comprising: a second gate electrode that is formed by biting into the first gate electrode to a position where it contacts one main surface of the semiconductor substrate.
(2)第2ゲート電極はポリシリコン、第1ゲート電極
は金属シリサイド膜よりなることを特徴とする特許請求
の範囲第1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the second gate electrode is made of polysilicon and the first gate electrode is made of a metal silicide film.
(3)第1ゲート電極はモリブデンシリサイド膜よりな
ることを特徴とする特許請求の範囲第2項記載の半導体
装置。
(3) The semiconductor device according to claim 2, wherein the first gate electrode is made of a molybdenum silicide film.
JP24544885A 1985-10-31 1985-10-31 Semiconductor device Pending JPS62105473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24544885A JPS62105473A (en) 1985-10-31 1985-10-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24544885A JPS62105473A (en) 1985-10-31 1985-10-31 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62105473A true JPS62105473A (en) 1987-05-15

Family

ID=17133812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24544885A Pending JPS62105473A (en) 1985-10-31 1985-10-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62105473A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206171A (en) * 1989-02-06 1990-08-15 Nec Corp Semiconductor device and manufacture thereof
JPH0393271A (en) * 1989-09-06 1991-04-18 Toshiba Corp Mos-type semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5685866A (en) * 1979-12-14 1981-07-13 Hitachi Ltd Mos semiconductor device and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5685866A (en) * 1979-12-14 1981-07-13 Hitachi Ltd Mos semiconductor device and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206171A (en) * 1989-02-06 1990-08-15 Nec Corp Semiconductor device and manufacture thereof
JPH0393271A (en) * 1989-09-06 1991-04-18 Toshiba Corp Mos-type semiconductor device

Similar Documents

Publication Publication Date Title
JPH0259623B2 (en)
JPH07263677A (en) Semiconductor device and its manufacture
JPH0571174B2 (en)
KR100966033B1 (en) Method of making a vertical gate semiconductor device
KR100232197B1 (en) Method of manufacturing semiconductor device
KR100488099B1 (en) A mos transistor having short channel and a manufacturing method thereof
JPS62105473A (en) Semiconductor device
TWI453913B (en) Depletion mode semiconductor device with trench gate
JP2557206B2 (en) Method for manufacturing semiconductor device
JPS62229880A (en) Semiconductor device and manufacture thereof
JP2002305299A (en) Semiconductor device and method of manufacturing the same
US20220059695A1 (en) Semiconductor device and method for manufacturing the same
KR0161733B1 (en) Mosfet and its fabrication method
KR100390891B1 (en) Method for manufacturing ic semiconductor device
JP2003297941A (en) Capacitor structure of semiconductor device and method for forming the same
JPH11354793A (en) Manufacture of semiconductor device
KR100239455B1 (en) Method for fabricating semiconductor device
JPS58197882A (en) Manufacture of semiconductor device
JP2915036B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH10261795A (en) Insulating gate-type field-effect transistor and its manufacture
JPH03191574A (en) Semiconductor device
KR0167662B1 (en) Method for fabricating semiconductor device
JPH088430A (en) Mos transistor and its forming method
JPH08139205A (en) Semiconductor device and method of manufacturing the same
JPS59188973A (en) Mos type semiconductor device and manufacture thereof