JPS6196765A - Method for forming metal pattern - Google Patents

Method for forming metal pattern

Info

Publication number
JPS6196765A
JPS6196765A JP21631684A JP21631684A JPS6196765A JP S6196765 A JPS6196765 A JP S6196765A JP 21631684 A JP21631684 A JP 21631684A JP 21631684 A JP21631684 A JP 21631684A JP S6196765 A JPS6196765 A JP S6196765A
Authority
JP
Japan
Prior art keywords
mask
layer
pattern
conductor layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21631684A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kinoshita
木下 義弘
Motoki Furukawa
古川 元己
Tatsuro Mitani
三谷 達郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21631684A priority Critical patent/JPS6196765A/en
Priority to US06/786,825 priority patent/US4674174A/en
Priority to EP85113017A priority patent/EP0178619B1/en
Priority to DE8585113017T priority patent/DE3578729D1/en
Publication of JPS6196765A publication Critical patent/JPS6196765A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • H01L29/66856Unipolar field-effect transistors with a Schottky gate, i.e. MESFET with an active layer made of a group 13/15 material
    • H01L29/66863Lateral single gate transistors
    • H01L29/66878Processes wherein the final gate is made before the formation, e.g. activation anneal, of the source and drain regions in the active layer

Abstract

PURPOSE:To form a microstructure metal pattern with its vertical cross section rectangular by a method wherein a very thin, microstructure mask pattern is formed. CONSTITUTION:On the primary surface of a substrate 1, a 0.12mum-thick WN layer 5 and 0.5mum-thick Au layer 2 are formed and the entire surface of the Au layer 2 is covered by a 0.1mum-thick W layer 6 that is the first masking conductive layer. A photoresist film 7 is formed on the entire W layer 6 with the exception of a mask portion 6a. The mask portion 6a is then covered by a second masking conductive layer that is for example, a 0.1mum-thick Ti layer 8. When the photoresist film 7 is removed, the Ti layer 8 is retained only on the mask portion 6a. Etching is accomplished for removal with the Ti layer 8 serving as a mask. The Au layer 2 and the WN layer 5 positioned thereunder are subjected to an ion milling process wherein they are selectively removed with the Ti layer 8 and mask portion 6a serving as a mask, which results in the building of a gate electrode G.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体基板上へ金属ノ(ターンを形成する方
法、例えばGaAs半導体基板上へAuのゲート電極パ
ターンを形成する方法、に関するものであるつ〔発明の
技術的背景とその問題点〕 半導体基板上にAuの電極パターンを形成する従来の一
例を第2図に示す。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for forming metal turns on a semiconductor substrate, for example, a method for forming an Au gate electrode pattern on a GaAs semiconductor substrate. [Technical background of the invention and its problems] FIG. 2 shows a conventional example of forming an Au electrode pattern on a semiconductor substrate.

先ず第一2図(a)に示すように半導体基板1の主面に
電極パターンとなるAu層2と補助マスクとなる11層
3を順次被着形成する。そしてこのTi層層上上形成す
べき電極パターンに対応したノくターンの有機化合物の
フォトレジスト層4のマスクを被着形成する0 次に第2図(b)に示すように、フォトレジスト層4を
マスクとしてイオンミリング法によりこのマスフ上部か
らアルゴン(Ar)粒子を照射しく図中5)先ずTi層
3を選択除去し、次いでフォトレジスト層4と残ったT
i層3をマスクとして、同様のアルゴン粒、子の照射に
よ勺その下層のAu層2を選択除去し、Auの電極パタ
ーン2aを形成するっこのような方法によシミ極パター
ンを形成する場合、以下に述べるような問題点が生じる
First, as shown in FIG. 12(a), an Au layer 2 serving as an electrode pattern and an 11 layer 3 serving as an auxiliary mask are successively deposited on the main surface of a semiconductor substrate 1. Then, a mask of a photoresist layer 4 of an organic compound having a cross-section corresponding to the electrode pattern to be formed is deposited on the Ti layer.Next, as shown in FIG. 2(b), a photoresist layer 4 is formed. Using 4 as a mask, argon (Ar) particles are irradiated from the top of this mask by ion milling.5) First, the Ti layer 3 is selectively removed, and then the photoresist layer 4 and the remaining T
Using the i-layer 3 as a mask, the underlying Au layer 2 is selectively removed by irradiation with similar argon particles to form the Au electrode pattern 2a. A stain electrode pattern is formed by this method. In this case, the following problems arise.

(1)1t:極パターンを形成するに当って、マスクと
してのフォトレジスト層の微細パターン、例えば幅0.
5μm程度の7オトレジストパターンを形成する場合は
、フォトレジストの現像時、パターンが部分的江溶除さ
れた]、Ti層への付着面積が小さくなって剥離してし
まったシするため、電極パターンの確実な形成が困難で
ある。
(1) 1t: A fine pattern of a photoresist layer as a mask when forming a polar pattern, for example, a width of 0.
When forming a photoresist pattern of approximately 5 μm, the pattern may be partially removed during photoresist development, and the area of adhesion to the Ti layer may become small, resulting in peeling. It is difficult to form patterns reliably.

(2)マスクとしてフォトレジスト層を用いる場合、こ
のフォトレジスト層は耐エツチング性が弱いため、1μ
m程度の膜厚が必要である。このようにマ°  ユ2.
X厚いとイオ、ミワ77r際、yxzパターンの幅とこ
のマスクによって形成される被エツチング材のパターン
幅との差(パターン変換差)が大きくなる。このため例
えばマスクの幅が0.5μmであっても、その下の補助
マスク(Ti層)のすそが広がシ、さらKはAuの電極
パターンのすそが広がって、最終的はAuの電極パター
ンの幅は1μm程度電極パターンを形成する際マスクで
あるフォトレジストが厚いためにこのフォトレジスト側
面にTi層やAu層の削シ粉が付着(再付着効果)しマ
スクの形状が変化し、このマスクのパターン幅が広がる
。このため、電極パターンの幅が広がシ所望の微細化が
できない。
(2) When using a photoresist layer as a mask, this photoresist layer has poor etching resistance, so
A film thickness of about m is required. In this way Mayu 2.
When X is thick, the difference (pattern conversion difference) between the width of the yxz pattern and the pattern width of the material to be etched formed by this mask becomes large. For this reason, even if the width of the mask is 0.5 μm, the base of the auxiliary mask (Ti layer) underneath it will widen, and furthermore, the base of the Au electrode pattern will widen, and eventually the Au electrode pattern will expand. The width of the pattern is approximately 1 μm.When forming an electrode pattern, the photoresist that serves as a mask is thick, so the cutting dust of the Ti layer and Au layer adheres to the side surfaces of the photoresist (reattachment effect), changing the shape of the mask. The pattern width of this mask increases. As a result, the width of the electrode pattern increases and desired miniaturization cannot be achieved.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来の問題点を°解決し、膜厚が薄く、か
つ微細なマスクパターンが形成でき、これによルたて断
面が長方形形状でかつ微細な金属パターンを形成できる
方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems and provides a method that can form a thin and fine mask pattern, thereby forming a fine metal pattern with a rectangular vertical cross section. The purpose is to

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するための、半導体基板の一主
面に被パターンニング用金属層を形成する工程と、この
金属層上に第1マスク用導体層を形成する工程と、この
マスク用導体層のマスクパターンとなる部分以外の部分
に7オトレジスト膜を形成する工程と、このフォトレジ
スト膜訃よび前記第1マスク用導体層のマスクパターン
となる部分に、第2マスク用導体層を形成する工程と、
前記フォトレジスト膜を剥離することにょシ、このフォ
トレジスト車漢上の前記第2マスク用導体層を除去し前
記第1マスク用導体層のヤスクパターンとなる部分のみ
に前記第2マスク用導体層を形成する工程と、この第2
マスク用導体層をマスクとして前記第1マスク用導体層
を反応性イオンエツチングによりエツチングし、この第
1マスク用導体層のマスクパターンを形成する工程と、
この第1マスク用導体層のマスクパターンをマスクとし
て異方性ドライエツチングにより前記被パターンニング
用金属層をエツチングし、この被パターンエング用金属
層のパターンを前記半導体基板上に形成する工程とを具
備することを特徴とする金属パターン形成方法である。
In order to achieve the above object, the present invention includes a step of forming a metal layer for patterning on one main surface of a semiconductor substrate, a step of forming a conductor layer for a first mask on this metal layer, and a step of forming a conductor layer for a first mask on the main surface of a semiconductor substrate. A step of forming a photoresist film on a portion of the conductor layer other than the portion that will become the mask pattern, and forming a second mask conductor layer on the portion of the photoresist film and the portion that will become the mask pattern of the first mask conductor layer. The process of
When the photoresist film is peeled off, the second mask conductor layer on the photoresist wheel is removed, and the second mask conductor layer is applied only to the portion of the first mask conductor layer that will become the Yask pattern. The step of forming a layer and this second
etching the first mask conductor layer using the mask conductor layer as a mask to form a mask pattern of the first mask conductor layer;
etching the metal layer to be patterned by anisotropic dry etching using the mask pattern of the first mask conductor layer as a mask, and forming a pattern of the metal layer to be patterned on the semiconductor substrate; A metal pattern forming method is characterized by comprising the following steps.

〔発明の実施例〕[Embodiments of the invention]

本発明の金属パターン形成方法を、 GaAs半導体基
板上のME8FET (メタルセミコンダクタFET)
のゲート電極を形成する場合に用いた一実施例を図を用
いて説明する。
The metal pattern forming method of the present invention is applied to ME8FET (metal semiconductor FET) on a GaAs semiconductor substrate.
An example used in forming a gate electrode will be described with reference to the drawings.

第1図に本実施例の工程を表わす断面図を示す。FIG. 1 shows a sectional view showing the steps of this embodiment.

第1工程 第1図(a)に示すよう[C、GaAs半導
体基板1の主面に、この半導体基板1とシvtyトキー
接合する金属例えばWN(タングステンナイト−5イド
)層5を膜厚0.12μmとなるよう形成し、さらにこ
の上に被パターンニング用金属層であるAu層2を膜厚
0.5μmとなるように形成する。このWNNb2Au
層2は最終的にはゲート電極Gとなる金属層であシ、A
u層2はとのゲート電極の抵抗を下げるために設けられ
ている。
First step As shown in FIG. 1(a), a layer 5 of a metal such as WN (tungstenite-5), which makes a mechanical bond with the semiconductor substrate 1, is coated on the main surface of a GaAs semiconductor substrate 1 with a thickness of 0. The Au layer 2, which is a metal layer to be patterned, is further formed thereon to have a thickness of 0.5 μm. This WNNb2Au
Layer 2 is a metal layer that will eventually become the gate electrode G,
The u layer 2 is provided to lower the resistance of the gate electrode.

第2工程 第1図(b) K示すようK 、 Au層2
の全面に、第1マスク用′導体層例えばW(タングステ
ン)層6を膜厚o、iμmとなるように被着形成する。
2nd process Figure 1(b) As shown in K, Au layer 2
A conductor layer for the first mask, for example, a W (tungsten) layer 6, is deposited on the entire surface of the substrate to a thickness of o, i .mu.m.

第3工程 第1図(C)に示すように、W層6の所定の
部分(マスク部分)6aの上部に開ロアaを形成するよ
うに、このマスク部分6aを除くW層6全面にフォトレ
ジスト膜7を形成するっ 第4工程 第1図(d)に示すように、フォトレジスト
膜7および°この開ロアaから露出したW層6のマスク
部分6aに第2マスク用導体層例えば11層8を膜厚0
.1μmとなるように被着形成する。このとき、開ロア
aの側壁には11層8は薄く形成される。
Third step As shown in FIG. 1(C), the entire surface of the W layer 6 excluding the mask portion 6a is photo-photographed so as to form an open lower a above a predetermined portion (mask portion) 6a of the W layer 6. Fourth step of forming a resist film 7 As shown in FIG. 1(d), a second mask conductor layer, for example 11 Layer 8 has a thickness of 0
.. It is deposited to a thickness of 1 μm. At this time, 11 layers 8 are thinly formed on the side wall of the open lower a.

第5工程 第1図(e)に示すように、フォトレジスト
膜7をレジスト剥離剤によシ除去すると、該開ロアaの
側壁で11層8は切断されフォトレジスト上の11層8
もフォトレジスト7と共に除去され、W層6のマスク部
分6a上にのみ11層8が残る。
Fifth step As shown in FIG. 1(e), when the photoresist film 7 is removed using a resist stripping agent, the 11 layers 8 are cut on the side wall of the open lower a, and the 11 layers 8 on the photoresist are cut off.
The photoresist 7 is also removed, leaving the 11th layer 8 only on the masked portion 6a of the W layer 6.

第6エ程 第1図(0に示すように、11層8をマスク
としてCF4と02ガスを用いた反応性イオンエツチン
グを行ないW層のマスク部分6a以外のW層;   6
をエツチング除去する。
6th process As shown in FIG. 1 (0), reactive ion etching is performed using CF4 and 02 gas using the 11th layer 8 as a mask to remove the W layer other than the masked portion 6a of the W layer; 6
Remove by etching.

第7エ程 第1図(g)に示すように、11層8および
W層のマスク部分6aをマスクとして、異方性ドライエ
ツチング例えばアルゴンイオンを用いたイオンミーリン
グによF)Au層2およびその下のWN層5を選択除去
する。これによシグート電極Gが形成される。
Seventh Step As shown in FIG. 1(g), using the mask portions 6a of the 11th layer 8 and the W layer as a mask, anisotropic dry etching, such as ion milling using argon ions, is performed to remove the F) Au layer 2 and The WN layer 5 below is selectively removed. As a result, a Sigut electrode G is formed.

第8工程 第1図(h)に示すように、必要に応じてマ
スクとして用いた11層8およびW層のマスク部分6a
を除去する。
Eighth Step As shown in FIG. 1(h), the mask portion 6a of the 11 layer 8 and the W layer used as a mask as necessary.
remove.

以上のような工程によりGaAs半導体基板上のMES
FETにゲート電極を形成する場合、以下に述べるよう
な効果がある。
Through the above steps, MES on GaAs semiconductor substrate
When forming a gate electrode in a FET, there are effects as described below.

(1)本実施例においては、フォトレジスト膜に、得よ
うとするゲート電極パターンと同形の微細な開ロバター
ンを形成しているためフォトレジスト膜は大面積をもっ
て、その下地金属層(W層)に被着してる。従って、こ
のマスクパターンの微細化が容易に、しかも確実にでき
る。この丸めゲート電極パターンをよシ微細化すること
が可能となシ、ゲート長の短かいゲート電極が形成でき
る。
(1) In this example, since the photoresist film has a fine open pattern with the same shape as the gate electrode pattern to be obtained, the photoresist film has a large area, and the underlying metal layer (W layer) It is covered with Therefore, this mask pattern can be easily and reliably miniaturized. This rounded gate electrode pattern can be further miniaturized, and a gate electrode with a short gate length can be formed.

そしてこのゲート長が短かくなることにより、ゲート電
極と半導体基板(チャネル領域)ドの接合面積が小”さ
くなる。このため入力容量および帰還容量が減り、この
MESFETのノイズが低減しかつ相互コンダクタンス
が犬きくなシ利得が大きくなるなど高周波特性が向上す
る。
By shortening the gate length, the junction area between the gate electrode and the semiconductor substrate (channel region) becomes smaller.This reduces the input capacitance and feedback capacitance, reduces the noise of this MESFET, and reduces the transconductance. High frequency characteristics are improved, such as increased gain.

またディジタル信号の場合、入力容量が減シ、相互コン
ダクタンスが大きくなり応答速度(スイッチング速度)
が向上する。
In addition, in the case of digital signals, the input capacitance decreases, mutual conductance increases, and the response speed (switching speed) increases.
will improve.

(2)本実施例において、第1マスク用導体層(W層)
のパターニングを、第2マスク用導体層(Ti層)をマ
スクとして反応性イオンエツチングによ抄行なっている
。この反応性イオンエツチングによると、マスクとこの
マスクにより形成される被エツチング材のパターンとの
パターン変換差は極めて小さくなる。このため第1マス
ク用導体層を第2マスク用導体層で定めた寸法通シにパ
ターンニングできる。
(2) In this example, the first mask conductor layer (W layer)
The patterning is performed by reactive ion etching using the second mask conductor layer (Ti layer) as a mask. According to this reactive ion etching, the difference in pattern conversion between the mask and the pattern of the material to be etched formed by this mask becomes extremely small. Therefore, the first mask conductor layer can be patterned to the same dimensions as the second mask conductor layer.

(3)また本実施例の第2マスク用導体層のTi層はC
F4+02ガスの反応性イオンエツチングに対し耐性が
あるため、膜厚を0.1μm糧度にすることができる。
(3) Furthermore, the Ti layer of the second mask conductor layer in this example is C
Since it is resistant to reactive ion etching of F4+02 gas, the film thickness can be reduced to 0.1 μm.

これは従来例のフォトレジスト膜の膜厚より10分の工
程度も薄い。このため、従央のフォトレジスト膜をマス
クとするよシ、このTi層をマスクとして用いるほうが
パターン変換差が小さくなる。つtリマスクのパターン
幅と、このマスクによシ形成される電極のパターン幅と
の差が小さくなる。
This is 10 minutes thinner than the film thickness of a conventional photoresist film. Therefore, the pattern conversion difference is smaller when this Ti layer is used as a mask than when the secondary photoresist film is used as a mask. The difference between the pattern width of the mask and the pattern width of the electrode formed using this mask becomes smaller.

これによ〕本実施例では、従来例に比べ電極のパターン
ニングが、マスクで定められた寸法通シに正確に行なう
ことができる。加えてパターン変換差が小さいため形成
されたゲート電極のたて断面が、この断面の上辺が下辺
(ゲート長)とほぼ等しい長さの長方形形状となる。こ
の長方形形状のゲート電極は従来例の上辺が下辺よシ小
さい台形形状の電極に比較して、下辺(ゲート長)を基
準に考えるとこのたて断面が大きくなる。このため本実
施例によシ形成されたゲート電極は抵抗が小さくなる。
As a result, in this embodiment, compared to the conventional example, electrode patterning can be carried out more accurately according to the dimensions determined by the mask. In addition, since the pattern conversion difference is small, the vertical cross section of the gate electrode formed has a rectangular shape in which the upper side of the cross section has approximately the same length as the lower side (gate length). This rectangular gate electrode has a larger vertical cross-section when considering the lower side (gate length) as a reference, compared to a conventional trapezoidal electrode whose upper side is smaller than its lower side. Therefore, the resistance of the gate electrode formed according to this embodiment is reduced.

(4)本実施例においてアルゴン粒子を用いたイオンミ
ーリングによるエツチングに対し耐性のあるTi層を用
いているため、従来の7オトレジストをマスクとする方
法よシエッチング時間を長くすることができる、これに
より膜厚の厚い電極でもパターンニングが可能となる。
(4) Since this example uses a Ti layer that is resistant to etching by ion milling using argon particles, the etching time can be longer than the conventional method using a 7-photoresist as a mask. This makes it possible to pattern even thick electrodes.

(5)以上述べた他に本実施例においては第1マスク用
導体層であるW層のマスクパターンを形成スるのに第2
マスク用導体層であるTi層をマスクとしてCF4+0
2ガスによシ反応性イオンエツチングを行なっている。
(5) In addition to the above, in this embodiment, the second
CF4+0 using the Ti layer as a mask conductor layer as a mask
Reactive ion etching is performed using two gases.

この反応性イオンエツチングはそのガスによる化学反応
性を利用してマスクの側面部を制御性よくサイドエツチ
ングすることができるうこのため第2マスク用導体層で
あるTi層のマスクよりさらに微細な第1マスク用導体
層であるW層のマスクパターンを制御性よく形成するこ
とができる。
This reactive ion etching makes it possible to side-etch the side surface of the mask with good controllability by utilizing the chemical reactivity of the gas. The mask pattern of the W layer, which is the conductor layer for one mask, can be formed with good controllability.

これによシグート電極を第2マスク用導体層であるTi
膜のマスクよりさらに微細化することができる。
This allows the Sigut electrode to be made of Ti, which is the conductor layer for the second mask.
It can be made even finer than a film mask.

i   本発明は上記一実施例に限定されるものではな
く、例えば第1マスク用導体層をMo、第2マスク用導
体層をAIKより形成してもよい。また、第1マスク用
導体層をTi、第2マスク用導体層をAuによシ形成し
、C!系のガスによシ反応性イオンエツチングしてもよ
い9つまりこの第1マスク用導体層と第2マスク用導体
層は反応性イオンエツチングによる選択比の大きい導体
であり、かつ少なくとも第1マスク用導体層は電極パタ
ーンを形成するためのマスクとして耐エツチング性の良
好なものであればよい。
i The present invention is not limited to the above embodiment; for example, the first mask conductor layer may be made of Mo, and the second mask conductor layer may be made of AIK. Further, the first mask conductor layer was formed of Ti, the second mask conductor layer was formed of Au, and C! In other words, the conductor layer for the first mask and the conductor layer for the second mask are conductors with a high selectivity by reactive ion etching, and at least the conductor layer for the first mask The conductor layer may be any material as long as it has good etching resistance as a mask for forming an electrode pattern.

〔発明の効果〕〔Effect of the invention〕

本発明によると、金属パターン形成の際用いられる2層
のマスクの内、上部のマスクを薄くかつ微細にすること
ができ、かつ下部のマスクを上部のマスクによシ定めら
れた寸法通シまたはそれよシ微細にすることができる。
According to the present invention, of the two-layered mask used in metal pattern formation, the upper mask can be made thinner and finer, and the lower mask can be formed to have the same dimensions as the upper mask. It can be made very fine.

そしてこの2層のマスクによシ、たて断面が長方形形状
の微細な金属パターンを形成することができる。また、
この電極パターンを形成した半導体素子の高周波特性が
向上するという多大な効果がある。
A fine metal pattern with a rectangular vertical cross section can be formed using this two-layer mask. Also,
This has the great effect of improving the high frequency characteristics of a semiconductor element formed with this electrode pattern.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例を示す工程断面図、第2
図は従来例を説明するための工程断面図6・・・第1マ
スク用導体層、7・・・フォトレジスト膜、8・・・第
2マスク用導体層。 第1図 (a) (b) 第1図 第2図 (a) (b)
Fig. 1 is a process cross-sectional view showing one embodiment of the method of the present invention;
The drawings are process cross-sectional views for explaining a conventional example. 6... A conductor layer for a first mask, 7... A photoresist film, 8... A conductor layer for a second mask. Figure 1 (a) (b) Figure 1 Figure 2 (a) (b)

Claims (1)

【特許請求の範囲】[Claims]  半導体基板の一主面上に被パターンニング用金属層を
形成する工程と、この金属層上に第1マスク用導体層を
形成する工程と、このマスク用導体層のマスクパターン
となる部分以外の部分にフォトレジスト膜を形成する工
程と、このフォトレジスト膜および前記第1マスク用導
体層のマスクパターンとなる部分に、第2マスク用導体
層を形成する工程と、前記フォトレジスト膜を剥離する
ことにより、このフォトレジスト上膜上の前記第2マス
ク用導体層を除去し前記第1マスク用導体層のマスクパ
ターンとなる部分のみに前記第2マスク用導体層を形成
する工程と、この第2マスク用導体層をマスクとして前
記第1マスク用導体層を反応性イオンエッチングにより
エッチングし、この第1マスク用導体層のマスクパター
ンを形成する工程と、この第1マスク用導体層のマスク
パターンをマスクとして異方性ドライエッチングにより
前記被パターンニング用金属層をエッチングしこの被パ
ターンニング用金属層のパターンを前記半導体基板上に
形成する工程とを具備することを特徴とする金属パター
ン形成方法。
A step of forming a metal layer to be patterned on one main surface of a semiconductor substrate, a step of forming a first conductor layer for a mask on this metal layer, and a step of forming a conductor layer for a first mask on a portion of the conductor layer for a mask other than the mask pattern. a step of forming a photoresist film on a portion, a step of forming a second mask conductor layer on the photoresist film and a portion of the first mask conductor layer that will become a mask pattern, and peeling off the photoresist film. By this, the step of removing the second mask conductor layer on the photoresist top film and forming the second mask conductor layer only in the portion of the first mask conductor layer that will become the mask pattern; etching the first mask conductor layer by reactive ion etching using the second mask conductor layer as a mask to form a mask pattern of the first mask conductor layer; and a mask pattern of the first mask conductor layer. A method for forming a metal pattern, comprising: etching the metal layer to be patterned by anisotropic dry etching using a mask as a mask, and forming a pattern of the metal layer to be patterned on the semiconductor substrate. .
JP21631684A 1984-10-17 1984-10-17 Method for forming metal pattern Pending JPS6196765A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21631684A JPS6196765A (en) 1984-10-17 1984-10-17 Method for forming metal pattern
US06/786,825 US4674174A (en) 1984-10-17 1985-10-11 Method for forming a conductor pattern using lift-off
EP85113017A EP0178619B1 (en) 1984-10-17 1985-10-14 A method for forming a conductor pattern
DE8585113017T DE3578729D1 (en) 1984-10-17 1985-10-14 METHOD FOR FORMING A LADDER PATTERN.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21631684A JPS6196765A (en) 1984-10-17 1984-10-17 Method for forming metal pattern

Publications (1)

Publication Number Publication Date
JPS6196765A true JPS6196765A (en) 1986-05-15

Family

ID=16686613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21631684A Pending JPS6196765A (en) 1984-10-17 1984-10-17 Method for forming metal pattern

Country Status (1)

Country Link
JP (1) JPS6196765A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289332A (en) * 1985-10-16 1987-04-23 Nec Corp Dry etching
JPS63181476A (en) * 1987-01-23 1988-07-26 Toshiba Corp Manufacture of semiconductor device
JPH01268070A (en) * 1988-04-20 1989-10-25 Toshiba Corp Heterojunction type field-effect transistor
JPH06291089A (en) * 1991-10-28 1994-10-18 American Teleph & Telegr Co <Att> Formation of tungsten layer with pattern
US10045562B2 (en) 2011-10-21 2018-08-14 Batmark Limited Inhaler component
US10111466B2 (en) 2013-05-02 2018-10-30 Nicoventures Holdings Limited Electronic cigarette
US10314335B2 (en) 2013-05-02 2019-06-11 Nicoventures Holdings Limited Electronic cigarette
US10426193B2 (en) 2013-06-04 2019-10-01 Nicoventures Holdings Limited Container
US10543323B2 (en) 2008-10-23 2020-01-28 Batmark Limited Inhaler
US10602777B2 (en) 2014-07-25 2020-03-31 Nicoventures Holdings Limited Aerosol provision system
US10765147B2 (en) 2014-04-28 2020-09-08 Batmark Limited Aerosol forming component
US10881138B2 (en) 2012-04-23 2021-01-05 British American Tobacco (Investments) Limited Heating smokeable material
US10918820B2 (en) 2011-02-11 2021-02-16 Batmark Limited Inhaler component
US11051551B2 (en) 2011-09-06 2021-07-06 Nicoventures Trading Limited Heating smokable material
US11083856B2 (en) 2014-12-11 2021-08-10 Nicoventures Trading Limited Aerosol provision systems
US11253671B2 (en) 2011-07-27 2022-02-22 Nicoventures Trading Limited Inhaler component
US11272740B2 (en) 2012-07-16 2022-03-15 Nicoventures Holdings Limited Electronic vapor provision device
US11659863B2 (en) 2015-08-31 2023-05-30 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US11672279B2 (en) 2011-09-06 2023-06-13 Nicoventures Trading Limited Heating smokeable material
US11744964B2 (en) 2016-04-27 2023-09-05 Nicoventures Trading Limited Electronic aerosol provision system and vaporizer therefor
US11896055B2 (en) 2015-06-29 2024-02-13 Nicoventures Trading Limited Electronic aerosol provision systems
US11924930B2 (en) 2015-08-31 2024-03-05 Nicoventures Trading Limited Article for use with apparatus for heating smokable material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018456A (en) * 1973-04-26 1975-02-26
JPS51114073A (en) * 1975-03-14 1976-10-07 Western Electric Co Method of manufacturing high resolution pattern
JPS5384477A (en) * 1976-12-29 1978-07-25 Fujitsu Ltd Forming method of dry etching mask
JPS56105637A (en) * 1980-01-28 1981-08-22 Nec Corp Formation of pattern
JPS56130751A (en) * 1980-03-18 1981-10-13 Mitsubishi Electric Corp Manufacture of mask

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018456A (en) * 1973-04-26 1975-02-26
JPS51114073A (en) * 1975-03-14 1976-10-07 Western Electric Co Method of manufacturing high resolution pattern
JPS5384477A (en) * 1976-12-29 1978-07-25 Fujitsu Ltd Forming method of dry etching mask
JPS56105637A (en) * 1980-01-28 1981-08-22 Nec Corp Formation of pattern
JPS56130751A (en) * 1980-03-18 1981-10-13 Mitsubishi Electric Corp Manufacture of mask

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289332A (en) * 1985-10-16 1987-04-23 Nec Corp Dry etching
JPH0543293B2 (en) * 1987-01-23 1993-07-01 Tokyo Shibaura Electric Co
JPS63181476A (en) * 1987-01-23 1988-07-26 Toshiba Corp Manufacture of semiconductor device
JPH01268070A (en) * 1988-04-20 1989-10-25 Toshiba Corp Heterojunction type field-effect transistor
JPH06291089A (en) * 1991-10-28 1994-10-18 American Teleph & Telegr Co <Att> Formation of tungsten layer with pattern
US10543323B2 (en) 2008-10-23 2020-01-28 Batmark Limited Inhaler
US10918820B2 (en) 2011-02-11 2021-02-16 Batmark Limited Inhaler component
US11253671B2 (en) 2011-07-27 2022-02-22 Nicoventures Trading Limited Inhaler component
US11672279B2 (en) 2011-09-06 2023-06-13 Nicoventures Trading Limited Heating smokeable material
US11051551B2 (en) 2011-09-06 2021-07-06 Nicoventures Trading Limited Heating smokable material
US10045562B2 (en) 2011-10-21 2018-08-14 Batmark Limited Inhaler component
US10881138B2 (en) 2012-04-23 2021-01-05 British American Tobacco (Investments) Limited Heating smokeable material
US11272740B2 (en) 2012-07-16 2022-03-15 Nicoventures Holdings Limited Electronic vapor provision device
US10111466B2 (en) 2013-05-02 2018-10-30 Nicoventures Holdings Limited Electronic cigarette
US10314335B2 (en) 2013-05-02 2019-06-11 Nicoventures Holdings Limited Electronic cigarette
US10426193B2 (en) 2013-06-04 2019-10-01 Nicoventures Holdings Limited Container
US10765147B2 (en) 2014-04-28 2020-09-08 Batmark Limited Aerosol forming component
US11779718B2 (en) 2014-04-28 2023-10-10 Nicoventures Trading Limited Aerosol forming component
US10602777B2 (en) 2014-07-25 2020-03-31 Nicoventures Holdings Limited Aerosol provision system
US11083856B2 (en) 2014-12-11 2021-08-10 Nicoventures Trading Limited Aerosol provision systems
US11896055B2 (en) 2015-06-29 2024-02-13 Nicoventures Trading Limited Electronic aerosol provision systems
US11659863B2 (en) 2015-08-31 2023-05-30 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US11924930B2 (en) 2015-08-31 2024-03-05 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US11744964B2 (en) 2016-04-27 2023-09-05 Nicoventures Trading Limited Electronic aerosol provision system and vaporizer therefor

Similar Documents

Publication Publication Date Title
JPS6196765A (en) Method for forming metal pattern
EP0178619B1 (en) A method for forming a conductor pattern
EP0181457B1 (en) Method for making contacts to integrated circuits
EP0156185B1 (en) Electrode pattern of semiconductor device and method of forming thereof
US4529686A (en) Method for the manufacture of extremely fine structures
EP0076215B1 (en) Lift-off shadow mask
JPH01170031A (en) Semiconductor device and manufacture thereof
JPS61172336A (en) Formation of electrode opening of semiconductor device
JPS6113627A (en) Manufacture of semiconductor device
JPS59114826A (en) Manufacture of semiconductor device
JPH0453131A (en) Manufacture of semiconductor device
JPS6143484A (en) Formation of electrode in semiconductor device
KR100731009B1 (en) Method for etching dual damascene of semiconductor device
JP2699498B2 (en) Method for manufacturing semiconductor device
JPS61263179A (en) Manufacture of josephson junction element
JPS63289880A (en) Manufacture of josephson junction device
JPS6196735A (en) Conductor pattern forming process
JPH023926A (en) Forming method of wiring
JPS628030B2 (en)
JPH01214067A (en) Gate electrode and wiring and their manufacture
JPH0638431B2 (en) Method for manufacturing semiconductor device
JPH04267523A (en) Manufacture of semiconductor device
JPH0330369A (en) Manufacture of mis type semiconductor device
JPS61220375A (en) Semiconductor device and manufacture thereof
JPH0590298A (en) Forming method of gate electrode