JPH0330369A - Manufacture of mis type semiconductor device - Google Patents

Manufacture of mis type semiconductor device

Info

Publication number
JPH0330369A
JPH0330369A JP16499489A JP16499489A JPH0330369A JP H0330369 A JPH0330369 A JP H0330369A JP 16499489 A JP16499489 A JP 16499489A JP 16499489 A JP16499489 A JP 16499489A JP H0330369 A JPH0330369 A JP H0330369A
Authority
JP
Japan
Prior art keywords
gate electrode
thin film
etching
sidewall
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16499489A
Other languages
Japanese (ja)
Inventor
Yasuo Sato
康夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP16499489A priority Critical patent/JPH0330369A/en
Publication of JPH0330369A publication Critical patent/JPH0330369A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable fine gate electrode to be formed by a method wherein a residual etching thin film in different selection ratio of anisotropical etching process from that of a gate electrode material is selectively formed and then the whole thin film for gate electrode coating the whole surface is anisotropically etched away. CONSTITUTION:After forming a residual etching thin film 10, the whole surface is coated with another thin film for gate electrode 11. Next, the said thin film 11 is selectively removed to form the residual sidewall pattern 13 as the gate electrode along the sidewall of the residual etching thin film 10 which is selectively removed later. Accordingly, the line width and the level of the residual sidewall pattern as the gate electrode are determined by the thickness of the film for gate electrode 11 and the step level of the residual etching thin film 10. Through these procedures, the line width of the gate electrode can be miniaturized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Mis(MOS)型半導体装置の製造方法に
関し、側壁残しパターンをゲート電極とする技術に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a Mis (MOS) type semiconductor device, and more particularly to a technique for using a sidewall-remaining pattern as a gate electrode.

〔従来の技術〕[Conventional technology]

近年、電子機器の小型化、高機能化に伴って、MIS型
半導体集積回路はより一層の高集積化高速化が必要とさ
れる。このためMIS型半導体集積回路内の各素子寸法
を縮小することが必要とされ、とりわけゲート電極の寸
法の縮小化が素子の高速化を図る上で非常に重要となる
In recent years, as electronic devices have become smaller and more sophisticated, MIS type semiconductor integrated circuits are required to be even more highly integrated and faster. Therefore, it is necessary to reduce the dimensions of each element in the MIS type semiconductor integrated circuit, and in particular, reducing the dimensions of the gate electrode is very important in increasing the speed of the element.

第5図に従来のMIS型半導体装置におけるゲート電極
の形成方法を示す。まず、第5図(a)に示すように、
シリコン基板1上の素子領域表面にゲート酸化膜2を形
成する。なお、3はフィールド酸化膜である。次に第5
図(b)に示すように、多結晶シリコン薄膜4を全面被
着した後、バターニングによりフォトレジスト5を選択
的に形成する。
FIG. 5 shows a method of forming a gate electrode in a conventional MIS type semiconductor device. First, as shown in Figure 5(a),
A gate oxide film 2 is formed on the surface of an element region on a silicon substrate 1. Note that 3 is a field oxide film. Next, the fifth
As shown in Figure (b), after a polycrystalline silicon thin film 4 is deposited on the entire surface, a photoresist 5 is selectively formed by patterning.

次にそのフォトレジスト5をマスクとして反応性イオン
エツチングを行い、第5図(C)に示す如く、フォトレ
ジスト5直下の多結晶シリコン薄膜をゲート電極4aと
して残し、その余を除去した後、フォトレジスト5を除
去する。
Next, reactive ion etching is performed using the photoresist 5 as a mask, and as shown in FIG. Remove resist 5.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の製造方法によれば、ゲート電極4aの最小加
工寸法は、フォトレジストによるバクーニングを用いた
場合、フォトレジスト5の最小加工寸法で制限される。
According to the above conventional manufacturing method, the minimum processing size of the gate electrode 4a is limited by the minimum processing size of the photoresist 5 when photoresist baking is used.

現在、主流として用いられている紫外光を用いた場合、
再現性よく加工できるフォトレジスト5の最小加工寸法
は高々0,5μm程度であり、これ以下の寸法に加工す
るためには、紫外光の代わりに、電子ビームやX線を用
いたバターニングを行う必要がある。ところが、電子ビ
ームやX線を用いたバターニング工程においては、高価
な製造装置が必要で、スルーブツトが悪いなどの理由か
ら、大量生産には適していないという問題があった。
When using ultraviolet light, which is currently the mainstream,
The minimum processing dimension of the photoresist 5 that can be processed with good reproducibility is about 0.5 μm at most, and in order to process the photoresist 5 to dimensions smaller than this, patterning is performed using electron beams or X-rays instead of ultraviolet light. There is a need. However, the patterning process using electron beams or X-rays requires expensive manufacturing equipment and has poor throughput, making it unsuitable for mass production.

そこで、本発明の課題は、電子ビームやX″mを用いた
バターニング工程を用いずに、異方性エツチングを利用
することにより、漱細なゲート電極を得ることが可能な
MIS型半導体装置の製造方法を提供することにある。
Therefore, an object of the present invention is to create a MIS type semiconductor device in which it is possible to obtain a thin gate electrode by using anisotropic etching without using a patterning process using an electron beam or X''m. The purpose of this invention is to provide a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明の講じた手段は、ま
ずエツチング残し用薄膜(パターン)を形成した後、こ
の上にゲート電極用薄膜を全面被着し、次いで、そのゲ
ート電極用薄膜を選択的に除去してエツチング残し用薄
膜の側壁に沿ってゲート電極としての側壁残しパターン
を形成し、しかる後、該エツチング残し用薄膜を選択的
に除去するものである。
In order to solve the above problems, the means taken by the present invention is to first form a thin film (pattern) for etching, then deposit a thin film for the gate electrode on the entire surface, and then apply the thin film for the gate electrode. The etching residue thin film is selectively removed to form a sidewall pattern as a gate electrode along the sidewall of the etching residue thin film, and then the etching residue thin film is selectively removed.

〔作用〕[Effect]

かかる手段によれば、ゲート電極としての側壁残しパタ
ーンの線幅と高さは、ゲート電極用薄膜の厚さとエツチ
ング残し用薄膜の段差の高さによって決定され、従来の
ようにゲート電極用薄膜をバターニングしてゲート電極
を形成する場合に比して、ゲート電極の線幅を微細化す
ることができる。
According to this means, the line width and height of the sidewall leaving pattern as a gate electrode are determined by the thickness of the gate electrode thin film and the height of the step of the etching remaining thin film, and the gate electrode thin film is not used as in the conventional method. Compared to the case where the gate electrode is formed by patterning, the line width of the gate electrode can be made finer.

〔実施例〕〔Example〕

次に、本発明の実施例を添付図面に基づいて説明する。 Next, embodiments of the present invention will be described based on the accompanying drawings.

第1図乃至第4図は、本発明の一実施例における各プロ
セスを説明するための半導体構造を示す図で、各図(a
)は平面図であり、各図ら)は対応する図(a)におけ
る−点&i!IIに沿って切断した状態を示す切断矢視
図である。
1 to 4 are diagrams showing semiconductor structures for explaining each process in one embodiment of the present invention, and each figure (a
) is a plan view, and each figure) represents the − point &i! in the corresponding figure (a). FIG. 2 is a cross-sectional view showing a state cut along II.

まず、第1図(a)、(b)に示すように、シリコン基
板l上の素子領域表面に厚さ約100人程度のゲート酸
化膜2を成長した後、その上に減圧CVD法により厚さ
約5000A程度の窒化シリコン(S+J*)膜を被着
する。次にこの窒化シリコン膜を紫外光によるバターニ
ングと例えば(CzFs +C2Hz )ガスによる反
応性イオンエツチングで加工し、レジストを除去するこ
とにより、エツチング残し用薄膜としての窒化シリコン
パターン10を形成する。
First, as shown in FIGS. 1(a) and 1(b), a gate oxide film 2 with a thickness of approximately 100 nm is grown on the surface of an element region on a silicon substrate 1, and then a thick A silicon nitride (S+J*) film of approximately 5000A is deposited. Next, this silicon nitride film is processed by patterning using ultraviolet light and reactive ion etching using, for example, (CzFs +C2Hz) gas, and the resist is removed to form a silicon nitride pattern 10 as a thin film for etching.

次に第2図(a)、(ハ)に示す如く、減圧CVD法に
より厚さ約5000A程度の多結晶シリコン膜11を全
面被着する。そして多結晶シリコン膜11のうち配線コ
ンタクト部を形成すべき領域のみにレジストマスク12
を被着する。
Next, as shown in FIGS. 2(a) and 2(c), a polycrystalline silicon film 11 having a thickness of approximately 5000 Å is deposited over the entire surface by low pressure CVD. Then, a resist mask 12 is applied only to the region of the polycrystalline silicon film 11 where a wiring contact portion is to be formed.
be coated with.

次に、例えばcce、を含むガスで反応性イオンエツチ
ングを全面に施し、エツチングの終点を適切な時間に設
定することにより、多結晶シリコン膜11を除去し、第
3図(a)、 (b)に示す如く、窒化シリコンパター
ン10の側壁部にゲート電極としての側壁残しパターン
13を残す。この異方性エツチング工程によって第2図
(a)に示すレジストマスク12下の配線コンタクト部
14も残る。この配線コンタクト部14は配線金属(A
/など)とコンタクトをとる領域である。そしてレジス
トマスク12を除去シた後、非レジスト領域15以外に
フォトレジストを被着する。
Next, the polycrystalline silicon film 11 is removed by performing reactive ion etching on the entire surface with a gas containing, for example, CCE and setting the end point of the etching at an appropriate time. ), a sidewall pattern 13 is left on the sidewall portion of the silicon nitride pattern 10 as a gate electrode. This anisotropic etching process also leaves the wiring contact portion 14 under the resist mask 12 shown in FIG. 2(a). This wiring contact portion 14 is made of wiring metal (A
/etc.) After removing the resist mask 12, a photoresist is applied to areas other than the non-resist areas 15.

次に、例えばCC1,を含むガスで反応性イオンエツチ
ングをすることにより、第4図に示すように、非レジス
ト領域15のゲート電極の一部を除去した後、フォトレ
ジストを除去する。そして例えば(CJs+C2L)ガ
スによる反応性イオンエツチングで全面エツチングする
ことにより、ゲート電極としての側壁残しパターン13
及び配線コンタクト部14を残したまま、窒化シリコン
パターン10を除去する。この後は通常のMO3型半導
体装置のプロセスに従い、ソース−ドレイン拡牧層形成
1層間絶縁膜形成、コンタクトホール開口、配線パター
ンの形成などが行われる。
Next, by performing reactive ion etching with a gas containing CC1, for example, a part of the gate electrode in the non-resist region 15 is removed, as shown in FIG. 4, and then the photoresist is removed. For example, by etching the entire surface by reactive ion etching using (CJs+C2L) gas, the pattern 13 remaining on the sidewall as a gate electrode is etched.
Then, the silicon nitride pattern 10 is removed while leaving the wiring contact portion 14. Thereafter, according to the usual process for MO3 type semiconductor devices, formation of a source-drain expansion layer, formation of an interlayer insulating film, opening of contact holes, formation of wiring patterns, etc. are performed.

このように、側壁残しパターン13がゲート電極として
用いられるが、従来の紫外線によるバターニングによっ
てゲート電極を直接形成した場合、ゲート電極幅は0.
5μm程度が限界であったが、側壁残しパターン13を
ゲート電極とする場合、線幅O1μm程度まで微細化す
ることができる。この線幅と高さは、多結晶シリコン膜
11の厚さと窒化シリコンパターン10の段差高さによ
って決定される。
In this way, the sidewall remaining pattern 13 is used as the gate electrode, but when the gate electrode is directly formed by conventional patterning using ultraviolet rays, the gate electrode width is 0.
The limit was about 5 μm, but when the sidewall remaining pattern 13 is used as a gate electrode, the line width can be reduced to about 1 μm. The line width and height are determined by the thickness of the polycrystalline silicon film 11 and the step height of the silicon nitride pattern 10.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、ゲート電極材料に対し
て異方性エツチングの選択比が異なるエツチング残し用
薄膜を選択的に形成し、その上に全面被着したゲート電
極用薄膜を全面異方性エツチングすることにより、エツ
チング残し用薄膜の側壁に沿ってゲート電極としての側
壁残しパターンを形成するものであるから、従来の紫外
線によるバターニングによってゲート電極を直接形成す
る場合に比して、微細なゲート電極を得ることができる
As explained above, the present invention selectively forms etching-remaining thin films with different anisotropic etching selectivity with respect to the gate electrode material, and deposits the gate electrode thin film on the entire surface with a different anisotropic etching selectivity. By performing directional etching, a sidewall pattern is formed as a gate electrode along the sidewall of the thin film for etching, so compared to the conventional case where the gate electrode is directly formed by patterning using ultraviolet rays. A fine gate electrode can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は、本発明の一実施例における各プロ
セスを説明するための半導体構造を示す図で、各図(a
)は平面図であり、同図(b)は対応する同図(a)に
おける−点鎖線に沿って切断した状轢を示す切断矢視図
である。 第5図(a)乃至(C)は、従来のMIS型半導体装置
の製造方法を説明するための半導体構造の縦断面図であ
る。 l シリコン基板、2 ゲート酸化膜、3 フィールド
酸化膜、1(L窒化シリコンパターン、11多結晶シリ
コン膜、12  レジストマスク、13ゲート電極とし
ての側壁残しパターン、14  配線コンタクト部、1
5  非レジスト領域。 第1図 第3区 第  5  図
1 to 4 are diagrams showing semiconductor structures for explaining each process in one embodiment of the present invention, and each figure (a
) is a plan view, and figure (b) is a cutaway view showing the state cut along the dashed-dotted line in the corresponding figure (a). FIGS. 5(a) to 5(C) are longitudinal cross-sectional views of a semiconductor structure for explaining a conventional method of manufacturing an MIS type semiconductor device. l Silicon substrate, 2 Gate oxide film, 3 Field oxide film, 1 (L silicon nitride pattern, 11 Polycrystalline silicon film, 12 Resist mask, 13 Sidewall remaining pattern as gate electrode, 14 Wiring contact part, 1
5 Non-resist area. Figure 1 Ward 3 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1)半導体基板上の素子領域にゲート絶縁膜を形成した
後、ゲート電極材料に対して異方性エッチングの選択比
が異なるエッチング残し用薄膜を該素子領域を含む領域
に形成し、次いでゲート電極用薄膜を全面に被着した後
、該ゲート電極用薄膜を選択的に異方性エッチングによ
り除去して該エッチング残し用薄膜の側壁に沿ってゲー
ト電極としての側壁残しパターンを形成し、しかる後、
該エッチング残し用薄膜を選択的に除去することを特徴
とするMIS型半導体装置の製造方法。
1) After forming a gate insulating film in an element region on a semiconductor substrate, a thin film for leaving etching with a different anisotropic etching selectivity with respect to the gate electrode material is formed in a region including the element region, and then a gate insulating film is formed in a region including the element region. After depositing the gate electrode thin film on the entire surface, the gate electrode thin film is selectively removed by anisotropic etching to form a sidewall pattern along the sidewall of the etched thin film as a gate electrode, and then ,
A method for manufacturing an MIS type semiconductor device, characterized by selectively removing the etching-remaining thin film.
JP16499489A 1989-06-27 1989-06-27 Manufacture of mis type semiconductor device Pending JPH0330369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16499489A JPH0330369A (en) 1989-06-27 1989-06-27 Manufacture of mis type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16499489A JPH0330369A (en) 1989-06-27 1989-06-27 Manufacture of mis type semiconductor device

Publications (1)

Publication Number Publication Date
JPH0330369A true JPH0330369A (en) 1991-02-08

Family

ID=15803822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16499489A Pending JPH0330369A (en) 1989-06-27 1989-06-27 Manufacture of mis type semiconductor device

Country Status (1)

Country Link
JP (1) JPH0330369A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783063A (en) * 1980-07-14 1982-05-24 Texas Instruments Inc Method of producing microminiature semiconductor device
JPS63289964A (en) * 1987-05-22 1988-11-28 Toshiba Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783063A (en) * 1980-07-14 1982-05-24 Texas Instruments Inc Method of producing microminiature semiconductor device
JPS63289964A (en) * 1987-05-22 1988-11-28 Toshiba Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP3406302B2 (en) Method of forming fine pattern, method of manufacturing semiconductor device, and semiconductor device
US5563079A (en) Method of making a field effect transistor
US7163898B2 (en) Method for manufacturing semiconductor integrated circuit structures
US6596609B2 (en) Method of fabricating a feature in an integrated circuit using two edge definition layers and a spacer
JP3229550B2 (en) Method of superposing T-type gate electrode and method of superposing T-type low resistance metal
JPH0330369A (en) Manufacture of mis type semiconductor device
KR100228765B1 (en) Cell aperture mask forming method
KR100257770B1 (en) Method for forming fine conduction film of semiconductor device
JPH03257825A (en) Manufacture of semiconductor device
KR100390912B1 (en) Method for forming contact hole of semiconductor device
JPH0327521A (en) Manufacture of mos-type transistor
JPH04291345A (en) Pattern forming method
JPS61172336A (en) Formation of electrode opening of semiconductor device
JPS6113627A (en) Manufacture of semiconductor device
JPH03278543A (en) Manufacture of field-effect transistor
KR100524811B1 (en) Method for forming fine pattern in semiconductor device
JPH09181077A (en) Semiconductor device and manufacturing method thereof
KR0172856B1 (en) Fine patterning method
JPH07135198A (en) Etching
KR0163742B1 (en) Method for forming t-shape gate
JPS5994457A (en) Semiconductor device
JPH0590198A (en) Manufacture of semiconductor device
JPH04155816A (en) Manufacture of semiconductor device
JPH0484422A (en) Formation of fine metal wiring
JPH02189923A (en) Manufacture of semiconductor integrated circuit device