JPH03278543A - Manufacture of field-effect transistor - Google Patents

Manufacture of field-effect transistor

Info

Publication number
JPH03278543A
JPH03278543A JP7922990A JP7922990A JPH03278543A JP H03278543 A JPH03278543 A JP H03278543A JP 7922990 A JP7922990 A JP 7922990A JP 7922990 A JP7922990 A JP 7922990A JP H03278543 A JPH03278543 A JP H03278543A
Authority
JP
Japan
Prior art keywords
insulating film
gate
metal layer
film
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7922990A
Other languages
Japanese (ja)
Inventor
Hiroshi Morikawa
博司 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7922990A priority Critical patent/JPH03278543A/en
Publication of JPH03278543A publication Critical patent/JPH03278543A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a fine gate whose size controllability is excellent and whose gate resistance is low by a method wherein a sidewall film is formed of an insulating film, the upper part of the sidewall film is exposed by a flattening operation and an etchingback operation, a selective etching operation is executed and a substratum gate metal is processed while an Au-plated part grown on an etching region part of the sidewall film is used as a mask. CONSTITUTION:A first metal layer 2 to be used as a gate metal and a second metal layer 3 for Au-diffusion prevention use are applied sequentially on the main surface of a semiconductor substrate 1; a first insulating film 5 is grown on them; the insulating film 5 is anisotropically dry-etched selectively; the vertical difference in level of the insulating film is formed. Then, a second insulating film 7 is grown on the whole surface; the insulating film 7 is anisotropically dry-etched; a second insulating film 7' is left on the side of the difference in level. Then, an organic material 6' having a flattening characteristic is coated and flattened; the organic material 6' and the insulating film 5 are etched by an anisotropic dry-etching operation until the upper part of the insulating film 7' is exposed. Then, the residual part of the insulating film 7' is removed; an Au-plated part 8 is grown in its removed part; the insulating film 5 and the organic material 6' are removed; after that, the metal layers 4, 2 are removed by making use of the Au-plated part 8 as a mask.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果トランジスタの製法に関し、特にゲー
ト長制御性にすぐれたしかも低ゲート抵抗を有する微細
ゲートの製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a field effect transistor, and particularly to a method for manufacturing a fine gate having excellent gate length controllability and low gate resistance.

〔従来の技術〕[Conventional technology]

ゲート長の短縮化は素子特性向上のための必須条件であ
る。これを決定する主プロセスはリソグラフィーであり
、解像度向上のための技術開発例えば電子線露光を含め
た露光波長の短縮化等が各所で盛んに行なわれている。
Shortening the gate length is an essential condition for improving device characteristics. The main process that determines this is lithography, and technological developments to improve resolution, such as shortening exposure wavelengths including electron beam exposure, are actively being carried out in various places.

しかしながら例えば〜0.3μm以下のレベルのゲート
形成に関して現状のリソグラフィー技術は未だ不安定で
あり、リソグラフィーによらない微細なゲート長の制御
技術が期待される。異方性ドライエッチを利用した側壁
膜形成技術は周知の技術であるが、例えば第2図(a)
〜(d)に示すように、半導体基板1のゲート形成部に
端部が来るように5in2膜7を形成し、端部をおおっ
てゲート電極となるWSi2を形成し、異方性ドライエ
ッチでWSi2をエツチングして端部にのみ残し、その
後5iOz膜7を除去してゲートを形成する事が考えら
れている。〜0,3μmレベルの寸法制御性に関しては
現状の技術ではリソグラフィーによる平面パターンつま
り横方向寸法制御よりも絶縁膜あるいはメタル成長技術
における膜厚制御つまり縦方向寸法制御の方がはるかに
精度よく、このため確かに第2図(a)〜(d)に記し
たゲート形成法はそのゲート長が成長メタル膜厚によっ
てほぼ定められる故、通常のリソグラフィーを用いたゲ
ート形成法よりも精度よく微細ゲートを形成できる。
However, the current lithography technology is still unstable when it comes to gate formation at a level of, for example, ~0.3 μm or less, and a fine gate length control technology that does not rely on lithography is expected. Sidewall film formation technology using anisotropic dry etching is a well-known technology, for example, as shown in Fig. 2(a).
As shown in ~(d), a 5in2 film 7 is formed so that its edge is located at the gate formation area of the semiconductor substrate 1, WSi2 is formed covering the edge to become a gate electrode, and then etched by anisotropic dry etching. It is considered that the WSi2 is etched and left only at the ends, and then the 5iOz film 7 is removed to form a gate. Regarding dimensional control at the ~0.3 μm level, with current technology, film thickness control using insulating film or metal growth technology, that is, longitudinal dimensional control, is much more accurate than plane patterning using lithography, that is, lateral dimensional control. Therefore, it is true that the gate formation method shown in Figures 2 (a) to (d) can form fine gates with higher accuracy than the gate formation method using normal lithography because the gate length is almost determined by the thickness of the grown metal film. Can be formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上述した従来の技術は側壁として残る膜、
つまりゲートメタル側がほぼ完全に垂直加工される事を
前提としており、WSi等の耐熱メタルは、例えばCF
4.SFs等のガスを用いた場合、主にF*ラディカル
成分との反応によりエツチングされ、S i O2エツ
チングに見られるようなCF 3″′等のイオンのアシ
ストを大きく必要とせず、完全な異方性加工は困難であ
る。従って少なからず横方向のエツチングが進行し側壁
長つまりゲート長はこの影響を大きく受は精度よいゲー
トを形成するのは困難である。また特にこのようにゲー
ト長が微細になればこの従来の方法によるゲート形成法
ではゲート抵抗が非常に大きくなる事は第2図(a)〜
(d)によっても明らかである。
However, in the conventional technology described above, the film remaining as the side wall,
In other words, it is assumed that the gate metal side is processed almost completely vertically, and heat-resistant metals such as WSi, for example, CF
4. When a gas such as SFs is used, etching is performed mainly by reaction with the F* radical component, and complete anisotropy is achieved without the large need for assistance from ions such as CF3'' as seen in SiO2 etching. Therefore, it is difficult to form a gate with high precision because lateral etching progresses to a considerable extent, and the sidewall length, that is, the gate length, is greatly influenced by this effect. Figure 2 (a) shows that the gate resistance becomes extremely large in this conventional gate formation method.
This is also clear from (d).

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、ゲートメタル及びAu拡散防止用のバ
リアメタルを全面に被着する工程と、その上に第1の絶
縁膜を成長し異方性ドライエッチによりこの第1の絶縁
膜の垂直段差部をゲート形成領域に形成する工程と、第
2の絶縁膜を成長した後異方性ドライエッチにより第1
の絶縁膜段差側壁部に第2の絶縁膜を側壁膜として残す
工程と、フォトレジストを塗布し平坦化した後、側壁膜
として残った第2の絶縁膜の上面が露出するまでこのフ
ォトレジスト並びに第1の絶縁膜を異方性ドライエッチ
する工程と、第2の絶縁膜を第1の絶縁膜との選択性を
有する工、チンダ液にてウェットエツチングする工程と
、上記バリ7メタルをめっきパスとし側壁膜除去部ゲー
トメタル上にAuめっきを成長させる工程と、第1の絶
縁膜及びフォトレジストをエツチング除去後Auめっき
をマスクとしてバリアメタル、ゲートメタルを異方性ド
ライエッチする工程とを有している電界効果トランジス
タの製造方法を得る。
According to the present invention, there is a step of depositing a gate metal and a barrier metal for preventing Au diffusion on the entire surface, a first insulating film is grown thereon, and anisotropic dry etching is performed to form a vertical layer of the first insulating film. A step is formed in the gate formation region, and after the second insulating film is grown, the first insulating film is formed by anisotropic dry etching.
A step of leaving a second insulating film as a sidewall film on the stepped sidewall of the insulating film, and after coating and planarizing a photoresist, the photoresist and the second insulating film are coated until the upper surface of the second insulating film remaining as a sidewall film is exposed. A process of anisotropic dry etching of the first insulating film, a process of selectively etching the second insulating film with respect to the first insulating film, a process of wet etching with a tinda liquid, and plating the Bali 7 metal. A process of growing Au plating on the gate metal in the sidewall film removed portion as a pass, and a process of anisotropic dry etching the barrier metal and gate metal using the Au plating as a mask after etching and removing the first insulating film and photoresist. A method for manufacturing a field effect transistor is obtained.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(h)は本発明の一実施例の断面図であ
る。まず第1図(a)に示すようにゲートメタルとして
のWSil並びにバインダーとしてのTi3及びバリア
メタルとしてのPt4を連続してスパッタにより被着す
る。例えばWSi−Ti−Ptは2000人、1000
人、500人である。次にPtJ上にプラズマCVD法
により5ixN、5を5000人成長する。次に第1図
(b)に示すようにフォトレジスト6によりゲート形成
領域片側の一方向をマスクしCF 4を用いたりアクテ
ィブイオンエツチング(RI E)によりエツチングし
垂直段差を形成する。フォトレジスト6を除去後減圧C
VD法により5iO27を4000人成長する(第1図
(C))。次にCF、を用いたRIEにより5iOz7
をエツチングし、第1図(d)に示すように5iO27
の側壁膜7′を残す。次に、フォトレジスト6′を再度
塗布し、平坦化した後(第1図(e))、例えばCF、
10□の混合ガスによりフォトレジスト6′並びに31
3N45を側壁膜7′の上部が露出するまでエツチング
する(第1図(f))、次に弗酸:水=1=6の液にて
SiO2の側壁膜7′を選択的にエツチングしこのエツ
チングされた部分にPt層4をめっきパスとしてAuめ
っき8成長を行なう(第1図(g))。
FIGS. 1(a) to 1(h) are cross-sectional views of one embodiment of the present invention. First, as shown in FIG. 1(a), WSil as a gate metal, Ti3 as a binder, and Pt4 as a barrier metal are successively deposited by sputtering. For example, WSi-Ti-Pt has 2000 people and 1000 people
There are 500 people. Next, 5000 layers of 5ixN, 5 are grown on PtJ by plasma CVD. Next, as shown in FIG. 1(b), one side of the gate formation region is masked with a photoresist 6 and etched using CF 4 or active ion etching (RIE) to form a vertical step. After removing photoresist 6, reduce pressure C
Grow 4,000 5iO27 cells using the VD method (Figure 1 (C)). Next, by RIE using CF, 5iOz7
5iO27 as shown in Figure 1(d).
A side wall film 7' is left. Next, after applying the photoresist 6' again and planarizing it (FIG. 1(e)), for example, CF,
The photoresists 6' and 31 are coated with 10□ of mixed gas.
3N45 is etched until the upper part of the side wall film 7' is exposed (FIG. 1(f)). Next, the SiO2 side wall film 7' is selectively etched with a solution of hydrofluoric acid:water=1=6. Au plating 8 is grown on the etched portion using the Pt layer 4 as a plating pass (FIG. 1(g)).

次に、まずフォトレジスト6′を02プラズマによって
灰化除去し、さらにCF、のドライエッチにより5i3
N45を除去する。然る後Auめっぎ8をマスクにイオ
ンミリングによりPt4とTi3をエツチングし、引き
続き例えばCF、/SF、の混合ガスによりWSi2を
エツチングしてゲートを形成する(第1図(h))。
Next, first, the photoresist 6' is removed by ashing with 02 plasma, and then 5i3 is removed by dry etching with CF.
Remove N45. Thereafter, Pt4 and Ti3 are etched by ion milling using the Au plating 8 as a mask, and then WSi2 is etched using a mixed gas of, for example, CF and /SF to form a gate (FIG. 1(h)).

本発明は上記実施例に限られるものではなく、側壁膜の
形成法を塗布法によるS i Ox 7を形成しても良
い。この場合第1図(c)に示された5i027が塗布
法によるSing、いわゆるSOGとなるわけであるが
これを使用する事の利点は第1図(「)において、この
側壁膜7′を除去する際通常の減圧CVD等ニヨる5i
Chよりも5isNnに対するエツチング選択比が大き
くとれるエツチング液を使用できる事にあり、ゲート長
制御性が向上する。例えばこの場合弗酸:水=1:30
の薄いエツチング液に数秒浸漬する事により容易に側壁
膜はエツチングされ、5iiN<の横方向エツチングに
よるゲート長広がりはほとんど皆無となる。
The present invention is not limited to the above embodiments, and the sidewall film may be formed by a coating method. In this case, 5i027 shown in Fig. 1(c) becomes Sing, so-called SOG, by the coating method, but the advantage of using this is that in Fig. 1('), this sidewall film 7' is removed. When using normal low pressure CVD etc.
It is possible to use an etching solution that has a higher etching selectivity for 5isNn than for Ch, improving gate length controllability. For example, in this case, hydrofluoric acid:water = 1:30
The sidewall film can be easily etched by dipping it in a thin etching solution of 5 niN for a few seconds, and there is almost no gate length expansion due to lateral etching of <5iiN.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば絶縁膜により側壁
膜を形成し平坦化エッチバ、りによりこの側壁膜の上部
を露出させた後選択的にエツチングしこの側壁膜エツチ
ング領域部に成長したAuめっきをマスクとして下地ゲ
ートメタルを加工することにより寸法制御性にすぐれた
低ゲート抵抗を有する微細ゲートを形成できる。
As explained above, according to the present invention, a sidewall film is formed from an insulating film, the upper part of this sidewall film is exposed using a flattening etch bar, and then selectively etched to remove the Au grown in the etched region of the sidewall film. By processing the underlying gate metal using plating as a mask, it is possible to form a fine gate with excellent dimensional controllability and low gate resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(h)は本発明の一実施例を工程順に示
す断面図であり、第2図(a)〜(d)は側壁技術を用
いた従来のゲートの製法を工程順に示す断面図である。 l・・・・・・基板、2・・・・・・WSi、3・・・
・・・T X s4・・・・・・Pt、5・・・・・・
5isNい 6,6′・・・・・・フォトレジスト、7
・・・・・・S iO2s  8・・・・・・Au、7
′・・・・・・側壁膜。
FIGS. 1(a) to (h) are cross-sectional views showing an embodiment of the present invention in the order of steps, and FIGS. 2(a) to (d) are sectional views showing the conventional gate manufacturing method using sidewall technology in the order of steps. FIG. l...Substrate, 2...WSi, 3...
...T X s4...Pt, 5...
5isN 6,6'...Photoresist, 7
......SiO2s 8...Au, 7
′... Side wall membrane.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板の主表面にゲートメタルとなる第1の金属
層及びAu拡散防止用の第2の金属層を順次被着する工
程と、該第2の金属層上に第1の絶縁膜を成長させる工
程と、該第1の絶縁膜を選択的に異方性ドライエツチを
行ないゲート形成領域部に垂直な絶縁膜段差を形成する
工程と、第2の絶縁膜を全面に成長する工程と、該第2
の絶縁膜を異方性ドライエッチする事により前記段差部
の第1の絶縁膜側面に第2の絶縁膜を残す工程と、平坦
化特性を有する有機材を塗布、平坦化する工程と、異方
性ドライエッチングにより前記有機材及び第1の絶縁膜
を、前記第2の絶縁膜上部が露出するまでエッチングす
る工程と、前記第2の絶縁膜残部を前記第1の絶縁膜及
び前記有機材と選択性を有するエツチング液にて除去す
る工程と、該除去部に前記第2の金属層をめっきパスと
してAuめっきを成長させる工程と、前記第1の絶縁膜
及び前記有機材をドライエッチングにより除去する工程
と、前記Auめっき部をマスクとし前記第2の金属層、
前記第1の金属層を除去する工程とを含む事を特徴とす
る電界効果トランジスタの製造方法。
A step of sequentially depositing a first metal layer serving as a gate metal and a second metal layer for preventing Au diffusion on the main surface of a semiconductor substrate, and growing a first insulating film on the second metal layer. a step of selectively performing anisotropic dry etching on the first insulating film to form an insulating film step perpendicular to the gate formation region; a step of growing a second insulating film over the entire surface; 2
A step of leaving a second insulating film on the side surface of the first insulating film in the step portion by anisotropic dry etching the insulating film of etching the organic material and the first insulating film by directional dry etching until the upper part of the second insulating film is exposed; etching the remaining part of the second insulating film with the first insulating film and the organic material; a step of removing with an etching solution having selectivity, a step of growing Au plating on the removed portion using the second metal layer as a plating pass, and dry etching the first insulating film and the organic material. a step of removing the second metal layer using the Au plating part as a mask;
A method for manufacturing a field effect transistor, comprising the step of removing the first metal layer.
JP7922990A 1990-03-28 1990-03-28 Manufacture of field-effect transistor Pending JPH03278543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7922990A JPH03278543A (en) 1990-03-28 1990-03-28 Manufacture of field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7922990A JPH03278543A (en) 1990-03-28 1990-03-28 Manufacture of field-effect transistor

Publications (1)

Publication Number Publication Date
JPH03278543A true JPH03278543A (en) 1991-12-10

Family

ID=13684068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7922990A Pending JPH03278543A (en) 1990-03-28 1990-03-28 Manufacture of field-effect transistor

Country Status (1)

Country Link
JP (1) JPH03278543A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304511A (en) * 1992-09-29 1994-04-19 Mitsubishi Denki Kabushiki Kaisha Production method of T-shaped gate electrode in semiconductor device
US5399896A (en) * 1992-09-29 1995-03-21 Mitsubishi Denki Kabushiki Kaisha FET with a T-shaped gate of a particular structure
KR100443020B1 (en) * 1997-12-13 2004-09-18 삼성전자주식회사 Method for fabricating semiconductor device by surface planarization technique to prevent semiconductor substrate from being damaged in etch process
CN109728086A (en) * 2017-10-31 2019-05-07 中国工程物理研究院电子工程研究所 The preparation method of side wall grid high mobility transistor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304511A (en) * 1992-09-29 1994-04-19 Mitsubishi Denki Kabushiki Kaisha Production method of T-shaped gate electrode in semiconductor device
US5399896A (en) * 1992-09-29 1995-03-21 Mitsubishi Denki Kabushiki Kaisha FET with a T-shaped gate of a particular structure
US5538910A (en) * 1992-09-29 1996-07-23 Mitsubishi Denki Kabushiki Kaisha Method of making a narrow gate electrode for a field effect transistor
KR100443020B1 (en) * 1997-12-13 2004-09-18 삼성전자주식회사 Method for fabricating semiconductor device by surface planarization technique to prevent semiconductor substrate from being damaged in etch process
CN109728086A (en) * 2017-10-31 2019-05-07 中国工程物理研究院电子工程研究所 The preparation method of side wall grid high mobility transistor

Similar Documents

Publication Publication Date Title
JP3406302B2 (en) Method of forming fine pattern, method of manufacturing semiconductor device, and semiconductor device
US6255022B1 (en) Dry development process for a bi-layer resist system utilized to reduce microloading
US4956314A (en) Differential etching of silicon nitride
JP3209169B2 (en) Method of forming gate electrode
US6211557B1 (en) Contact structure using taper contact etching and polycide step
US5338703A (en) Method for producing a recessed gate field effect transistor
JPH03278543A (en) Manufacture of field-effect transistor
KR100392362B1 (en) Selective wet etching method of silicon
JPH06333955A (en) Field effect transistor and its manufacture
JP2001015587A (en) Manufacture of semiconductor device
KR100265849B1 (en) A method for fabricating MOSFET
KR100338091B1 (en) Method for manufacturing semiconductor device
KR100256809B1 (en) Method for forming contact hole in semiconductor device
JPS61114536A (en) Manufacture of semiconductor device
JPH0423322A (en) Manufacture of semiconductor device
KR20210120050A (en) Methods for forming and etching gate stacks
JPH0777240B2 (en) Method for manufacturing semiconductor device
JPH0327521A (en) Manufacture of mos-type transistor
JPH0713959B2 (en) Method for manufacturing semiconductor device
JPH1187322A (en) Manufacture of semiconductor device
JPH06177164A (en) Manufacture of semiconductor device
JPH03227026A (en) Manufacture of semiconductor device
JPH04155816A (en) Manufacture of semiconductor device
JPH03185826A (en) Manufacture of semiconductor device
JPH0684951A (en) Manufacture of semiconductor device