JPS6177365A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6177365A
JPS6177365A JP19804184A JP19804184A JPS6177365A JP S6177365 A JPS6177365 A JP S6177365A JP 19804184 A JP19804184 A JP 19804184A JP 19804184 A JP19804184 A JP 19804184A JP S6177365 A JPS6177365 A JP S6177365A
Authority
JP
Japan
Prior art keywords
film
heat treatment
plasma nitride
oxide film
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19804184A
Other languages
Japanese (ja)
Inventor
Shuji Asai
浅井 周二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19804184A priority Critical patent/JPS6177365A/en
Publication of JPS6177365A publication Critical patent/JPS6177365A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To prevent the generation of cracks in patterns by heat treatment by a method wherein heat treatment is carried out after removal of the coat film over patterns except in the neighborhood of aperture patterns. CONSTITUTION:In the process of heat treatment after N<+> conductive layers 6 are ion-implanted to a GaAs substrate 4 by using the mask of a gate pattern 21 of conventional oxide film and covered with a plasma nitride film 23, the pattern periphery of an FET and the like is covered with a photo resist film and etched away to the halfway of a plasma nitride film 21 and an oxide film 22 by parallel electrode tyep dry etching with CF4 gas, thus removing the photo resist film until the plasma nitride film 23 comes to remain only in the periphery by covering said exposed conductive layers 6 of the GaAs substrate. Thereafter, heat treatment is carried out in hydrogen, and a similar manufacturing process to that of the conventional example is carried out, resulting in the completion of a MESFET.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置の製造方法に関し、特にゲート部と
ソースおよびドレイン部との間隔を短かく自己整合方式
で形成する電界効果トランジスタ及びこの電界効果トラ
ンジスタを集積化し九半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor device, and in particular to a field effect transistor in which the distance between a gate part and a source and drain part is short and is formed in a self-aligned manner, The present invention relates to a method of manufacturing a semiconductor device by integrating effect transistors.

(従来技術とその問題点) G11人8半導体は、8iに較べて5〜6倍と太き表電
子移動度を有し、この高速性に大きな特長があるために
、近年、超高速集積回路(IC)に応用する研究が活発
に行なわれている。
(Prior art and its problems) G11 8 semiconductor has a high electron mobility that is 5 to 6 times higher than that of 8i, and because it has a major feature of high speed, in recent years it has been used for ultra-high-speed integrated circuits. Research on applications to (IC) is actively being conducted.

GaAs I Cの能動素子としてのシ■ットキーバリ
ア屋電界効果トランジスタ(以下ME8FETと記す)
は、高抵抗GaA、基板表面のn形GaA。
Schittky barrier field effect transistor (hereinafter referred to as ME8FET) as an active element of GaAs IC
is high resistance GaA and n-type GaA on the substrate surface.

動作層上にシlット午−性金属によるゲート電極。On the active layer is a gate electrode made of a metal.

このゲート電極の両側にオーム性金属によるソース及び
ドレイン電極を設けたものである。
Source and drain electrodes made of ohmic metal are provided on both sides of this gate electrode.

しかし、このような構造において、シ冒ットキーti電
極とオーム性電極の間のG B A @動作層表面には
、結晶性の乱れや気体の吸着などにより表面空乏層が発
生し実効的な動作層が薄くなり、ゲート・ソース間の動
作層抵抗(ソース直列抵抗)が増大して相互コンダクタ
ンスgmが低下する。このような表面空乏層の影響を少
なくするためには電極間隔を0.5μm以下にする必要
がある。しかし、このような高精度な位置合せは、一般
の目合せ露光装置では不可能である。
However, in such a structure, a surface depletion layer is generated on the surface of the G B A @ active layer between the open cut key ti electrode and the ohmic electrode due to disturbances in crystallinity and adsorption of gas, which impairs effective operation. As the layer becomes thinner, the active layer resistance between the gate and the source (source series resistance) increases, and the mutual conductance gm decreases. In order to reduce the influence of such a surface depletion layer, it is necessary to set the electrode spacing to 0.5 μm or less. However, such highly accurate alignment is not possible with a general alignment exposure device.

そこで、自己整合方式によるMB8FFiT  の製造
方法として、ゲートパターンをマスクとしてn+導電層
をイオン注入により自己整合的に形成する方法が提案さ
れている。#12図(a)〜(f)は従来のMISFE
T  の製造方法の一例を説明するための工程順に示し
た断面図である。
Therefore, as a method for manufacturing MB8FFiT using a self-alignment method, a method has been proposed in which an n+ conductive layer is formed in a self-alignment manner by ion implantation using the gate pattern as a mask. #12 Figures (a) to (f) are conventional MISFE
FIG. 2 is a cross-sectional view showing the order of steps for explaining an example of a method for manufacturing T.

まず、第2図(a)に示すように半絶縁性GaAs基板
4上にn形動作層5を形成する。次に、第2図(b)に
示すように、保護膜12としてプラズマ9化膜(厚さ0
.15μm)、続いて高耐熱レジスト11(厚さ0.8
μm)、スパッタ蒸着酸化膜13(厚さ0.3μm) 
 により全面を覆い、ホトレジストをマスクに平行平板
ドライエツチングでCF、十H,ガスにより高耐熱レジ
スト11までエツチングしてオーミック部を形成するた
めの開口を設け、さらに残った酸化膜13をマスクに円
筒形ドライエツチングで酸素ガスにより高耐熱レジスト
11を数千ノサイドエッチングした後、残った酸化膜1
3をマスクにプラズマ窒化膜の保護膜を通してイオン注
入をすることによりn 導電層6を形成する。
First, as shown in FIG. 2(a), an n-type active layer 5 is formed on a semi-insulating GaAs substrate 4. Next, as shown in FIG. 2(b), a plasma-9ized film (with a thickness of 0
.. 15 μm), followed by high heat resisting resist 11 (thickness 0.8
μm), sputter-deposited oxide film 13 (thickness 0.3 μm)
Using the photoresist as a mask, parallel plate dry etching is performed using CF, 10H, and gas to form an opening for forming an ohmic part by etching up to the high heat resisting resist 11, and then using the remaining oxide film 13 as a mask, a cylinder is etched. After etching the highly heat-resistant resist 11 by several thousand oxides using oxygen gas using dry etching, the remaining oxide film 1
Using 3 as a mask, ions are implanted through the plasma nitride protective film to form an n-type conductive layer 6.

次に、第2図(C)に示すように、スパッタ蒸着酸化膜
14(厚さ0.3μm)  により全面を覆う。次に。
Next, as shown in FIG. 2(C), the entire surface is covered with a sputter-deposited oxide film 14 (thickness: 0.3 μm). next.

第2図(d)に示すように、バッファド弗酸液で軽くエ
ツチングすると高耐熱レジスト11の側壁についたスパ
ッタ蒸着酸化膜14は弱いために速く溶けてなくなり、
高耐熱レジストを剥離液で溶してリフトオフするとゲー
ト部となるゲート開口15を生じる。プラズマ窒化膜1
2を保護膜として熱処理をすることにより動作層5およ
びn 導電層6の結晶性を回復する。次に、第2図(e
)に示すように、円筒型ドライエツチングCF4ガスに
より酸化膜14をマスクにプラズマ窒化膜12をエツチ
ングして動作層5を霧出させる。次に、第2図げ)に示
すように、ゲート開口15上にオーバーレイのゲート電
極1を、n 導電層6上にソースおよびドレインのオー
ミック性電極2,3を形成してMISFET  を完成
する。
As shown in FIG. 2(d), when lightly etched with a buffered hydrofluoric acid solution, the sputter-deposited oxide film 14 attached to the side wall of the highly heat-resistant resist 11 is weak and quickly melts away.
When the high heat resistant resist is dissolved with a stripping solution and lifted off, a gate opening 15 that becomes a gate portion is created. Plasma nitride film 1
The crystallinity of the active layer 5 and the n-conducting layer 6 is restored by heat treatment using 2 as a protective film. Next, Figure 2 (e
), the plasma nitride film 12 is etched using a cylindrical dry etching CF4 gas using the oxide film 14 as a mask, and the active layer 5 is atomized. Next, as shown in Figure 2), an overlay gate electrode 1 is formed on the gate opening 15, and source and drain ohmic electrodes 2 and 3 are formed on the n-type conductive layer 6 to complete the MISFET.

この製造方法はゲート金楓電極をイオン注入層の熱処理
後に形成するため、ゲート金属が動作層に拡散する問題
はない。しかし、仁の製造方法で問題になることは、高
耐熱レジストに付着したスパッタ蒸着酸化膜の耐薬品性
が弱いことを利用して心7アド弗酸で溶、してり7トオ
7しゲート開口15を形成するが、FBTl性上の要求
される形状精度としてこのような選択性を利用した湿式
エツチングでは再現性や加工精度が悪く、安定な大量生
産には適さないことである。また、保護膜イオン注入で
はn 導電層の表面のキャリア温度が高くなり、ドレイ
ン耐電圧子FET飽和%性が悪くなることを防ぐために
酸化1x13をマスクに高耐熱性レジスト11を数千1
サイドエツチングしているが、ゲート開口15の精度は
これ以下でおる必要がある。
In this manufacturing method, the gate metal maple electrode is formed after the ion-implanted layer is heat-treated, so there is no problem of gate metal diffusing into the active layer. However, the problem with the manufacturing method is that the chemical resistance of the sputter-deposited oxide film attached to the high-temperature resist is weak, so it is dissolved with hydrofluoric acid, then the gate is removed. Although the opening 15 is formed, wet etching using such selectivity, which is required for FBTl properties, has poor reproducibility and processing accuracy, and is not suitable for stable mass production. In addition, in the protective film ion implantation, in order to prevent the carrier temperature on the surface of the n-conducting layer from increasing and the drain withstand voltage FET saturation property to deteriorate, a highly heat-resistant resist 11 is applied several thousand times using 1x13 oxide as a mask.
Although side etching is performed, the accuracy of the gate opening 15 must be less than this.

しかし、このようなエツチング選択性を利用した湿式エ
ツチングでは、ゲート開口を正確にしようとしてエツチ
ング時間を短かくするとリフトオアされない部分7bX
あり、確実にリフトオフしようとしてエツチング時間を
長くするとゲート開口が=5− 広がり、最終的なゲート長が長くなり、ドレイン耐電圧
やドレインコンダ夛タンスが小さくなるなどの問題が生
じる。さらに、スパッタ蒸着酸化膜の角部における結晶
膜質の境界はマイクロクラック方向であり、エツチング
されたゲート開口15の壁面は垂直ではなく斜めになる
。この酸化膜のゲート開口をマスクに下のプラズマ窒化
膜を円筒型ドライエツチングにより勢力的にエツチング
すると、酸化膜自身もエツチングされて広がり、プラズ
マ窒化膜のゲート開口は広くなる。さらにまた、ゲート
開口にプラズマ策化膜が確実に残らないようにしようと
してエツチング時間を長くすると、サイドエツチングさ
れてまたゲー ト開口は広くなる。
However, in wet etching that utilizes such etching selectivity, when the etching time is shortened in order to make the gate opening accurate, the portion 7bX that is not lifted or
However, if the etching time is increased in order to ensure lift-off, the gate opening widens by =5-, the final gate length increases, and problems such as drain withstand voltage and drain conductance decrease occur. Furthermore, the boundaries of the crystalline film at the corners of the sputter-deposited oxide film are in the direction of microcracks, and the wall surface of the etched gate opening 15 is not vertical but oblique. When the underlying plasma nitride film is aggressively etched by cylindrical dry etching using the gate opening of this oxide film as a mask, the oxide film itself is also etched and spread, and the gate opening of the plasma nitride film becomes wider. Furthermore, if the etching time is increased in an attempt to ensure that no plasma treatment film remains in the gate opening, side etching occurs and the gate opening becomes wider.

このように工程を追うごとにゲート開口は広くなると同
時にゲート長のばらつきも大量くなっている。この結果
、最終的なFET特性としてもばらつきが大きくなり、
このような製造方法を高集積回路に適用しても素子特性
の整合が悪いために希望する艮好な回路特性を得ること
ができない。
As described above, as the process progresses, the gate opening becomes wider and at the same time the variation in gate length also increases. As a result, the final FET characteristics also vary widely,
Even if such a manufacturing method is applied to highly integrated circuits, desired excellent circuit characteristics cannot be obtained due to poor matching of device characteristics.

そこで、本願発明者はゲート電極とソースおよびドレイ
ン部となる高濃度n 導電層を高精度に形成することが
できるM1138FET  の製造方法について特願1
1858−124003で出願している。
Therefore, the inventor of the present application has proposed a method for manufacturing M1138FET that can form high-concentration n-conducting layers that will become the gate electrode, source, and drain portions with high precision in patent application No. 1.
It has been filed under No. 1858-124003.

第3図(a)〜(11)は本願発明者が先に出願した半
導体装置の製造方法を説明するための工程順に示した断
面図である。
FIGS. 3(a) to 3(11) are cross-sectional views showing the order of steps for explaining the method of manufacturing a semiconductor device previously filed by the inventor of the present application.

まず、第3図(a)に示すように、高抵抗GaAl基板
4上にホトレジスト膜をマスクとして8i  イオンを
加速電圧50KeV、ドーズ量15X10”cTIL−
”でイオン注入しn形動作層5を形成する。次に、第3
図(b)に示すように、この基板4上にシリコン酸化膜
を1.0μmの厚さに気相成長し、ホトレジスト膜をマ
スクとして平行電極型ドライエツチングにより酸化膜を
エツチングし、ゲート長1.0μmのゲートパターン2
1およびFIT周辺部を覆うマスク22を形成する。次
に、第3図(C)に示すように、これら酸化膜のパター
ン21および22をマスクとし、8i  イオ/を加速
電圧130KeV。
First, as shown in FIG. 3(a), 8i ions are deposited on a high-resistance GaAl substrate 4 using a photoresist film as a mask at an acceleration voltage of 50 KeV and a dose of 15×10”cTIL−.
” to form an n-type operating layer 5. Next, the third
As shown in Figure (b), a silicon oxide film is grown in a vapor phase to a thickness of 1.0 μm on this substrate 4, and the oxide film is etched by parallel electrode dry etching using a photoresist film as a mask, and the gate length is 1. .0μm gate pattern 2
1 and a mask 22 covering the FIT peripheral area is formed. Next, as shown in FIG. 3(C), using these oxide film patterns 21 and 22 as masks, 8i io/ was applied at an accelerating voltage of 130 KeV.

ドーズ量7 X 10” an−”  でイオン注入し
て高濃度不純物層6を形成する。次に、第3図(d)に
示すように、被覆膜として厚さ0.4μmのプラズマ窒
化膜23で全面を覆い、水素中で800℃20分間の熱
処理により動作層5および高濃度導電層6の結晶性を回
復□させる。次に、第3図(e)に示すように、ホトレ
ジスト膜24を厚さ1.0μmに塗布し180℃30分
間乾燥すると、ホトレジスト膜24は平滑になり、ゲー
トパターン21上のホトレジスト膜24は薄くなる。次
に、第3図(f)に示すように、平行電極型ドライエツ
チングによりCF4 ガスを用いて全面をエツチングし
、酸化膜のゲートパターン21を露出させる。次に、第
3図(fI)に示すように、残ったホトレジスト膜24
を剥離液で除去し、バッファド弗酸液によりゲートパタ
ーンの酸化膜21を選択的に、除去してゲート開口25
を形成する。次に、第3図(h)に示すように、アルミ
ニウムを全面に蒸着しホトレジスト膜をマスクにサイド
エツチングしてアルミニウムのゲート電極lを形成し、
高濃度導電層6上に開口がホトレジスト膜をマスクにプ
ラズマ窒化膜23をエツチング除去し、オーミック性金
属AuGe−ptを蒸着し、ホトレジスト膜を溶して9
7トオ7し、水素中で480℃5分間熱処理して人ua
eを高濃度導電層6に拡散させることによりソース及び
ドレインのオーミック性電極2,3が形成されGaA 
s M B 8 F E Tが完成する。
A high concentration impurity layer 6 is formed by ion implantation at a dose of 7 x 10''an-''. Next, as shown in FIG. 3(d), the entire surface is covered with a plasma nitride film 23 having a thickness of 0.4 μm as a coating film, and heat treatment is performed at 800°C for 20 minutes in hydrogen to remove the active layer 5 and the highly concentrated conductive film. The crystallinity of layer 6 is restored □. Next, as shown in FIG. 3(e), a photoresist film 24 is coated to a thickness of 1.0 μm and dried at 180° C. for 30 minutes, so that the photoresist film 24 becomes smooth and the photoresist film 24 on the gate pattern 21 is Become thin. Next, as shown in FIG. 3(f), the entire surface is etched by parallel electrode type dry etching using CF4 gas to expose the gate pattern 21 of the oxide film. Next, as shown in FIG. 3 (fI), the remaining photoresist film 24
is removed using a stripping solution, and the oxide film 21 of the gate pattern is selectively removed using a buffered hydrofluoric acid solution to form the gate opening 25.
form. Next, as shown in FIG. 3(h), aluminum is deposited on the entire surface and side etched using a photoresist film as a mask to form an aluminum gate electrode l.
An opening is formed on the highly concentrated conductive layer 6 by etching and removing the plasma nitride film 23 using the photoresist film as a mask, depositing an ohmic metal AuGe-pt, and dissolving the photoresist film.
7 to 7, heat treated in hydrogen for 5 minutes at 480℃
By diffusing e into the high concentration conductive layer 6, the source and drain ohmic electrodes 2 and 3 are formed.
s M B 8 F E T is completed.

この製造方法により実際にME8FET  の製造を行
うと次のような問題が生じることがあった。
When ME8FET was actually manufactured using this manufacturing method, the following problems sometimes occurred.

それは、厚さ1.θμ肌の酸化膜のゲートパターン21
を厚さ0.4μmのプラズマ窒化膜23で覆って800
℃20分間の熱処理を行うと、パターンとパターンの間
隔が50μm以上と広い部分にクラックが生じることが
あった。このクラックの発生はプラズマ窒化膜成長装置
の使用状態に起因するらしいが、それはど一定性はない
。そして、このクラックは下の酸化膜22にも入ってい
るようで、パターン反転後に下の酸化膜22を除去する
と、G、A8基i/!i4の表面にクラックに対応する
よりなGaA、の基板成分が蒸発した深い溝がある。
It has a thickness of 1. θμ skin oxide film gate pattern 21
was covered with a plasma nitride film 23 with a thickness of 0.4 μm, and
When heat treatment was performed for 20 minutes at °C, cracks were sometimes generated in areas where the distance between patterns was as wide as 50 μm or more. The occurrence of this crack seems to be caused by the usage conditions of the plasma nitride film growth apparatus, but this is not constant. This crack also appears to have entered the lower oxide film 22, and when the lower oxide film 22 is removed after pattern reversal, G, A8 groups i/! On the surface of i4, there are deep grooves where more GaA substrate components have evaporated, corresponding to cracks.

集積回路においては、このようなパターン間に多9一 層配線が形成されるが、ここに溝があるとこの段差部で
断線やリークが生じたりし、集積回路の歩留りが悪くな
るという問題を生ずる。
In integrated circuits, multi-layer wiring is formed between such patterns, but if there are grooves, disconnections or leaks may occur at these stepped parts, resulting in a problem of poor integrated circuit yield. .

(発明の目的) 本発明の目的は、高濃度n 導電層をイオン注入の自己
整合方式により形成するMF3SFFiT  集積回路
の製画において、熱処理によりパタニン間にクラックが
生じることがない半導体装置の製造方法を提供すること
にある。
(Object of the Invention) The object of the present invention is to form a semiconductor device manufacturing method in which cracks do not occur between pattern lines due to heat treatment in the production of an MF3SFFiT integrated circuit in which a high concentration n conductive layer is formed by a self-aligned method of ion implantation. Our goal is to provide the following.

(発明の構成) 本発明によれば、半導体基板上に開口パターンがあるパ
ターン膜を形成する工程と、露出した該半導体基板及び
該パターン膜を被覆膜で覆う工程と、熱処理を行う工程
を有する半導体装置の製造方法において、前記開口パタ
ーン近傍以外の前記パターン膜上の前記被覆膜を除去し
て熱処理を行うことを特徴とする半導体装置の製造方法
が得られる。
(Structure of the Invention) According to the present invention, a step of forming a patterned film having an opening pattern on a semiconductor substrate, a step of covering the exposed semiconductor substrate and the patterned film with a coating film, and a step of performing heat treatment are performed. There is obtained a method for manufacturing a semiconductor device comprising the step of removing the covering film on the pattern film other than the vicinity of the opening pattern and performing heat treatment.

(本発明の原理) 直径50nのGaAs基板に厚さ1.0μHの酸化−1
〇− 膜(8io、)を成長し、水素中もしくは窒素中で80
0℃20分間の熱処理をしてもクラックは見られなかっ
た。しかし、とのGaAs基板に厚さ1.0μ諺の酸化
膜(8i0*)  と厚さ0.15μmのプラズマ窒化
膜を成長し、800℃20分間の熱処理を行うと多くの
クラックが発生した。クラックが発生する原因としては
、熱膨張におけるプラズマ窒化膜の内部ストレス及び酸
化膜との熱膨張係数の差が考えられる。
(Principle of the present invention) Oxidation-1 with a thickness of 1.0 μH is applied to a GaAs substrate with a diameter of 50 nm.
〇- Grow a film (8io,) in hydrogen or nitrogen for 80min.
No cracks were observed even after heat treatment at 0°C for 20 minutes. However, when a 1.0 μm thick oxide film (8i0*) and a 0.15 μm thick plasma nitride film were grown on a GaAs substrate and heat treated at 800° C. for 20 minutes, many cracks occurred. Possible causes of cracks include the internal stress of the plasma nitride film due to thermal expansion and the difference in thermal expansion coefficient between the plasma nitride film and the oxide film.

そこで、厚い1.0μmの酸化膜だけではクラックが発
生しないことから、GaAs基板が露出した周辺のみに
プラズマ窒化膜を設け、それ以外の部分はプラズマ窒化
膜を除去してやることによりストレスを小さくし、クラ
ックの発生を防ぐようにする。
Therefore, since cracks do not occur with only a 1.0 μm thick oxide film, a plasma nitride film is provided only around the exposed GaAs substrate, and the plasma nitride film is removed from other parts to reduce stress. Try to prevent cracks from forming.

(実施例) 次に1本発明の実施例について図面を用いて説明する。(Example) Next, an embodiment of the present invention will be described with reference to the drawings.

本願発明者の従来例を示した第3図(d)の織化膜ノケ
ートパターン21をマスクにG、A、基板4にn+導電
層6がイオン注入されプラズマ窒化膜23で覆って熱処
理する工程において、FITなどのパターン周辺部をホ
トレジスト膜で覆ってCF4 ガスを用いた平行電極減
ドライエツチングによりプラズマ窒化膜21と酸化膜2
2の途中までエツチング除去し、ホトレジスト膜を除去
する。
The n+ conductive layer 6 is ion-implanted into the G, A, and substrate 4 using the woven film nokate pattern 21 of FIG. 3(d) showing a conventional example of the present inventor as a mask, and is covered with a plasma nitride film 23 and heat-treated. In the process, the periphery of the pattern such as FIT is covered with a photoresist film, and the plasma nitride film 21 and oxide film 2 are removed by parallel electrode reduction dry etching using CF4 gas.
The photoresist film is removed by etching to the middle of 2.

すると、第1図(a) 、 (b)に示すように、露出
し九GaAst基板の?導電層6を榎って周辺部のみに
プラズマ窒化膜23が残る。なお、第1図において、(
a)は上面図、(b)は断面図である。この後、水素中
で800℃20分間の熱処理を行い、従来例と同様な製
造工程を行いMISFETを完成することかで邂る。
Then, as shown in FIGS. 1(a) and 1(b), the nine exposed GaAst substrates are exposed. Plasma nitride film 23 remains only at the periphery of conductive layer 6. In addition, in Figure 1, (
(a) is a top view, and (b) is a cross-sectional view. Thereafter, a heat treatment is performed at 800° C. for 20 minutes in hydrogen, and the same manufacturing process as in the conventional example is performed to complete the MISFET.

ここで、FETパターンの端から酸化R22の上に残こ
すプラズマ嗜化膜230幅としては10μmぐらいでも
クラックは発生しなかった。つまり、周辺部を伎うホト
レジスト膜バターニングの目合せ精度は非常に粗いもの
でよい。
Here, no cracks occurred even when the width of the plasma attenuating film 230 left on the oxidized R22 from the edge of the FET pattern was about 10 μm. In other words, the alignment accuracy of the photoresist film patterning in the peripheral area may be very rough.

(発明の効果) 本発明によれば、熱処理によりパターン間の絶縁膜にク
ラックが入ることがなく、半導体基板を保−することが
で亀る。このため、パターン間の半導体基板表面に深い
篩が発生することがなくなり、多層配線の歩留りを向上
させることができた。
(Effects of the Invention) According to the present invention, the insulating film between patterns is not cracked due to heat treatment, and the semiconductor substrate can be maintained. As a result, deep sieves do not occur on the surface of the semiconductor substrate between patterns, and the yield of multilayer wiring can be improved.

ti、本発明を特に電界効果トランジスタの製造方法と
して説明してきたが、集積回路基板上にはトランジスタ
だけでなく、ダイオードや抵抗体やマークなどの部分も
あり、これらに対しても効果けろる。
Although the present invention has been particularly described as a method for manufacturing field effect transistors, there are not only transistors but also diodes, resistors, marks, and other parts on an integrated circuit board, and the present invention is also effective for these parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(!1) 、 (b)は本発明の一実施例の熱処
理工程を説明するための平面図及び断面図、第2図(a
)〜(f)は従来のMFf81’ET  の製造方法の
一例を説明するための工程順に示した断面図、第3図(
a)〜(h)は本願発明者か先に出願した半導体装置の
製造方法を説明するための工程順に示した断面図である
。 1・・・・・・ゲート電極、2・・・・・・ソース電極
、3・・・・・・ドレイン電極、4・・・・・・半導体
基板、5・・・・・・不純物動作l−56・・・・・・
iI!ii濃反導電層、11・・・・・・高耐熱レジx
)、12・・・・・・プラズマ窒化膜、13.14・・
・・・・スパッタ蒸着酸化膜、15・・・・・・ゲート
開口、21・・・・・・ゲートパターン、22・・・・
・・周辺部の膜、23・・・・・・被覆膜、24・・・
・・・1/シスト膜、25・・・・・・ゲー竿 1 回 ((1)              (d )竿 2
 面
Figures 1 (!1) and (b) are a plan view and a cross-sectional view for explaining the heat treatment process of an embodiment of the present invention, and Figure 2 (a)
) to (f) are cross-sectional views shown in the order of steps to explain an example of the conventional manufacturing method of MFf81'ET, and FIG.
a) to (h) are cross-sectional views shown in the order of steps for explaining a method for manufacturing a semiconductor device, which was previously filed by the inventor of the present invention. 1... Gate electrode, 2... Source electrode, 3... Drain electrode, 4... Semiconductor substrate, 5... Impurity operation l -56...
iI! ii Dense anti-conductive layer, 11... High heat resistance resistor x
), 12... plasma nitride film, 13.14...
... Sputter deposited oxide film, 15 ... Gate opening, 21 ... Gate pattern, 22 ...
...Membrane in peripheral area, 23...Coating film, 24...
...1/cyst membrane, 25...Game rod 1 time ((1) (d) rod 2
surface

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に開口パターンがあるパターン膜を形成
する工程と、露出した該半導体基板及び該パターン膜を
被覆膜で覆う工程と、熱処理を行う工程を有する半導体
装置の製造方法において、前記開口パターン近傍以外の
前記パターン膜上の前記被覆膜を除去して熱処理を行う
ことを特徴とする半導体装置の製造方法。
A method for manufacturing a semiconductor device comprising: forming a patterned film having an opening pattern on a semiconductor substrate; covering the exposed semiconductor substrate and the patterned film with a coating film; and performing heat treatment. 1. A method of manufacturing a semiconductor device, comprising removing the covering film on the pattern film other than those in the vicinity and performing heat treatment.
JP19804184A 1984-09-21 1984-09-21 Manufacture of semiconductor device Pending JPS6177365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19804184A JPS6177365A (en) 1984-09-21 1984-09-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19804184A JPS6177365A (en) 1984-09-21 1984-09-21 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6177365A true JPS6177365A (en) 1986-04-19

Family

ID=16384550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19804184A Pending JPS6177365A (en) 1984-09-21 1984-09-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6177365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500550A (en) * 1986-06-12 1989-02-23 フォード ミクロエレクトロニクス インコーポレーテッド Method of manufacturing self-aligned MESFET

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500550A (en) * 1986-06-12 1989-02-23 フォード ミクロエレクトロニクス インコーポレーテッド Method of manufacturing self-aligned MESFET

Similar Documents

Publication Publication Date Title
JPH022142A (en) Field effect transistor and its manufacture
JPS6132471A (en) Thin film transistor
JPS6177365A (en) Manufacture of semiconductor device
JPS61187369A (en) Manufacture of thin film transistor
JPS6037172A (en) Manufacture of field effect transistor
JPS60120574A (en) Manufacture of field effect transistor
JPH0228333A (en) Manufacture of semiconductor device
JPS6143484A (en) Formation of electrode in semiconductor device
JPS616870A (en) Manufacture of field-effect transistor
JP3298066B2 (en) Method for manufacturing compound semiconductor device
JPH0444250A (en) Manufacture of semiconductor device
JPH03289142A (en) Manufacture of compound semiconductor device
JPH06151467A (en) Manufacture of field effect transistor
JPS6130031A (en) Manufacture of semiconductor device
JPS5893290A (en) Manufacture of schottky barrier field effect transistor
JPH0312935A (en) Manufacture of electronic device
JPH06151459A (en) Manufacture of thin-film transistor
JPH0358176B2 (en)
JPS6068662A (en) Semiconductor device and manufacture thereof
JPH01168069A (en) Manufacture of semiconductor device
JPS63110729A (en) Manufacture of semiconductor device
JPS6037176A (en) Manufacture of field effect transistor
JPS59105374A (en) Manufacture of semiconductor device
JPH03203246A (en) Method of manufacturing semiconductor device
JPS6284566A (en) Field-effect transistor and manufacture thereof