JPS6172995A - 熱エネルギ−の高次利用方法 - Google Patents

熱エネルギ−の高次利用方法

Info

Publication number
JPS6172995A
JPS6172995A JP59192700A JP19270084A JPS6172995A JP S6172995 A JPS6172995 A JP S6172995A JP 59192700 A JP59192700 A JP 59192700A JP 19270084 A JP19270084 A JP 19270084A JP S6172995 A JPS6172995 A JP S6172995A
Authority
JP
Japan
Prior art keywords
heat
acetone
reaction
energy
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59192700A
Other languages
English (en)
Other versions
JPH0125972B2 (ja
Inventor
Yasukazu Saito
斎藤 泰和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO DAIGAKU
Original Assignee
TOKYO DAIGAKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO DAIGAKU filed Critical TOKYO DAIGAKU
Priority to JP59192700A priority Critical patent/JPS6172995A/ja
Publication of JPS6172995A publication Critical patent/JPS6172995A/ja
Publication of JPH0125972B2 publication Critical patent/JPH0125972B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/182Regeneration by thermal means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱エネルギーの利用方法に関し、特に低品位熱
を回収し、高温熱エネルギーまたは電気エネルギーとし
て高次の利用を図る方法に関するものである。
(従来の技術) わが国で消費される総エネルギーの約50%は廃ガス、
冷却水などの形で未活用のまま廃山されると言われる。
従って熱エネルギー特に低品位熱の回収とその高次利用
はエネルギー問題における重要な課題である。いわゆる
ムーンライト計画の廃熱利用技術の一環として研究開発
の進められているヒートポンプは、その期待に直接応え
ようとするものであり、なかでも物質の化学変化に伴う
熱の出入りを利用するケミカルヒートポンプは原、埋的
な新しさから注目されている。
一方、燃料のもつ化学エネルギーを電気化学的に放出さ
せ、反応に伴う自由エネルギー変化を直接的に電気エネ
ルギーに変換する燃料電池においては、電気エネルギー
を得る際にいわゆるカルノーザイクルの制約を受けない
という意味で、原理的に高いエネルギー変換効率を速成
することができる。特に再生型燃料電池は、いったん消
費された作動物質を再生し繰返し利用するものであって
、乾電池(−次電池)に対する蓄電池(二次電池)に相
当する。例えば、水から電気・光あるいは高温熱エネル
ギーにより水素と酸素を生成するなら、そのとき水素−
酸索燃料電池は再生型として働くことになる。しかし、
再生のために高次エネルギーを利用する必要があったの
では、エネルギー利用システムとしての意義は薄い。
(発明が解決しようとする問題点) 現在広く使われているヒートポンプには、140’c 
Pi!度を昇温限度とするフロンを用い、蒸発と礪緘仕
事による圧縮・凝縮を繰返す圧縮式ヒートポンプと、臭
化リチウム水溶液を用い複数の熱源との間の熱移動によ
って水の蒸発・凝縮を繰返す吸収式ヒートポンプとがあ
るが、これらによっては200℃程度の高温を作ること
はできない。ケミカルと−トポンプとしては、金属合金
への水素吸臓熱、xi化合物へのアンモニア吸収熱、ゼ
オライトへの水の吸着熱を利用する方式などの提案はあ
るが、実用に供された例はない。従って、もし電気((
幾械〉エネルギーを用いないで80℃程度の低品位熱を
200℃程度にまで昇温する技術が開発されればその意
rはきわめて大きい。
一方、燃料電池として現在実用化の進んでいるものは、
水素、メタノール、ごドラジンなど燃料物質の酸化反応
を利用するものであり、なかでも水素を酸化する宇宙線
用や天然ガス改質水素−空気燃料電池が技術的に最も進
んでいる。しかし再生型燃料電池については、具体的に
提案された例はない。そもそも再生型燃料電池は電気エ
ネルギーを出力とするエネルギー変換システムであり、
有機不飽和化合物と水素を作動物質とし、その水素化反
応を利用する場合は、低品位熱を使って、触媒の作用に
より燃料(作vJ物質)を再生することができる。その
ような熱再生型の燃料電池システムを開発することによ
って、低品位の熱エネルギーを効率よく回収し、直接電
気エネルギーへの変換を図ることは熱エネルギーの高次
利用にとって重要な課題である。
(問題点を解決するための手段) 本発明は、前記問題点を解決するために、熱エネルギー
、特に地熱・太陽熱・工場廃熱・廃棄物燃焼処理廃熱な
ど利用しにくい多用の低品位熱を有効に利用し省エネル
ギーを図ることを目的とする。
このために、本発明は熱エネルギーを与えて脱水素触媒
の存在下に有鍬化合物の液相脱水素吸熱反応を行う第1
工程と、該反応で生成した有は不飽和化合物と該水素と
を未反応物から分離する第2工程と、水素化触媒の存在
下に該有機不飽和化合物と該水素とを反応させて発生す
るエネルギーを回収すると共に反応生成物を第1工稈、
に戻す第3工程とからなる循環系において、第1工程で
与えられた熱エネルギーを第3工程でより高温度の熱エ
ネルギーもしく(よ電気エネルギーとして取出し高次の
利用を図ることを特徴とする。
本発明の第1工程で使用する脱水素触媒としては、金属
、金属酸化物、炭化物等が用いられ、微粒子状であるこ
とが好ましい。触媒が微粒子状である場合、触媒の表面
積、分散性、表面活性サイト構造等の面から反応の進行
が早くなり、触媒化学成分純度の高いことおよびミクロ
細孔をもたないことから、副反応の抑制により高い収率
が(nられる。待に50nm径以下の微粒金属、炭化物
を用い良い結果が1qられている。
脱水素反応を(テう有(浅化合物としては、例えば2−
プロパツール、シクロヘキサノール、シクロヘキサン、
メチルシクロヘキサン、ジメチルシクロヘキサン類等を
用いることができ、第2工程においてアセトン、シクロ
ヘキサノン、ベンゼン。
トルエン、キシレン類等が右別不飽和化合物として分離
される。特に、2−プロパツールあるいはシクロヘキサ
ン類を用いて液相脱水素反応を行う場合、低品位熱を効
率よく回収できる。またアセトンの場合、第2工程で分
離が効率よく進iテし、ベンピン類にd5いては第3工
程で水悠化反応熱を啄めて高い温度で回収することがで
きる。
第1工程に与える熱エネルギーとしては、特に地熱、太
陽熱、工揚廓熱、廃菜物燃焼処理廃熱など利用しにくい
多相の低品位熱を用いることができる。
第3工程における水素化触媒には固体触媒が用いられる
。その理由は、この工程で(よ発熱反応であり、極めて
高い温度となるので、固体以外は用いることができず、
しかも熱的安定性が高く、操作性がよく、長寿命・再生
可能で安価な触媒を必要とするからである。特に、第3
工程において電極触媒上でメディエータの介在を含めて
電気化学的に燃料電池反応を進行させる場合、すぐれた
固体電極触媒の選択が重要である。水素化反応に伴なう
自由エネルギー変化は電気エネルギーとして取出され、
なかでも熱再生型燃料電池においては、熱源から電気動
力が直接1qられるので、地熱直接発電、太陽熱化学発
電、地域またはビルの自家発電、ハウス栽培温湿風送入
システム等に利用することができる。また、高温度の熱
エネルギーどして取出す場合は、ケミカルヒートポンプ
を用い、水烹気発電、地域またはビルの冷暖房、給湯、
高ン呂加熱乾燥、ボイラーなど′熱機関の熱効率向上。
ハウス栽培用g V恒湿温送風機等に利用することがで
きる。
次に本発明の構成を、有は化合物として2−プロパツー
ルを用い、第3工程で燃料電池を使用した場合について
、図面に基づき説明する。
触媒を有する固液相不均−系の脱水素反応器1に80℃
の低品位熱Q、を供給し、液相2−プロパツールから気
相アセトンと水素とを生成させ、触媒を有する固気相不
均−系の水素化反応器2において発生する約200℃に
昇温されたアセトン水素化熱QHを回収する。その際、
約30℃の冷却で2−プロパツールをアセトンから分1
11t凝縮させる分離器3の存在が必須である。一方、
アセトン水素化反応に伴なう自由エネルギーを約150
mVの電気Eとして回収する燃料電池4は、同じく生成
物2−プロパツールを分離器に戻し、脱水素反応器1に
おいて定常的に熱エネルギーで作動物質アセトン・水素
を再生し、循環する。顕熱を回収し予熱に供する熱交換
器5と、20″C1J、下の冷却でアセトンを水素から
凝縮分離する完全凝縮器6を設置する。シクロヘキサン
類を作動物質に用いる場合も同様の(1が成となる。電
極触媒としては、50nJ¥以下の(成粒白金hX金属
が有効である。
反応器1において使用する微粒子状触媒の寸法。
種類等および燃r4電池4における電極触媒、メディエ
ータの種類等が、電気エネルギーへの変換量に影響を与
える。また、分Ni器3としては、蒸留あるいは膜分離
技術を活用することができる。
(作 用) 本発明において、2−プロパツールあるいはシクロヘキ
サン類のような有機化合物を作動物質として用い、触媒
の作用で液相肌水素反応を進行させる過程で熱エネルギ
ーを反応熱および蒸発熱の形で作動物質に取込む、環境
温度の冷熱源を使い、蒸留あるいは膜分列操作で作動物
質に分離仕事を賦Ljする。アセトンあるいはベンピン
と水素の形に貯えられた化学エネルギーは、水素化反応
熱となって高い温度で回収され、もしくは自由エネルギ
ー変化を利用して、燃料電池反応を(を成する。
各反応を1−速度、高密度、高選択的に進行さける触媒
の活用により、熱エネルギーを昇温熱あるいは電気に変
えるは能が発現することになる。また、金属水素化物を
介在させて加圧水素を利用するなら、昇温熱を得るアセ
トン水素化反応温度は270°Cにまで向上させること
ができ、化学エネルギー形態での貯蔵機能を持たせるこ
ともできる。シクロヘキサン類については、温和な条件
で水素が再生されるので、水素貯蔵媒体とみなしての用
途も考えられる。
以下、液相脱水素吸熱反応、気相水素化発熱反応および
水素化燃料電池反応の実施例について詳述する。
(実施例) 1.2−プロパツール液相脱水素反応 ガス中蒸発法により調製された微粒金属ニッケル(平均
径20nm)を水素気中で加熱し表面酸化物層の還元除
去をはかったのら、ビス(アセチルアセトナト)白金(
II)を溶解させた2−プロパツール・アセトン混合溶
液を加え、tI!4音波分故状態で攪拌し遅流温度にま
で加熱づ−るど、微粒金属ニッケルの表面に少量の金属
白金を沈若さぼだ触媒を調製することができる。水冷凝
縮器を経て得られる気体の容量追跡から脱水素反応速度
が求められ、気相(MS  5A)・液相(P E G
 1000)各成分のガスクロマトグラフ分析により、
水素とアセトンのみが生成することを蒲視・確認しつつ
、75.4°C(2−プロパツール/アセトン容滑比8
7/13混合溶液の沸点)で0.0401nO1h ”
 !11 ”の2−プロパツール液相脱水素反応速度を
得た。
比較例−2−プロパツール液相脱水素活性の最も高い錯
体触媒ビス(μmアセタト)へキサ(1〜リフエニルホ
スフイン)ジロジウム(n)は82.4℃において0.
017mol h ’ g−’でありLJ、 Mo1c
c、 Catal、 18.99(1983) ) 。
しかも液相空時収率を高くすることが難しいという欠点
をもつ。
2、シクロヘキサン液相脱水素反応 ガス中蒸発法により調製された微粒金現ニッケル(平均
径20nm )を水素気中で加熱し表面酸化物層の還元
除去をはかったのち、ビス(アセチルアセトナト)白金
(II)を溶解させたシクロヘキサン−2−メチル−2
−プロパツール混合溶液を加え、MAa波分散状態で潰
痒し還流温度にまで加熱すると、微粒金属ニッケルの表
面に少量の金属白金を沈着させた触媒を調製することが
でさ・る。水冷凝縮器を経て得られる気体の容量追跡か
ら脱水素反応速度が求められ、ガスクロマトグラフ分析
によりベンゼンの生成を監視しつつ、78,5℃くシク
ロヘキサン/2−メチル−2−プロパツール容量比19
7/ 3混合溶液の沸点)で0.002mol h −
’ g−1のシクロヘキサン液相nq水索反応速度を得
た。
比較例−シクロヘキサン脱水素反応はアルミニウムスポ
ンジに白金を担持した固体触媒により400℃で進行す
る(ケミカルエンジニアリング。
住、58(1982)、)多孔質バイコールガラスを援
用し生成水素を系外に除去すると、230°Cにまで下
げることができる(化学工業1RF4゜18.12(1
983)ンが、液相脱水素反応の80℃には及ばない。
3、アセトン水素化電極反応 カーボン黒に担持した微粒金属白金成型物をガス電極と
し、アセトン硫酸水溶液(アセトン/20%硫醒容り比
25/ 75 )を電解液として、水素および窒素を二
つの電穫至にそれぞれ流通させると、アセトン液相水素
化反応の自由エネルギー変化を駆動力とする燃料電池が
構成される。
1気圧水素気体の流通下で、150mVにおいて6m 
Acm−’ 、 100mVにおいて10mAcm−2
の定常的電流密度を(qることができた。
比較例−1気圧の水素を対極とするアセトン還元反応は
129.6m Vの可逆電位を与える燃料電池を構成す
るが、検討例としては、白金黒を陰極とし外部電位を印
加して進行させる電解触媒水素化反応についてなされた
もの(Bull 。
Chem 、 Soc、 Jpn、 、 56.258
4(1983) )に止まる。また熱再生型燃料電池に
ついては、リチウム・カルシウムの塩化・フッ化共融塩
を電解質とし、リチウム・カリウムを燃料、水素を酸化
剤とする高温作動型燃料電池 (NaCional Tech 、 Report 、
  8. 571(1962))が提案さ机でいるけれ
ども、アルカリ金屈水水化物熱分解温度(たとえば80
0℃〉の再生熱源を必要とする。
(発明の効果) 本発明によれば、有は化合物の脱水素反応と該反応で生
成した有義不飽和化合物の分離、水素化反応を組合せ、
発生ずる熱を高温度の熱エネルギーあるいは電気エネル
ギーとして取出すことができる。具体的には80’CP
1度の低品位熱エネルギーを約200°C1,:まで胃
温させることができた。80℃程度の熱エネルギーは、
地熱・太陽熱・工場廃熱・廃棄物燃焼廃熱などあり・′
S)れた熱源から簡単に供給することができるけれども
、使い道が限られていて必ずしも有効に利用されていな
い。分it仕事のために必須の冷熱源温度は約30℃で
あるから、基本的には空気冷却でよく、いわば地球1】
境渇度である。これら2種の熱エネルギーを組合ぜて1
!ノられる約200℃の昇温熱は、水蒸気発電・加圧ス
チーム供給など種々の形態で、多方面にわたる高次の熱
需要に応えることができる。従来、本発明のように80
℃程度の熱から200℃の熱をつくり出すヒートポンプ
は、義械エネルギー利用の有無を問わず実現された例が
ない。
水素化反応の自由エネルギー変化を電気エネルギーとし
て回収する場合には、逆過程の液相脱水系反応と組合せ
て、熱再生型の燃料電池が構成される。この電池は積層
化によって電圧値・電流値を向上させうるので、新しい
多方面の需要に対応づることが可能である。特に、上述
のような例えば80°Cと30°Cの低品位熱エネルギ
ーを組合せる再生型燃料電池は、他に類例を見ない技術
であって、電tri ylll!媒を用いる低品位熱エ
ネルギーの高次利用法として広い新しい適用範囲を持っ
ている。
【図面の簡単な説明】
第1図は本発明の熱エネルギー高次利用装置を例示する
線図、

Claims (1)

  1. 【特許請求の範囲】 1、熱エネルギーを与えて脱水素触媒の存在下に有機化
    合物の液相脱水素吸熱反応を行う第1工程と、 該反応で生成した有機不飽和化合物と水素とを未反応物
    から分離する第2工程と、 水素化触媒の存在下に該有機不飽和化合物と該水素とを
    反応させて発生するエネルギーを回収すると共に反応生
    成物を第1工程に戻す第3工程とから成る循環系におい
    て、 第1工程で与えられた熱エネルギーを第3工程でより高
    温度の熱エネルギーもしくは電気エネルギーとして取出
    し高次に利用する熱エネルギーの高次利用方法。
JP59192700A 1984-09-17 1984-09-17 熱エネルギ−の高次利用方法 Granted JPS6172995A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59192700A JPS6172995A (ja) 1984-09-17 1984-09-17 熱エネルギ−の高次利用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59192700A JPS6172995A (ja) 1984-09-17 1984-09-17 熱エネルギ−の高次利用方法

Publications (2)

Publication Number Publication Date
JPS6172995A true JPS6172995A (ja) 1986-04-15
JPH0125972B2 JPH0125972B2 (ja) 1989-05-22

Family

ID=16295591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59192700A Granted JPS6172995A (ja) 1984-09-17 1984-09-17 熱エネルギ−の高次利用方法

Country Status (1)

Country Link
JP (1) JPS6172995A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1081781A2 (en) * 1999-08-30 2001-03-07 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Fuell cell cooling apparatus and fuel cell system
JP2001110437A (ja) * 1999-10-12 2001-04-20 Kansai Research Institute 燃料電池用水素燃料供給システム
EP1463141A1 (en) * 2003-03-25 2004-09-29 HONDA MOTOR CO., Ltd. Thermo-electrochemical conversion apparatus
JP2005200253A (ja) * 2004-01-14 2005-07-28 Jfe Engineering Kk 高圧水素供給・利用方法
US7274798B2 (en) 2002-05-28 2007-09-25 Sony Corporation Speaker device
WO2013145674A1 (ja) * 2012-03-26 2013-10-03 Jx日鉱日石エネルギー株式会社 燃料電池モジュール及び燃料電池システム
FR3115590A1 (fr) * 2020-10-28 2022-04-29 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif pour la preparation d’un fluide par reaction catalytique comprenant un recuperateur
WO2022090345A1 (fr) * 2020-10-28 2022-05-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif pour la preparation d'un fluide par reaction catalytique comprenant un recuperateur

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004038304A1 (ja) * 2002-10-08 2004-05-06 Matsushita Electric Industrial Co., Ltd. ヒートポンプ装置
JP2005327483A (ja) 2004-05-12 2005-11-24 Honda Motor Co Ltd エネルギーの利用装置およびエネルギーの利用方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1081781A2 (en) * 1999-08-30 2001-03-07 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Fuell cell cooling apparatus and fuel cell system
EP1081781A3 (en) * 1999-08-30 2009-02-25 Kabushiki Kaisha Toyota Jidoshokki Fuell cell cooling apparatus and fuel cell system
JP2001110437A (ja) * 1999-10-12 2001-04-20 Kansai Research Institute 燃料電池用水素燃料供給システム
US7274798B2 (en) 2002-05-28 2007-09-25 Sony Corporation Speaker device
US7813522B2 (en) 2002-05-28 2010-10-12 Sony Corporation Loudspeaker device
EP1463141A1 (en) * 2003-03-25 2004-09-29 HONDA MOTOR CO., Ltd. Thermo-electrochemical conversion apparatus
US7261961B2 (en) 2003-03-25 2007-08-28 Honda Motor Co., Ltd. Thermoelectric conversion apparatus
JP2005200253A (ja) * 2004-01-14 2005-07-28 Jfe Engineering Kk 高圧水素供給・利用方法
WO2013145674A1 (ja) * 2012-03-26 2013-10-03 Jx日鉱日石エネルギー株式会社 燃料電池モジュール及び燃料電池システム
FR3115590A1 (fr) * 2020-10-28 2022-04-29 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif pour la preparation d’un fluide par reaction catalytique comprenant un recuperateur
WO2022090345A1 (fr) * 2020-10-28 2022-05-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif pour la preparation d'un fluide par reaction catalytique comprenant un recuperateur

Also Published As

Publication number Publication date
JPH0125972B2 (ja) 1989-05-22

Similar Documents

Publication Publication Date Title
Müller et al. Hydrogen storage in formic acid: a comparison of process options
Saito et al. Catalyst‐assisted chemical heat pump with reaction couple of acetone hydrogenation/2–propanol dehydrogenation for upgrading low‐level thermal energy: Proposal and evaluation
Licht et al. RETRACTED: Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3
Corma et al. Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges
Yan et al. Innovative electrochemical strategies for hydrogen production: From electricity input to electricity output
JP3092670B2 (ja) 燃料電池で電気を発生する方法及び燃料電池
Xu et al. Electrocatalytic CO2 reduction towards industrial applications
Kamarudin et al. Technical design and economic evaluation of a PEM fuel cell system
Hollevoet et al. Energy-efficient ammonia production from air and water using electrocatalysts with limited faradaic efficiency
Jain et al. A new synthesis route of ammonia production through hydrolysis of metal–nitrides
CN102416337A (zh) 一种氮掺杂碳纳米管燃料电池催化剂的制备方法
JPS6172995A (ja) 熱エネルギ−の高次利用方法
CN107282079B (zh) 一种带状碳化钒电催化剂的制备方法及产品
CN111790387B (zh) 用于高效光催化还原二氧化碳的过渡金属氢氧化物-石墨烯复合材料及其制备方法和应用
JP2003007321A (ja) 燃料電池ハイブリッド低級炭化水素直接改質複合システム
Zhao et al. Metal-free C 5 N 2 doped with a boron atom as an efficient electrocatalyst for the nitrogen reduction reaction
CN112820915A (zh) 一种结合co2捕集的熔融碳酸盐燃料电池系统及其工作方法
US4332650A (en) Thermoelectrochemical process using copper oxide for producing hydrogen and oxygen from water
CN102553408B (zh) 基于反应物质循环的热化学分解co2和h2o的方法及装置
Li et al. Investigation of renewable methanol production from CO2 hydrogeneration based on spectral splitting and heat integration
Wiener et al. Storage of energy by solutions of alkali formate salts
US3186872A (en) Continuous gas concentration cell energy conversion
Kotera The thermochemical hydrogen program at NCLI
Yu et al. Non-neutral catalyst and reaction energy recovery to minimize the energy consumption for hydrogen production by recyclably indirect H2O electrolysis and CO2 capture
US4192726A (en) Thermoelectrochemical process using copper sulfate for producing hydrogen and oxygen from water

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term