JPS6161086A - Probing method for radiation absorbing body in structure - Google Patents

Probing method for radiation absorbing body in structure

Info

Publication number
JPS6161086A
JPS6161086A JP59182599A JP18259984A JPS6161086A JP S6161086 A JPS6161086 A JP S6161086A JP 59182599 A JP59182599 A JP 59182599A JP 18259984 A JP18259984 A JP 18259984A JP S6161086 A JPS6161086 A JP S6161086A
Authority
JP
Japan
Prior art keywords
radiation
film
block
line
marker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59182599A
Other languages
Japanese (ja)
Other versions
JPH0340839B2 (en
Inventor
Yukio Mori
幸夫 森
Shoichi Tashiro
田代 正一
Hiroshi Otani
博 大谷
Kiyoshi Kato
潔 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON X SEN KENSA KK
Tokyu Construction Co Ltd
Original Assignee
NIPPON X SEN KENSA KK
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON X SEN KENSA KK, Tokyu Construction Co Ltd filed Critical NIPPON X SEN KENSA KK
Priority to JP59182599A priority Critical patent/JPS6161086A/en
Publication of JPS6161086A publication Critical patent/JPS6161086A/en
Publication of JPH0340839B2 publication Critical patent/JPH0340839B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To measure an accurate position speedily and easily without any limitation of the shape of an object structure by fitting a block made of a material whose coefficient of absorption to radiation is equal to that of the structure in the projection/recess part of the object structure. CONSTITUTION:The block B made of the material whose coefficient of absorption to radiation is equal to that of the structure 1 is fitted to a corner part 13 of the structure 1; and a marking line 3 is arranged on a marking line installation surface B2 and a film F is installed on a film installation surface B3. Then, X rays are emitted from an X-ray source 5 toward the irradiation source flank 11 of the structure 1 and the surface B2 of the block B. The structure 1 and block B are equal in coefficient of absorption to radiation, so the X rays illuminating the surface 11 and surface B2 are considered to illuminate the united structure surrounded with the surface 11, surface B2, surface B3, and film flank 12. A projection of the marker line 3 and a buried body 2 at the corner 13 is projected on the film F, so their positions and sizes are measured to calculate the position of the buried body 2.

Description

【発明の詳細な説明】 く■〉産業上の利用分野 本発明は構造物内の配管や鉄筋などの位置等を放射線の
照射によつ(探査する、構造物内のIIi射線吸収物体
の探査方法に関するものであり、特に柱や梁等の複雑な
形状の部分を対象にしたちの′Cある。
[Detailed description of the invention] 〉〉 Industrial application field The present invention is used to detect (probe) the positions of piping, reinforcing bars, etc. in a structure by irradiating it with radiation, and to search for IIi radiation-absorbing objects in a structure. It is concerned with methods, especially for parts with complex shapes such as columns and beams.

<ff>従来の技術 既設コンクリート建築物の耐震診断や建築物の改築の際
に、コンクリート壁や柱、梁の内部等に配設された鉄筋
や配管の位置を事前に正確に把握する必要がある。
<ff> Conventional technology When conducting seismic diagnosis of existing concrete buildings or remodeling buildings, it is necessary to accurately determine in advance the positions of reinforcing bars and piping installed inside concrete walls, columns, beams, etc. be.

そこで従来から建築物のコンクリート型体、柱内部等に
埋設された埋設物の位置を、いわゆる非破壊的に検知す
る方法として電磁誘導り式や放射線照射方式が工夫され
ている。
Therefore, conventionally, electromagnetic induction methods and radiation irradiation methods have been devised as a so-called non-destructive method of detecting the position of buried objects buried in concrete bodies, columns, etc. of buildings.

電磁誘導方式では、N磁コイルを収納した測定器を被検
査壁体の表面に当接しながら移動させ、磁力の埋設物に
対する反応を感知する方法である。
In the electromagnetic induction method, a measuring instrument containing an N magnetic coil is moved while contacting the surface of the wall to be inspected, and the reaction of the magnetic force to the buried object is sensed.

また対象物のコンクリート壁体に放射線を照射して構造
物内に埋設された埋設物の探査を行う方払も近時開発さ
れている。
In addition, a method has recently been developed in which the concrete wall of the target object is irradiated with radiation to detect buried objects buried within the structure.

すなわち、まず鉄筋等の埋設物が即設されている構造物
の照射面に寸法既知のII識線を貼付し、一方裏面に放
射線の透過強度を感受するフィルムを装置1する。
That is, first, a II identification line of known dimensions is pasted on the irradiation surface of a structure where buried objects such as reinforcing bars are immediately installed, and on the other hand, a film that senses the transmitted intensity of radiation is attached to the back surface of the device 1.

次に線源側から放射線を照射して、標識線ど平行に設置
された上記フィルム上に埋設物と標識線を投影する。
Next, radiation is irradiated from the radiation source side to project the buried object and the marker line onto the film placed parallel to the marker line.

そして投影された投影図の相対位置関係と寸法を実測し
て埋設物の位置を算出する方法である。
Then, the position of the buried object is calculated by actually measuring the relative positional relationship and dimensions of the projected view.

<[7>本発明が解決しようとする問題点上記のような
方法には次のような問題点が存在Mる。
<[7> Problems to be Solved by the Present Invention The above method has the following problems.

(イ)電磁誘導方式では、まず埋設の深さ、大きざがわ
からないこと、更に測定誤差が大きいという欠点があり
、又即設物が壁体内に複雑に埋設されている場合や、柱
や梁等が複雑に入り組んでいる場所では、測定や測定値
の判断にへ度の熟練技術を必要とづる。
(a) The electromagnetic induction method has the disadvantage that the depth and size of the buried object cannot be determined, and the measurement error is large. In places where there are complex structures, measurements and judgments of measured values require highly skilled techniques.

(ロ)放射線を照射する方法では、柱や梁等が複雑に入
り組んでいる場所ではフィルムに濃度差が生じてしまう
(b) In the method of irradiating with radiation, differences in density occur in the film in areas where pillars, beams, etc. are intricately intertwined.

りなわら、例えば第5図に示でように表裏面のような平
行な面に標識線すとフィルムfを設置できない柱aに8
3いては、その角部分の埋設物Cの位置等を探査Jる場
合、隣り合う面を照射面とフィルム設置面としなければ
ならない。
However, if the marking lines are placed on parallel surfaces such as the front and back surfaces as shown in Fig. 5, the film f cannot be installed on pillar a.
3, when searching for the position of the buried object C at the corner, the adjacent surfaces must be used as the irradiation surface and the film installation surface.

そうした状況ではIJi識線すとフィルム1′の設置面
が平行でないところから、放射線が透過する厚さが異な
り影像に濃淡ができてしまい測定が不可能になる。
In such a situation, since the installation surface of the film 1' is not parallel to the IJI line, the thickness through which the radiation passes will be different and the image will have shading, making measurement impossible.

本発明は上記の欠点を解消し、より正確な位置を迅速簡
単に測定でき、しかも構造物の形状による制限を受けず
に探査が可能な、複雑な構造物内にある放射線吸収物体
の探査方法を提供することを目的とする。
The present invention solves the above-mentioned drawbacks, and provides a method for detecting radiation-absorbing objects inside complex structures, which allows for quick and easy measurement of more accurate positions, and enables exploration without being restricted by the shape of the structure. The purpose is to provide

〈■〉問題点を解決するための手段 本発明では、対象の構造物の凹凸部分に放射線に対する
吸収係数が構造物と同じ材料で構成したブロックを嵌合
し、平面図上で標識体と放射線用のフィルムを平行に位
置させることによって標識体とフィルム間の距離を均一
にし、影像の濃淡を防止づるよう構成した。
<■> Means for solving the problem In the present invention, a block made of a material with the same absorption coefficient for radiation as the structure is fitted into the uneven portion of the target structure, and the marking body and the radiation are By positioning the film in parallel, the distance between the marker and the film was made uniform, and the image was constructed to prevent shading.

<V>実施例 次に本発明の一実施例について図面をもとに説明する。<V> Example Next, one embodiment of the present invention will be described based on the drawings.

(イ)本発明に使用づる各装置(第1図)[構造物] 第1図において、構造物1はコンクリート等による壁体
または柱や梁等である。
(a) Each device used in the present invention (FIG. 1) [Structure] In FIG. 1, a structure 1 is a wall made of concrete or the like, or a column, a beam, or the like.

そして構造上、後述覆る標識線3と放射線用のフィルム
Fを平面図上で平行に設置しえない状態、例えば隣接す
る照射源側面11、フィルム側面12の2面のみが露出
している状態になっている。
Due to the structure, it is not possible to install the marking line 3 to be covered later and the radiation film F in parallel on the plan view, for example, in a state where only two sides, the adjacent irradiation source side surface 11 and the film side surface 12, are exposed. It has become.

さらに隣接する照射源側面11、フィルム側面12の2
面で形成する角部13内に鉄筋等の放射線吸収物体の埋
設物2が埋設されている。
Furthermore, two of the adjacent irradiation source side surface 11 and film side surface 12
A radiation-absorbing object 2 such as a reinforcing bar is buried in a corner 13 formed by a surface.

1ブロツク1 Bは放射線に対する吸収係数が構造物1と同一な材料で
構成したグロックである。
1 Block 1B is a Glock made of a material with the same radiation absorption coefficient as Structure 1.

そして構造物1の照射源側面11、フィルム側面12の
2面で形成する角部13に嵌合する四部B1を有し、照
射源側面11、フィルム側面12と同じ方向の平行な2
面を標識線設置面]32、フィルム設置面B3とする。
It has four parts B1 that fit into the corner parts 13 formed by the irradiation source side surface 11 and the film side surface 12 of the structure 1.
Let the surface be the sign line installation surface] 32 and the film installation surface B3.

標識線設置面B2、フィルム設置面B3にはそれぞれ放
射線に及応する後述の標識線3と放(ト)線用のフィル
ムFを貼付する。
A marker line 3, which will be described later, and a film F for radiation, which will be described later, are attached to the marker line installation surface B2 and the film installation surface B3, respectively.

なお放射線に対する吸収係数が構造物1と同一な材料、
例えば構造物と同じ」ンクリートの他にアルミニュウム
、又は放射線的にコンクリートと等価な厚さになるよう
に調整すればバリウム、又はヨウ素等の液体を使用して
もよい。
In addition, a material whose absorption coefficient for radiation is the same as that of structure 1,
For example, in addition to the same concrete as the structure, aluminum, or a liquid such as barium or iodine may be used if the thickness is adjusted to be radiologically equivalent to concrete.

[標識体] 3は鉛またはタングステン等による線材で、標識体とし
て作用する標識線3でありブロックBの標識線設置面B
2に水平に貼付する。
[Sign body] 3 is a wire rod made of lead or tungsten, etc., and is the sign line 3 that acts as a sign body, and is located on the sign line installation surface B of block B.
Attach horizontally to 2.

(照射線源1 5は放射線照射線源として例えばXta源5を使用する
がX線以外の651則線を使用することも勿論可能【・
ある。
(For example, the Xta source 5 is used as the radiation source 15, but it is of course possible to use 651 lines other than X-rays.)
be.

そしてX線源5はブ[lツクBの標識線設置面B2側に
位置し、標識線3を三等分した点から垂直にのびた線−
トの任意の距離の地点とする。
The X-ray source 5 is located on the marker line installation surface B2 side of the block B, and a line extending perpendicularly from a point dividing the marker line 3 into three equal parts.
point at an arbitrary distance from the point.

次に上記の各装置を使用して構造物1の角部13部分の
埋設物2の位置等を調査する方法を説明(る。
Next, a method of investigating the position of the buried object 2 at the corner 13 of the structure 1 using each of the above devices will be explained.

(イ)1「1ツクの設置 構造物1の角部13にブロック13の凹部B1をあてが
って構造物1にブ[−1ツクBを嵌合する。
(a) 1. Fit the block B into the structure 1 by applying the recess B1 of the block 13 to the corner 13 of the installed structure 1.

そして標識線設置面82に標識線3を水平に、ノイルム
設置面B3にフィルムトをそれぞれ設置する。
Then, the marker line 3 is installed horizontally on the marker line installation surface 82, and the filmt is installed on the noilm installation surface B3.

(口>xiの照射 次にX線源5からX線を、構造物1の照射源側面11及
びブロックBの標識線設置面132に向けて照射する。
(Irradiation of mouth > xi Next, X-rays are irradiated from the X-ray source 5 toward the irradiation source side surface 11 of the structure 1 and the marker line installation surface 132 of the block B.

(ハ)X線透過の状態 構造物1とブ〔1ツク]3は、放射線に対する吸収割合
が同じなので、構造物1の照射源側面11及びブロック
13の標識線設置面132に照射されたX線は、照射源
側面11、標識線設置面B2、フィルムiQW百B3、
ノイルム側面12等で囲まれた一体の構造物に照(ト)
されたことと同じことになる。
(c) State of X-ray transmission Since structure 1 and block 3 have the same radiation absorption rate, The line is the irradiation source side 11, the marker line installation surface B2, the film iQW100B3,
Look at the integral structure surrounded by Noilm side 12 etc.
It will be the same as what happened.

さらに上記I!造動物上は平行な2而、づなわら標識線
設置面B2、及びフィルム設置面83に標識線と放射線
用のノイルムFが設置されている。
Furthermore, the above I! On the object, two parallel marking lines, a marker line installation surface B2, and a film installation surface 83, are provided with a marker line and a radiation shield F.

従ってフィルム[には標識線3及び角部13の埋設物2
の投影図がうつしだされる。(第2図)(ハ)解析原理 1作図による位置i認」 (第3図) 図面上に設定したX線源5をSとし、Sから、実測した
10ツクBの標識線設置面B2まぐの距離FWDの直線
をのばしその一端をS′とし、白線SS−に直角に交わ
る線上でその交点からhもそれぞれ標識線30半分の距
離(/2の点をP、1、)′とする。
Therefore, the film [includes the marker line 3 and the buried object 2 at the corner 13]
A projection of the image is displayed. (Fig. 2) (C) Position i recognition by analysis principle 1 drawing (Fig. 3) The X-ray source 5 set on the drawing is S, and from S, the actually measured 10 ts B marker line installation surface B2 Extend a straight line of distance FWD, and let one end of it be S', and on a line that intersects at right angles to the white line SS-, h from the intersection point is also a distance of half 30 of the marker line (the points at /2 are P, 1, )'.

次にX線源5をあられす点SとP、P′を結んだ線を引
く。
Next, draw a line connecting the point S where the X-ray source 5 is placed and P and P'.

直線SP、SP−の延長線上の点r、r−を結んだ直線
で、直線PP−に平行かつその長さが標識線3のフィル
ムFに投影された長さLになる直線rr”が投影された
標識線部分となる。
A straight line connecting the points r and r- on the extension lines of the straight lines SP and SP-, which is parallel to the straight line PP- and whose length is the length L projected on the film F of the marker line 3 is projected. This is the marked line part.

次に上記で求められた標識線部分に現われている埋設物
2の投影図の両端部qq−と照射源Sを結んだ直線上の
点tt′を結んだ直線で、直JIIPP′に平行で埋設
物2の直径路$1dになる直線11′を直径とする円が
埋設物2の埋設位置となる。
Next, a straight line connecting point tt' on the straight line connecting both ends qq- of the projected view of the buried object 2 appearing in the marker line section obtained above and the irradiation source S, parallel to JIIPP'. A circle whose diameter is the straight line 11', which is the diameter path $1d of the buried object 2, is the buried position of the buried object 2.

(ホ)その他の実施例(第4図) 上記実施例では標識体として線材の標識線を使用したが
、ブロックBの内部に挿入した、フィルム設置面に平行
な鉛板N等を標識体として使用することも可能である。
(e) Other Examples (Figure 4) In the above example, a wire marker line was used as the marker, but a lead plate N, etc. inserted into the block B and parallel to the film installation surface was used as the marker. It is also possible to use

要はフィルムに平行にlj!l1体を位置させて照射を
行えばよいのである。
The point is lj parallel to the film! All you have to do is position the l1 body and irradiate it.

<VJ>発明の効果 本発明は以上説明したようになるので次のような効果を
期待することが出来る。
<VJ> Effects of the Invention Since the present invention has been described above, the following effects can be expected.

(イ)10ツクを構造物の角部に嵌合ηることによって
フィルムと標識体が平面図上で平行になる。
(b) By fitting the 10 hooks into the corners of the structure, the film and the sign become parallel in plan view.

従って放射線の透過距離が均一になり影像の濃淡がな(
なる。
Therefore, the transmission distance of the radiation becomes uniform, and the image has no shading (
Become.

従って柱や梁の角部等の複雑な部分でも埋設物の探査が
可能である。
Therefore, it is possible to search for buried objects even in complex parts such as the corners of columns and beams.

(ロ)構造物内の物体の位置がはっきりとした数値で現
われるので電磁誘導方式などに比べてはるかに正確、か
つ熟練をようさすに埋設物の位置を知ることが出来る。
(b) Since the position of an object within a structure is displayed as a clear numerical value, it is much more accurate than electromagnetic induction methods, and it is possible to know the position of buried objects with great skill.

(ハ)一般にコンクリート而の上には仕上がり材を取り
つけて内装を美しく仕上げているが、本発明の方法によ
れば、こうした内装材を剥がしたり、貼ったりする必要
はなく、そのままの状態で内部の検査が可能である。
(c) Generally, finishing materials are attached to concrete to give the interior a beautiful finish, but according to the method of the present invention, there is no need to remove or paste such interior materials, and the interior can be left as is. inspection is possible.

(ニ)構造物内の配管等が数値で現われるので構造物の
配筋状態が明確にわかり耐震性能を確認する保安検査等
の作業性をたかめることが出来る。
(d) Since the pipes, etc. inside the structure are displayed numerically, the reinforcing condition of the structure can be clearly seen, making it possible to improve the efficiency of safety inspections to confirm seismic performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図:本弁明の一実施例の斜視図 第2図:照射時の平面図 Figure 1: Perspective view of one embodiment of the present defense Figure 2: Plan view during irradiation

Claims (1)

【特許請求の範囲】 放射線に対する吸収係数が構造物と同じ材料で構成し、 構造物の角部に嵌合する形状を有するブロックを使用し
、 このブロックの各面に寸法既知の標識体と放射線用のフ
ィルムを貼付し、 上記ブロックを構造物の角部に嵌合させ、 標識線を貼付した側から放射線を照射し、 上記フィルム上に投影された標識線と放射線吸収物体の
位置と寸法を実測し、 前記埋設された放射線吸収物体の位置を算出することを
特徴とする、 構造物内にある放射線吸収物体の探査方法。
[Claims] A block is used that is made of a material with the same radiation absorption coefficient as the structure and has a shape that fits into the corner of the structure, and a marker with known dimensions and a radiation source are placed on each side of this block. The block is fitted to the corner of the structure, radiation is irradiated from the side where the marker line is attached, and the position and dimensions of the marker line and the radiation absorbing object projected on the film are measured. A method for searching for a radiation-absorbing object in a structure, the method comprising: actually measuring and calculating the position of the buried radiation-absorbing object.
JP59182599A 1984-09-03 1984-09-03 Probing method for radiation absorbing body in structure Granted JPS6161086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59182599A JPS6161086A (en) 1984-09-03 1984-09-03 Probing method for radiation absorbing body in structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59182599A JPS6161086A (en) 1984-09-03 1984-09-03 Probing method for radiation absorbing body in structure

Publications (2)

Publication Number Publication Date
JPS6161086A true JPS6161086A (en) 1986-03-28
JPH0340839B2 JPH0340839B2 (en) 1991-06-20

Family

ID=16121100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59182599A Granted JPS6161086A (en) 1984-09-03 1984-09-03 Probing method for radiation absorbing body in structure

Country Status (1)

Country Link
JP (1) JPS6161086A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163188A (en) * 1986-12-25 1988-07-06 Tokyu Constr Co Ltd Search for radiation absorbing body buried into construction
JPH0762661A (en) * 1993-08-23 1995-03-07 Buruman Kk Back-filling construction method on earth retaining wall surface and device thereof
JP2010509608A (en) * 2006-11-14 2010-03-25 トモグラフィア デ オルミゴン アルマド エセ アー Method and arrangement for improving tomographic determination, especially suitable for inspection of reinforcing bars in concrete structures
JP2012189517A (en) * 2011-03-13 2012-10-04 National Institute Of Advanced Industrial & Technology Standard gauge for calibration and evaluation of x-ray ct apparatus, and calibration method and evaluation method of x-ray ct apparatus using standard gauge for calibration and evaluation of x-ray ct apparatus
JP2015051450A (en) * 2013-09-09 2015-03-19 Jfeスチール株式会社 Radiation flaw detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163188A (en) * 1986-12-25 1988-07-06 Tokyu Constr Co Ltd Search for radiation absorbing body buried into construction
JPH0762661A (en) * 1993-08-23 1995-03-07 Buruman Kk Back-filling construction method on earth retaining wall surface and device thereof
JP2010509608A (en) * 2006-11-14 2010-03-25 トモグラフィア デ オルミゴン アルマド エセ アー Method and arrangement for improving tomographic determination, especially suitable for inspection of reinforcing bars in concrete structures
JP2012189517A (en) * 2011-03-13 2012-10-04 National Institute Of Advanced Industrial & Technology Standard gauge for calibration and evaluation of x-ray ct apparatus, and calibration method and evaluation method of x-ray ct apparatus using standard gauge for calibration and evaluation of x-ray ct apparatus
JP2015051450A (en) * 2013-09-09 2015-03-19 Jfeスチール株式会社 Radiation flaw detector

Also Published As

Publication number Publication date
JPH0340839B2 (en) 1991-06-20

Similar Documents

Publication Publication Date Title
US11085886B2 (en) Method to radiographically determine geometrical parameters and/or substance state of an object under study
Margret et al. Compton back scatter imaging for mild steel rebar detection and depth characterization embedded in concrete
US2346486A (en) Method and apparatus for measuring thickness
CN101558293B (en) Method and arrangement for improving tomographic determinations, particularly suitable for inspection of steel reinforcement bars in concrete structures
JPS6161086A (en) Probing method for radiation absorbing body in structure
US5828723A (en) Process for determining the internal three-dimensional structure of a body opaque to visible light by means of radiations from a single source, specially suitable for reinforced concrete parts
Ong et al. A novel X-ray technique for inspection of steel pipes
WO2022085591A1 (en) Nondestructive inspecting device, and nondestructive inspecting method
JPH0357432B2 (en)
JP2535159B2 (en) Method for exploring radiation absorbers buried in structures
JPS61288187A (en) Method for radiographic measurement of structure
US4031387A (en) Method of determining whether radioactive contaminants are inside or outside a structure
JPH03148006A (en) Thickness measuring method of duplex pipe of different materials
JPH0520710B2 (en)
JPH0242408B2 (en)
TWI454691B (en) System and method for measuring depth of defects within an analyte
JPH0522841B2 (en)
JP3234716B2 (en) Area measurement method used for X-ray analysis
JP2001281174A (en) Inclusion detecting method and inclusion detector
JPS5929818Y2 (en) Inspection jig for PC board connection fittings
Otsuka et al. Detection of fine cracks by X-ray technique using contrast medium in concrete
JP2615064B2 (en) Material inspection method by X-ray diffraction method
JPH0217048B2 (en)
JPS6010244B2 (en) How to measure the gap behind the sheathing
JPS628089A (en) Radiation transmission measurement for structure