JPS6010244B2 - How to measure the gap behind the sheathing - Google Patents

How to measure the gap behind the sheathing

Info

Publication number
JPS6010244B2
JPS6010244B2 JP50061677A JP6167775A JPS6010244B2 JP S6010244 B2 JPS6010244 B2 JP S6010244B2 JP 50061677 A JP50061677 A JP 50061677A JP 6167775 A JP6167775 A JP 6167775A JP S6010244 B2 JPS6010244 B2 JP S6010244B2
Authority
JP
Japan
Prior art keywords
gap
neutron
sheathing
bottom plate
gamma ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50061677A
Other languages
Japanese (ja)
Other versions
JPS51137440A (en
Inventor
昌 有泉
毅史 山本
道夫 土弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP50061677A priority Critical patent/JPS6010244B2/en
Publication of JPS51137440A publication Critical patent/JPS51137440A/en
Publication of JPS6010244B2 publication Critical patent/JPS6010244B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は密封中性子線源と熱中性子計数装置および密
封ガンマ線源とガンマ線計数装置を併用して、被覆体の
表面から非破壊的に、被覆体とその背後物体との間隙距
離を測定する方法に関するものである。
Detailed Description of the Invention This invention uses a sealed neutron source, a thermal neutron counter, and a sealed gamma ray source and gamma ray counter to non-destructively detect the distance between the covering and an object behind it from the surface of the covering. The present invention relates to a method of measuring gap distance.

近年、オイルタンクの過大な不等沈下あるいはオイルタ
ンクからのオイル流出による事故が発生し、社会的な大
きな問題となっている。
In recent years, accidents due to excessive uneven settling of oil tanks or oil leakage from oil tanks have occurred, which has become a major social problem.

オイルタンクの基礎地盤が不等沈下を生じた場合、タン
クのボトムプレートと基礎地盤との間隙距離を、あるい
は過大な不等沈下を生じたタンクを修正した場合にあっ
ては、ボトムプレート下の間隙距離を知る必要があるも
のである。
If the foundation ground of the oil tank has uneven settlement, the gap distance between the bottom plate of the tank and the foundation ground should be adjusted, or if the tank with excessive uneven settlement has been corrected, the area under the bottom plate should be adjusted. It is necessary to know the gap distance.

こうした場合従来、ボトムプレートを切断して直接間隙
距離を測定する方法が多く採用されている。
In such cases, conventionally, a method of cutting the bottom plate and directly measuring the gap distance has often been adopted.

しかしながら、大容量のオイルタンクになるとタンクの
直径が数十のに及ぶため、ボトムプレートに穴をあげて
調査する方法は、測定値は正確であるが、全体的な傾向
を把握するには、ボトムプレートを多くの個所で切断せ
ねばならず、技術的、経済的に問題がある。
However, when it comes to large-capacity oil tanks, the diameter of the tank ranges into tens of diameters, so the method of drilling a hole in the bottom plate provides accurate measurements, but it is difficult to grasp the overall trend. The bottom plate must be cut at many locations, which poses technical and economical problems.

このためボトムプレート表面から非破壊的に間隙距離を
測定できる新しい測定方法が望まれていた。この発明は
、前記の問題点を解決すべく、新しく開発したもので、
中性子線源と熱中性子計数装置およびガンマ線源とガン
マ線計数装置を併用し、オイルタンクのボトムプレート
の上面に適当に配置し、非破壊的にボトムプレート下の
間隙距離を測定するものである。
Therefore, a new measurement method that can non-destructively measure the gap distance from the bottom plate surface has been desired. This invention was newly developed to solve the above problems.
A neutron source and a thermal neutron counter, and a gamma ray source and a gamma ray counter are used together, and are appropriately placed on the top surface of the bottom plate of an oil tank to non-destructively measure the gap distance under the bottom plate.

すなわち放射線が鉄板等の被覆体を透過する性質と、被
覆体背後の土またはコンクリート等の背後物体により散
乱して戻ってきた場合における放射線量が変化する性質
とを利用したものである。
That is, it takes advantage of the property that radiation passes through a covering such as a steel plate, and the property that the radiation dose changes when it is scattered by an object behind the covering, such as soil or concrete, and returns.

そして放射線としては、中性子線とガンマ線が併用され
る。そして中性子線は、特に被覆体背後の背後物体の含
水素量が既知である場合において有効であり、ガンマ線
は背後物体の材料の密度および組成は既知であるが、含
水素量が不明である場合に有効であるところより、中性
子線とガンマ線を併用することによって確実かつ正確に
被覆体と背後物体との間隙を測定できる。ところでこの
発明は、オイルタンクのボトムプレートとその下方の地
盤との間隙に限らず、トンネルにおける覆工面とその背
後の地山との間隙、あるいは建物の壁体とその背後の芯
体との間隙を測定する場合等に有用である。
As the radiation, neutron beams and gamma rays are used together. Neutron beams are particularly effective when the hydrogen content of the object behind the coating is known, while gamma rays are effective when the density and composition of the material behind the object is known but the hydrogen content is unknown. By using both neutron beams and gamma rays, it is possible to reliably and accurately measure the gap between the covering and the object behind it. By the way, this invention is applicable not only to the gap between the bottom plate of an oil tank and the ground below it, but also to the gap between the lining surface of a tunnel and the ground behind it, or the gap between the wall of a building and the core body behind it. This is useful when measuring.

この発明の被覆体としては、中性子線およびガンマ線が
透過可能な金属板等の材料からなるものである。
The covering of the present invention is made of a material such as a metal plate through which neutron beams and gamma rays can pass.

また背後物体は、±、コンクリート、または裏込め材料
等からなるものである。以下この発明を図面に示す実施
例によって説明すると、第1図は測定装置を示したもの
で、たとえばオイルタンクのボトムプレートー上に設置
され、そのボトムプレート1とその下方の地盤2表面と
の間隙Dを測定する場合の態様を示したものである。
Further, the background object is made of ±, concrete, backfilling material, or the like. The present invention will be explained below with reference to the embodiments shown in the drawings. FIG. 1 shows a measuring device which is installed, for example, on the bottom plate of an oil tank, and measures the distance between the bottom plate 1 and the surface of the ground 2 below. This figure shows how the gap D is measured.

3は中性子線源で、これから中性子線が放出される。3 is a neutron beam source, from which neutron beams are emitted.

その中性子線は、ボトムプレート1を透過し、地盤2を
構成する原子核と衝突を繰返して減速散乱されながら、
しだいにエネルギーを失い熱中性子となって装置側に戻
ってくる。この熱中性子量を熱中性子計数管4によって
検出し、電子回路5を介して出力表示部6に表示するよ
うに構成されている。一方、7はガンマ線源で、これか
ら放出されたガンマ線は、ボトムプレート1を透過し、
地盤2と衝突する。
The neutron beam passes through the bottom plate 1, repeatedly collides with the atomic nuclei that make up the ground 2, and is decelerated and scattered.
They gradually lose energy and return to the device as thermal neutrons. The thermal neutron quantity is detected by a thermal neutron counter 4 and displayed on an output display section 6 via an electronic circuit 5. On the other hand, 7 is a gamma ray source, and the gamma rays emitted from it pass through the bottom plate 1.
Collisions with ground 2.

そしてその一部が散乱して装置側に戻ってきた量をガン
マ線計数管8によって検出し、電子回路5を介して出力
表示部6に表示するように構成されている。9はガンマ
線が直接ガンマ線計数管8に入ってくるのを遮蔽するた
めの遮蔽体である。
The amount of part of the scattered light that returns to the apparatus side is detected by a gamma ray counter 8 and displayed on an output display section 6 via an electronic circuit 5. 9 is a shielding body for blocking gamma rays from directly entering the gamma ray counter tube 8.

このように、中性子線量を検知するようにすれば、中性
子線が地盤の水分を構成する水素原子核と衝突してエネ
ルギーを失い装置側に熱中性子となって戻ってくる量は
地盤の含水素量が一定であればボトムプレートーと地盤
との間隙○が大きくなるほど、少ないという関係がある
からして、間隙Dを測定できる。
In this way, if the neutron dose is detected, the neutron beam collides with the hydrogen nuclei that make up the moisture in the ground, loses energy, and returns to the device as thermal neutrons, which is equal to the hydrogen content of the ground. If is constant, the gap D can be measured because there is a relationship that the larger the gap ○ between the bottom plate and the ground, the smaller the gap.

またガンマ線量を検知することによって、戻ってきたガ
ンマ線量は間隙Dと相関関係が見られるので、間隙Dを
測定することができる。この発明者らが、実際のオイル
タンクにて上記装置を用いて中性子量およびガンマ線量
と間隙Dとの相関を調べたところ、それぞれ第2図およ
び第3図に示すような結果が得られた。
Furthermore, by detecting the gamma ray dose, the returned gamma ray dose is correlated with the gap D, so the gap D can be measured. When the inventors investigated the correlation between the neutron dose, gamma ray dose, and gap D using the above-mentioned apparatus in an actual oil tank, the results shown in Figures 2 and 3 were obtained, respectively. .

すなわち中性子量は間隙Dに対してほぼ指数関数的に小
となるのに対して、ガンマ線量は間隙D=3肌近傍にピ
ークをもつ、ほぼ二次曲線状の変化を示した。ここで、
ガンマ線を使用する場合においては、所定のガンマ線量
に対して図面に示す相関から二つの間隙値が得られるが
、中性子線によって得られた結果と比較することにより
正確な間隙値を推測することができる。以上の通り、こ
の発明は中性子線とガンマ線を併用して測定する各種の
現場において、被覆体とその背後物体との間隙を正確か
つ迅速に測定できる。
That is, while the neutron amount decreased almost exponentially with respect to the gap D, the gamma ray dose showed an almost quadratic curve-like change with a peak near the skin of the gap D=3. here,
When using gamma rays, two gap values can be obtained from the correlation shown in the drawing for a given gamma ray dose, but it is not possible to estimate the exact gap value by comparing with the results obtained with neutron beams. can. As described above, the present invention can accurately and quickly measure the gap between a covering and an object behind it at various sites where measurements are performed using a combination of neutron beams and gamma rays.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は測定態様を示す概要図、第2図は中性子線を利
用した場合の中性子線計数率と間隙との相関図、第3図
はガンマ線を利用した場合のガンマ線計数率と間隙との
相関図である。 1・・・・・・ボトムプレート、2・・・・・・地盤、
3・・・・・・中性子線源、4・・・・・・熱中性子計
数管、5・・・・・・電子回路、6・・・・・・出力表
示部、7・・・・・・ガンマ線源、8・・・・・・ガン
マ線計数管、9・・・・・・遮蔽体。 第1図第2図 第3図
Figure 1 is a schematic diagram showing the measurement method, Figure 2 is a correlation diagram between the neutron ray count rate and the gap when using neutron beams, and Figure 3 is the correlation diagram between the gamma ray count rate and the gap when using gamma rays. It is a correlation diagram. 1...bottom plate, 2...ground,
3...Neutron beam source, 4...Thermal neutron counter, 5...Electronic circuit, 6...Output display section, 7... - Gamma ray source, 8... Gamma ray counter, 9... Shielding body. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 被覆体の前面に中性子線源およびガンマ線源を配し
、それら線源からそれぞれ中性子線およびガンマ線を放
出させ、被覆体の背後の背後物体から被覆体前面側に戻
ってきた熱中性子量およびガンマ線量を検出することに
より被覆体と背後物体との間隙を検知することを特徴と
する被覆体背後の間隙の測定方法。
1 A neutron ray source and a gamma ray source are arranged in front of the sheathing, and these sources emit neutron rays and gamma rays, respectively, and the amount of thermal neutrons and gamma rays that return from the object behind the sheathing to the front side of the sheathing are A method for measuring a gap behind a covering, the method comprising detecting the gap between the covering and an object behind the covering by detecting the amount of the gap.
JP50061677A 1975-05-22 1975-05-22 How to measure the gap behind the sheathing Expired JPS6010244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50061677A JPS6010244B2 (en) 1975-05-22 1975-05-22 How to measure the gap behind the sheathing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50061677A JPS6010244B2 (en) 1975-05-22 1975-05-22 How to measure the gap behind the sheathing

Publications (2)

Publication Number Publication Date
JPS51137440A JPS51137440A (en) 1976-11-27
JPS6010244B2 true JPS6010244B2 (en) 1985-03-15

Family

ID=13178111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50061677A Expired JPS6010244B2 (en) 1975-05-22 1975-05-22 How to measure the gap behind the sheathing

Country Status (1)

Country Link
JP (1) JPS6010244B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468609A (en) * 1987-09-09 1989-03-14 Mitsui Constr Charging state detecting method for concrete

Also Published As

Publication number Publication date
JPS51137440A (en) 1976-11-27

Similar Documents

Publication Publication Date Title
US4766319A (en) Portable nuclear moisture-density gauge with low activity nuclear sources
US4350887A (en) Method of assaying uranium with prompt fission and thermal neutron borehole logging adjusted by borehole physical characteristics
US3602713A (en) Passive moisture meter
US9151722B2 (en) Systems for determining and imaging wax deposition and simultaneous corrosion and wax deposit determination in pipelines
JPS6010244B2 (en) How to measure the gap behind the sheathing
Goldberg et al. Measurement of moisture content and density of soil masses using radioactivity methods
CA1274321A (en) Method of determining the density of substrata
Dep et al. A new low-activity nuclear density gauge for soil density measurements
US2425512A (en) Measurement of thickness
US2967938A (en) Thickness measurement
Tan et al. Nondestructive density measurements of cylindrical specimens by gamma-ray attenuation
US4031387A (en) Method of determining whether radioactive contaminants are inside or outside a structure
JPH0531952B2 (en)
Brunner et al. A neutron method for measuring saturations in laboratory flow experiments
US10031092B2 (en) System for determining and imaging wax deposition and corrosion in pipelines
Afshari et al. Quantitative measurement of lead in paint by XRF analysis without manual substrate correction
Homilius et al. DENSITY DETERMINATION ON NEAR‐SURFACE LAYERS BY GAMMA ABSORPTION*
JPS6161086A (en) Probing method for radiation absorbing body in structure
Haskell et al. D2O‐Na24 Method for Tracing Soil Moisture Movement in the Field
KR100245270B1 (en) Method, device and circuit for measuring density and moisture content of soil compaction
JPS60250216A (en) Discrimination of inside condition of pipe
Regimand et al. Apparatus and method for field calibration of nuclear surface density gauges
Wolf et al. Relative density measurements in a simple lung phantom by Compton backscatter
JPS6285849A (en) Method for detecting inside of vessel
McHenry Determination of densities of reservoir sediments in situ with a gamma probe