JP2015051450A - Radiation flaw detector - Google Patents

Radiation flaw detector Download PDF

Info

Publication number
JP2015051450A
JP2015051450A JP2013186094A JP2013186094A JP2015051450A JP 2015051450 A JP2015051450 A JP 2015051450A JP 2013186094 A JP2013186094 A JP 2013186094A JP 2013186094 A JP2013186094 A JP 2013186094A JP 2015051450 A JP2015051450 A JP 2015051450A
Authority
JP
Japan
Prior art keywords
radiation
detector
cracks
flaw detector
steel piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013186094A
Other languages
Japanese (ja)
Other versions
JP5949710B2 (en
Inventor
孝文 尾関
Takafumi Ozeki
孝文 尾関
淳一 四辻
Junichi Yotsutsuji
淳一 四辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013186094A priority Critical patent/JP5949710B2/en
Publication of JP2015051450A publication Critical patent/JP2015051450A/en
Application granted granted Critical
Publication of JP5949710B2 publication Critical patent/JP5949710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To detect shallow corner cracks with high sensitivity, regardless of the thickness of steel strips.SOLUTION: A radiation source 2 irradiates obliquely radiation to casting surfaces of the corner part A of a rectangular steel strip S which is casted through continuous casting, a detector 3 detects the radiation which is irradiated by the radiation source 2 to transmit through the steel strip S, a control unit evaluates the cracks of the corner part A using the radiation detected by the detector 3. A wedge material T is preferable to be provided on a path of radiation from the radiation source 2 to the detector 3 such that the attenuation of the radiation transmitted through the steel strip S without cracks is constant without respect to the path. A cooling mechanism are preferable to be provided for cooling the radiation source 2 and the detector 3. In addition, the radiation source 2 and the detector 3 are preferable to be housed in a case with a window portion 41 formed in the opaque window material for infrared ray to irradiate or detect radiation through the window portion 41.

Description

本発明は、鋼片のコーナー部分の割れを検出する放射線探傷装置に関する。   The present invention relates to a radiation flaw detector that detects cracks in a corner portion of a steel piece.

従来、連続鋳造により鋳造された半製品である鋼片には、コーナー部分に割れ(以下、コーナー割れ)が発生する場合がある。このコーナー割れは、鋼片の段階で検出できれば、手入れなどの処理により圧延後に不良製品となることを抑制できる。そこで、例えば、特許文献1には、鋼片の熱画像を撮影して、コーナー割れを検出する技術が開示されている。また、非特許文献1に記載されているように、対象物に放射線(X線)を照射して透過した放射線を検出することにより対象物の内部を検査する放射線透過探傷法が、工業用の非破壊検査や医療診断などに広く利用されている。また、特許文献2には、鋼板に放射線を照射して透過した放射線を検出して鋼板の板厚を計測する技術が開示されている。   Conventionally, a steel piece, which is a semi-finished product cast by continuous casting, may have cracks (hereinafter referred to as corner cracks) at the corners. If this corner crack can be detected at the stage of a steel slab, it can be suppressed from becoming a defective product after rolling by a treatment such as care. Thus, for example, Patent Document 1 discloses a technique for detecting a corner crack by taking a thermal image of a steel piece. Further, as described in Non-Patent Document 1, a radiation transmission flaw detection method for inspecting the inside of an object by irradiating the object with radiation (X-rays) and detecting the transmitted radiation is an industrial-use method. Widely used for non-destructive testing and medical diagnosis. Patent Document 2 discloses a technique for measuring the thickness of a steel plate by detecting the transmitted radiation by irradiating the steel plate with radiation.

特開2012−73055号公報JP 2012-73055 A 特開2012−93314号公報JP 2012-93314 A

(社)日本非破壊検査協会編、「放射線透過試験I」、2006年版、p3〜7Japan Nondestructive Inspection Association, “Radiation Transmission Test I”, 2006 edition, p3-7

しかしながら、特許文献1に記載の技術では、熱画像により観測できるのは鋼片の表面のみであるため、表面近傍の凹凸と、傷(割れ)が鋼片の内部まで到達したコーナー割れとを区別して検出することは困難であった。スケールなどが鋼片の表面を覆ってしまった場合にも、コーナー割れを検出することは困難であった。   However, in the technique described in Patent Document 1, since only the surface of the steel slab can be observed by the thermal image, the unevenness in the vicinity of the surface and the corner crack where the crack (crack) reaches the inside of the steel slab are distinguished. It was difficult to detect separately. Even when a scale or the like has covered the surface of a steel piece, it was difficult to detect a corner crack.

一方、対象物に放射線を照射して透過した放射線を検出する方法を用いれば、コーナー割れでは割れの深さの分だけ放射線の吸収が減少して透過する放射線が増加するため、透過する放射線の強度を評価することにより、コーナー割れを計測できる。このように、鋼片の内部を透過する放射線の経路による減衰量の違い(減衰量の変化率)から鋼片の内部を評価する放射線透過探傷法によれば、割れが内部まで到達しているか否かを判別することや、スケールなどが鋼片の表面を覆ってしまった場合にもコーナー割れを検出することが可能である。   On the other hand, if the method of detecting the transmitted radiation by irradiating the object with radiation is used, the corner cracking reduces the absorption of the radiation by the depth of the crack and increases the transmitted radiation. By evaluating strength, corner cracks can be measured. In this way, according to the radiation transmission flaw detection method that evaluates the inside of the steel slab from the difference in attenuation (change rate of attenuation) due to the path of the radiation that passes through the inside of the steel slab, is the crack reaching the inside? It is possible to detect corner cracks even when determining whether or not the scale has covered the surface of the steel piece.

しかしながら、一般に、放射線透過探傷法において、放射線の透過経路での検出可能な減衰量の変化率は1%〜10%程度である。鋼片に対する放射線透過探傷法での減衰量の変化は、経路上の鋼片の板厚の変化に起因する。ここで、連続鋳造により鋳造された鋼片の多くは板厚が200mm以上である。板厚200mmの鋼片について、5%の減衰量の変化率を検出するためには、割れの深さが10mm以上でなければ検出できない。したがって、非特許文献1や特許文献2に記載の放射線透過探傷法では、板厚が厚い鋼片のコーナー割れを精度よく検出することは困難である。   However, in general, in the radiation transmission flaw detection method, the change rate of the detectable attenuation amount in the radiation transmission path is about 1% to 10%. The change in attenuation in the radiation transmission flaw detection method for the steel slab is caused by the change in the thickness of the steel slab on the path. Here, many steel pieces cast by continuous casting have a plate thickness of 200 mm or more. In order to detect a change rate of 5% attenuation with respect to a steel piece having a thickness of 200 mm, the crack cannot be detected unless the crack depth is 10 mm or more. Therefore, it is difficult for the radiation transmission flaw detection methods described in Non-Patent Document 1 and Patent Document 2 to accurately detect corner cracks in a steel piece having a large plate thickness.

本発明は、上記に鑑みてなされたものであって、鋼片の板厚によらず浅いコーナー割れを高感度で検出可能な放射線探傷装置を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the radiation flaw detector which can detect a shallow corner crack with high sensitivity irrespective of the plate | board thickness of a steel piece.

上述した課題を解決し、目的を達成するために、本発明に係る放射線探傷装置は、連続鋳造により鋳造された直方体状の鋼片のコーナー部分の割れを、放射線を用いて評価する放射線探傷装置であって、放射線を前記鋼片のコーナー部分の鋳造面に斜めに照射する照射手段と、前記照射手段により照射され前記鋼片を透過した前記放射線を検出する検出手段と、前記検出手段により検出された前記放射線を用いて前記コーナー部分の割れを評価する評価手段と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, a radiation flaw detector according to the present invention is a radiation flaw detector that evaluates cracks in a corner portion of a rectangular steel piece cast by continuous casting using radiation. An irradiation means for irradiating the cast surface of the corner portion of the steel slab obliquely, a detection means for detecting the radiation irradiated by the irradiation means and transmitted through the steel slab, and detected by the detection means Evaluation means for evaluating cracks in the corner portion by using the emitted radiation.

また、本発明に係る放射線探傷装置は、上記発明において、前記照射手段から前記検出手段までの前記放射線の経路上に設置され、割れがない前記鋼片を透過する前記放射線の減衰量が経路によらず一定となるように構成されたくさび材を備えることを特徴とする。   Further, in the above-described invention, the radiation flaw detector according to the present invention is installed on the path of the radiation from the irradiation means to the detection means, and the attenuation amount of the radiation that passes through the steel slab without cracks is the path. It is characterized by comprising a wedge material configured so as to be constant regardless.

また、本発明に係る放射線探傷装置は、上記発明において、前記照射手段と前記検出手段とを冷却する冷却機構を備えることを特徴とする。   The radiation flaw detection apparatus according to the present invention is characterized in that, in the above invention, a cooling mechanism for cooling the irradiation means and the detection means is provided.

また、本発明に係る放射線探傷装置は、上記発明において、前記照射手段と前記検出手段とは、赤外線に対し不透明な窓材で形成された窓部を備えるケースに収容され、該窓部を介して前記放射線を照射または検出することを特徴とする。   In the radiation flaw detector according to the present invention, in the above invention, the irradiation means and the detection means are accommodated in a case including a window portion formed of a window material opaque to infrared rays, and the window portion is interposed therebetween. The radiation is irradiated or detected.

本発明によれば、鋼片の板厚によらず浅いコーナー割れを高感度で検出することができる。   According to the present invention, shallow corner cracks can be detected with high sensitivity regardless of the thickness of the steel slab.

図1は、本発明の一実施形態に係る放射線探傷装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a radiation flaw detector according to an embodiment of the present invention. 図2は、本実施の形態の放射線探傷装置の探傷対象の鋼片を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing a steel piece to be flawed by the radiation flaw detector according to the present embodiment. 図3は、本実施の形態の放射線探傷装置の探傷対象の鋼片のコーナーの1つの断面を示す模式図である。FIG. 3 is a schematic view showing one cross section of a corner of a steel piece to be flawed by the radiation flaw detector according to the present embodiment. 図4は、本実施の形態の放射線探傷装置の探傷対象の鋼片のコーナーの1つの断面を示す模式図である。FIG. 4 is a schematic diagram showing one cross section of a corner of a steel piece to be flawed by the radiation flaw detector according to the present embodiment. 図5は、本実施例の放射線探傷装置の探傷対象の鋼片を示す図である。FIG. 5 is a view showing a steel piece to be flawed by the radiation flaw detector of the present embodiment. 図6は、鋼片の健全部と割れ部との鋼片中経路長の変化率を説明するための図である。FIG. 6 is a diagram for explaining the rate of change of the path length in the steel slab between the healthy part and the cracked part of the steel slab. 図7は、窓部での放射線の減衰量を考慮した鋼片の健全部と割れ部との鋼片中経路長の変化率を説明するための図である。FIG. 7 is a diagram for explaining the rate of change of the path length in the steel slab between the healthy part and the cracked part of the steel slab considering the amount of radiation attenuation at the window. 図8は、くさび材の配置と窓部での放射線の減衰量とを考慮した鋼片の健全部と割れ部との鋼片中経路長の変化率を説明するための図である。FIG. 8 is a diagram for explaining the rate of change of the path length in the steel slab between the healthy part and the cracked part of the steel slab in consideration of the arrangement of the wedge material and the amount of radiation attenuation at the window part. 図9は、図6〜8の場合における入射点と鋼片中経路長の変化率との関係を示す図である。FIG. 9 is a diagram showing the relationship between the incident point and the rate of change of the path length in the steel slab in the case of FIGS. 図10は、従来の放射線探傷法による入射点と鋼片中経路長の変化率との関係を示す図である。FIG. 10 is a diagram showing the relationship between the incident point by the conventional radiation flaw detection method and the rate of change of the path length in the steel slab.

以下、図面を参照して、本発明の一実施形態を詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. Moreover, in description of drawing, the same code | symbol is attached | subjected and shown to the same part.

まず、図1を参照して本実施の形態の放射線探傷装置の構成について説明する。図1に示すように、本実施の形態の放射線探傷装置1は、放射線を照射する線源2と、探傷対象物を透過した放射線を検出する検出器3と、検出器3が受信した放射線の強度を読み取って探傷対象物を評価する図示しない制御部とを備える。   First, the configuration of the radiation flaw detector according to the present embodiment will be described with reference to FIG. As shown in FIG. 1, the radiation flaw detector 1 of the present embodiment includes a radiation source 2 that irradiates radiation, a detector 3 that detects radiation that has passed through a flaw detection object, and the radiation received by the detector 3. A control unit (not shown) that reads the intensity and evaluates the flaw detection object.

線源2は、ケース4に収容され、ケース4の窓部41を介して放射線を照射する。検出器3は、例えば、デジタル式X線ラインセンサなどで実現され、ケース4の窓部41を介して放射線を受信する。   The radiation source 2 is accommodated in the case 4 and emits radiation through the window 41 of the case 4. The detector 3 is realized by, for example, a digital X-ray line sensor or the like and receives radiation through the window 41 of the case 4.

制御部は、ワークステーションやパソコン等の汎用コンピュータで実現され、処理プログラムなどを記憶したメモリおよび処理プログラムを実行するCPUなどを用いて放射線探傷装置1の各構成部を制御する。制御部は、線源2からの放射線の照射と、検出器3による放射線の受信を制御するとともに、検出器3が受信した放射線の強度を読み取って探傷対象物を評価する。   The control unit is realized by a general-purpose computer such as a workstation or a personal computer, and controls each component of the radiation flaw detector 1 using a memory that stores a processing program and a CPU that executes the processing program. The control unit controls irradiation of radiation from the radiation source 2 and reception of radiation by the detector 3, and reads the intensity of the radiation received by the detector 3 to evaluate the flaw detection object.

図2は、本実施の形態の放射線探傷装置1の探傷対象とする鋼片Sの斜視図である。図1および図2に示すように、線源2は、鋼片Sの破線で囲んで示すコーナー部分Aの鋳造面に斜めに放射線を照射する。本実施の形態の線源2は、鋼片Sの鋳造面に対して30°から60°の入射角で放射線を照射する。検出器3は、鋼片のコーナー部分Aを介して線源2に対峙するように設置され、線源2から照射された放射線を受信する。放射線探傷装置1は、図2に矢印で示す鋼片の鋳造方向Bに線源2と検出器3とを相対的に移動させることにより、鋼片Sの鋳造方向Bに平行なコーナー部分Aを探傷し、コーナー割れCを検出する。   FIG. 2 is a perspective view of a steel piece S that is a target for flaw detection in the radiation flaw detector 1 according to the present embodiment. As shown in FIGS. 1 and 2, the radiation source 2 irradiates the casting surface of the corner portion A surrounded by the broken line of the steel piece S obliquely. The radiation source 2 of the present embodiment irradiates radiation at an incident angle of 30 ° to 60 ° with respect to the cast surface of the steel slab S. The detector 3 is installed so as to face the radiation source 2 through the corner portion A of the steel piece, and receives the radiation irradiated from the radiation source 2. The radiation flaw detector 1 moves the source 2 and the detector 3 relative to each other in the casting direction B of the steel slab indicated by an arrow in FIG. Detect flaws and detect corner crack C.

図3は、本実施の形態の放射線探傷装置1が探傷の対象とする鋼片Sのコーナー部分Aの1つの断面を示す模式図である。図3に示すように、線源2は、鋼片のコーナー部分の一定の領域に対して放射線を透過させ、検出器3により検出させる。その際、線源2は、放射線の経路上での鋼片Sの板厚の最大値Dが20mm程度になるように放射線を照射する。   FIG. 3 is a schematic diagram showing one cross-section of the corner portion A of the steel piece S that is the object of flaw detection by the radiation flaw detector 1 of the present embodiment. As shown in FIG. 3, the radiation source 2 transmits radiation to a certain region of the corner portion of the steel piece and is detected by the detector 3. At that time, the radiation source 2 irradiates the radiation so that the maximum value D of the thickness of the steel piece S on the radiation path is about 20 mm.

線源2および検出器3は、図示しない冷却機構を備えることが望ましい。冷却機構は、例えば、ケース4の内部を冷却する冷却装置で実現される。これにより、鋼片Sが高温である場合に、その輻射熱による線源2および検出器3の損傷を防止できる。   It is desirable that the radiation source 2 and the detector 3 include a cooling mechanism (not shown). The cooling mechanism is realized by, for example, a cooling device that cools the inside of the case 4. Thereby, when the steel piece S is high temperature, damage to the radiation source 2 and the detector 3 by the radiant heat can be prevented.

線源2および検出器3のケース4の窓部41は、赤外線に対して不透明な窓材を用いることが望ましい。例えば、アルミニウム板、鋼板、銅板などの薄金属板を窓材として用いるとよい。これにより、鋼片Sが高温である場合に、その輻射熱を遮断するので、線源2および検出器3の損傷を防止できる。また、このような窓部41によれば、その高い熱伝導率のため、前述の冷却機構が備えられている場合、この冷却機構により窓部41がすばやく冷却されるので、線源2および検出器3の損傷を効果的に防止できる。   The window part 41 of the case 4 of the radiation source 2 and the detector 3 is preferably made of a window material that is opaque to infrared rays. For example, a thin metal plate such as an aluminum plate, a steel plate, or a copper plate may be used as the window material. Thereby, since the radiant heat is interrupted when the steel piece S is at a high temperature, damage to the radiation source 2 and the detector 3 can be prevented. Moreover, according to such a window part 41, when the above-mentioned cooling mechanism is provided because of the high thermal conductivity, the window part 41 is quickly cooled by this cooling mechanism. Damage to the vessel 3 can be effectively prevented.

なお、窓部41を透過する際の放射線の減衰量が小さいことが望ましい。本実施の形態では、窓部41での放射線の減衰量を鋼片の板厚に換算して2mm以下に調整する。   It is desirable that the amount of radiation attenuation when passing through the window 41 is small. In the present embodiment, the radiation attenuation amount at the window portion 41 is adjusted to 2 mm or less in terms of the thickness of the steel piece.

図4は、本実施の形態の放射線探傷装置1が探傷の対象とする鋼片Sのコーナー部分Aの1つの断面を示す模式図である。図4に示すように、線源2から照射された放射線の経路上にくさび材Tを配置することが望ましい。くさび材Tは、放射線の経路上での鋼片Sの板厚d1が薄くなるほどこの経路上でのくさび材Tの板厚d2が厚くなるように配置される。このようにして、くさび材Tは、鋼片Sの割れがない健全部を透過する放射線の減衰量が経路によらず一定となるように配置される。これにより、コーナー割れの検出の感度が向上し、また、検出器3が受信する放射線の強度が局所的に増大して損傷することを防止できる。   FIG. 4 is a schematic diagram showing one cross-section of the corner portion A of the steel piece S that is the object of flaw detection by the radiation flaw detector 1 of the present embodiment. As shown in FIG. 4, it is desirable to arrange the wedge material T on the path of the radiation irradiated from the radiation source 2. The wedge material T is arranged such that the plate thickness d2 of the wedge material T on this path increases as the plate thickness d1 of the steel piece S on the path of radiation decreases. In this way, the wedge material T is arranged so that the attenuation amount of the radiation transmitted through the healthy part where the steel piece S is not cracked is constant regardless of the path. Thereby, the sensitivity of corner crack detection is improved, and the intensity of the radiation received by the detector 3 can be prevented from being locally increased and damaged.

以上、説明したように、本実施の形態の放射線探傷装置1によれば、線源2が鋼片Sのコーナー部分Aに放射線を照射することにより放射線の経路を短くしたので、鋼片Sの板厚によらず浅いコーナー割れを高感度で検出できる。また、くさび材Tを配置することにより鋼片Sの割れがない健全部を透過する放射線の減衰量を経路によらず一定にできる。これにより、コーナー割れの検出の感度を向上させることができ、また、検出器3が受信する放射線の強度が局所的に増大して損傷することを防止できる。線源2および検出器3に冷却機構を備えることにより、鋼片Sが高温である場合に、その輻射熱による線源2および検出器3の損傷を防止できる。また、窓部41に赤外線に不透明な窓材を使用することにより、探傷対象の鋼片Sの輻射熱を遮断するので、線源2および検出器3の損傷を防止できる。さらに、このような窓部41の窓材は熱伝導率が高いため、冷却機構により窓部41がすばやく冷却されるので、線源2および検出器3の損傷を効果的に防止できる。   As described above, according to the radiation flaw detector 1 of the present embodiment, the radiation source 2 irradiates the corner portion A of the steel slab S with radiation, thereby shortening the radiation path. Shallow corner cracks can be detected with high sensitivity regardless of the plate thickness. Further, by arranging the wedge material T, it is possible to make the attenuation amount of the radiation transmitted through the healthy part where the steel piece S is not cracked constant regardless of the route. Thereby, the sensitivity of corner crack detection can be improved, and the intensity of the radiation received by the detector 3 can be prevented from being locally increased and damaged. By providing the radiation source 2 and the detector 3 with the cooling mechanism, damage to the radiation source 2 and the detector 3 due to the radiant heat can be prevented when the steel piece S is at a high temperature. Further, by using a window material that is opaque to infrared rays for the window portion 41, the radiation heat of the steel piece S to be flawed is cut off, so that the radiation source 2 and the detector 3 can be prevented from being damaged. Further, since the window material of the window portion 41 has high thermal conductivity, the window portion 41 is quickly cooled by the cooling mechanism, so that the radiation source 2 and the detector 3 can be effectively prevented from being damaged.

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者などによりなされる他の実施の形態、実施例および運用技術などは全て本発明の範疇に含まれる。   Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention according to this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

(実施例)
以下、コーナー割れを模擬した空洞を備える鋼片Sを探傷対象とした実施例により、放射線の減衰率について説明する。図5は、本実施例の鋼片Sの1つのコーナー部分Aの断面を示す図である。図5に示すように、本実施例の探傷対象の鋼片Sには、コーナー部分Aにコーナー割れを模擬した空洞が配置されている。この空洞は、コーナー部分Aで接する2つの鋳造面のそれぞれに、この2つの鋳造面の交線aからの距離が0〜10mmの範囲に深さ1mmで配置されている。本実施例では、線源2が、この鋼片Sに図5に破線で示す入射角45°の放射線を、入射点を移動させながら照射して、検出器3により検出された放射線の強度の変化から、制御部が放射線の減衰量の変化を検出してコーナー割れを検出した。ここで、入射点は、コーナー部分Aの交線aからの距離xで特定される。
(Example)
Hereinafter, the radiation attenuation rate will be described with reference to an example in which a steel piece S provided with a cavity simulating a corner crack is targeted for flaw detection. FIG. 5 is a view showing a cross section of one corner portion A of the steel piece S of the present embodiment. As shown in FIG. 5, a cavity simulating a corner crack is arranged in a corner portion A in the steel piece S to be flaw detected in the present embodiment. The cavity is disposed on each of the two casting surfaces in contact with the corner portion A at a depth of 1 mm in a range of 0 to 10 mm from the intersecting line a of the two casting surfaces. In this embodiment, the radiation source 2 irradiates the steel piece S with radiation having an incident angle of 45 ° shown by a broken line in FIG. 5 while moving the incident point, and the intensity of the radiation detected by the detector 3 is detected. From the change, the controller detected a change in the amount of radiation attenuation and detected a corner crack. Here, the incident point is specified by the distance x from the intersection line a of the corner portion A.

なお、従来の放射線探傷法(従来例)では、図5に点線で示す入射角90°の放射線により割れを検出する。そのため、前述したとおり、鋼片Sの板厚に対して1〜10%程度の深さの割れの検出が限界であった。例えば、この鋼片Sの板厚を200mmとし、検出限界を5%とすると、10mmの深さの割れの検出が限界であった。   In the conventional radiation flaw detection method (conventional example), cracks are detected by radiation with an incident angle of 90 ° indicated by a dotted line in FIG. Therefore, as described above, the detection of cracks having a depth of about 1 to 10% with respect to the thickness of the steel slab S was the limit. For example, if the thickness of the steel slab S is 200 mm and the detection limit is 5%, detection of a crack with a depth of 10 mm is the limit.

図6は、鋼片Sの傷(割れ)のない健全部とコーナー割れが発生している割れ部との鋼片Sを透過する放射線の経路長(鋼片中経路長)の違い(変化率)について説明するための図である。ここで、放射線は鋼片S中を透過することにより減衰するから、鋼片中経路長の変化率が放射線の減衰率に相当する。図6に示すように、健全部での放射線の鋼片中経路長Lは、次式(1)で表される。

Figure 2015051450
FIG. 6 shows the difference (rate of change) in the path length (path length in the slab) of the radiation passing through the slab S between the healthy part without the scratch (crack) of the slab S and the cracked part where the corner crack is generated It is a figure for demonstrating. Here, since radiation attenuates by passing through the steel slab S, the rate of change of the path length in the steel slab corresponds to the radiation attenuation rate. As shown in FIG. 6, the path length L in the billet of radiation at the healthy part is expressed by the following equation (1).
Figure 2015051450

一方、割れ部での放射線の鋼片中経路長L’は、次式(2)で表される。

Figure 2015051450
On the other hand, the path length L ′ in the slab of radiation at the cracked part is expressed by the following equation (2).
Figure 2015051450

したがって、ΔL=L−L’とすると、鋼片中経路長の変化率(ΔL/L)は、次式(3)で表される。

Figure 2015051450
Therefore, when ΔL = L−L ′, the rate of change in the path length in the steel slab (ΔL / L) is expressed by the following equation (3).
Figure 2015051450

図7は、窓部41での放射線の減衰量を考慮した鋼片Sの健全部と割れ部との鋼片中経路長の変化率について説明するための図である。ここで、窓部41は、鋼片Sの板厚に換算して0.5mmとなるように調整した。図7に示すように、健全部での放射線の鋼片中経路長Lは、次式(4)で表される。

Figure 2015051450
FIG. 7 is a view for explaining the rate of change of the path length in the steel slab between the healthy part and the cracked part of the steel slab S in consideration of the amount of radiation attenuation at the window part 41. Here, the window part 41 was adjusted to be 0.5 mm in terms of the thickness of the steel slab S. As shown in FIG. 7, the path length L in the billet of radiation at the healthy part is expressed by the following equation (4).
Figure 2015051450

一方、割れ部での放射線の鋼片中経路長L’は、次式(5)で表される。

Figure 2015051450
On the other hand, the path length L ′ in the steel slab of radiation at the crack is expressed by the following formula (5).
Figure 2015051450

したがって、鋼片中経路長の変化率(ΔL/L)は、次式(6)で表される。

Figure 2015051450
Therefore, the rate of change (ΔL / L) of the path length in the billet is expressed by the following equation (6).
Figure 2015051450

図8は、放射線の経路上にくさび材Tを配置した場合に、窓部41での放射線の減衰量を考慮した鋼片Sの健全部と割れ部との鋼片中経路長の変化率について説明するための図である。ここで、くさび材Tは、入射点x=10mmにおける鋼片中経路を基準経路として、いずれの経路でも鋼片Sおよびくさび材Tを透過する経路長が基準経路の経路長に等しくなるように配置した。なお、図8には、簡略化のため、鋼片Sに隣接して記載した。また、窓部41は、鋼片の板厚に換算して0.5mmに調整されている。図8に示すように、健全部での放射線の鋼片中経路長Lは、次式(7)で表される。

Figure 2015051450
FIG. 8 shows the change rate of the path length in the slab between the healthy part and the cracked part of the steel slab S in consideration of the radiation attenuation in the window 41 when the wedge material T is arranged on the radiation path. It is a figure for demonstrating. Here, the wedge material T is such that the path length through the steel slab S and the wedge material T is equal to the path length of the reference path in any path, with the path in the steel slab at the incident point x = 10 mm as the reference path. Arranged. In FIG. 8, it is shown adjacent to the steel piece S for simplification. Further, the window 41 is adjusted to 0.5 mm in terms of the thickness of the steel slab. As shown in FIG. 8, the path length L in the billet of radiation at the healthy part is represented by the following formula (7).
Figure 2015051450

一方、割れ部での放射線の鋼片中経路長L’は、次式(8)で表される。

Figure 2015051450
On the other hand, the path length L ′ in the steel slab of radiation at the crack is expressed by the following formula (8).
Figure 2015051450

したがって、鋼片中経路長の変化率(ΔL/L)は、次式(9)で表される。

Figure 2015051450
Therefore, the rate of change (ΔL / L) of the path length in the billet is expressed by the following equation (9).
Figure 2015051450

図9は、上記式(3),(6),(9)に基づいて、入射点と鋼片中経路長の変化率との関係を示した図である。また、図10は、従来例による入射点と鋼片中経路長の変化率との関係を示す図である。図10に示すように、従来例によれば、検出される放射線の減衰量の変化は、鋼片Sの板厚200mmに対する割れによる放射線の減衰量の変化であるため、1mmの深さの割れは検出限界5%より大きくない。   FIG. 9 is a diagram showing the relationship between the incident point and the rate of change of the path length in the steel slab based on the above formulas (3), (6), and (9). Moreover, FIG. 10 is a figure which shows the relationship between the incident point by a prior art example, and the rate of change of the path length in a steel slab. As shown in FIG. 10, according to the conventional example, the change in the detected radiation attenuation is a change in the radiation attenuation due to the crack of the steel piece S with respect to the plate thickness of 200 mm. Is not greater than the detection limit of 5%.

これに対し、本実施例によれば、図9に示すように、窓部41およびくさび材Tでの減衰量のいずれも考慮しなかった場合(上記式(3)に対応)、窓部41での減衰量を考慮した場合(上記式(6)に対応)、窓部41およびくさび材Tでの減衰量を考慮した場合(上記式(9)に対応する)のいずれの場合においても、1mmの深さの割れによる放射線の減衰量の変化率が検出限界5%より大きく、割れを検出できることが確認された。これにより、本実施例によれば、鋼片Sの板厚によらず、高精度にコーナー割れを検出可能であることが確認された。   On the other hand, according to the present embodiment, as shown in FIG. 9, when neither the attenuation amount in the window portion 41 nor the wedge material T is taken into consideration (corresponding to the above equation (3)), the window portion 41 is used. In the case of considering the amount of attenuation at the window 41 and the wedge material T (corresponding to the above equation (6)), the case of considering the amount of attenuation at the window 41 and the wedge material T (corresponding to the above equation (9)), It was confirmed that the rate of change in the amount of attenuation of radiation due to a crack having a depth of 1 mm was larger than the detection limit of 5%, and the crack could be detected. Thereby, according to the present Example, it was confirmed that a corner crack can be detected with high accuracy regardless of the thickness of the steel piece S.

1 放射線探傷装置
2 線源
3 検出器
4 ケース
41 窓部
S 鋼片
T くさび材
DESCRIPTION OF SYMBOLS 1 Radiation flaw detector 2 Radiation source 3 Detector 4 Case 41 Window part S Steel piece T Wedge material

Claims (4)

連続鋳造により鋳造された直方体状の鋼片のコーナー部分の割れを、放射線を用いて評価する放射線探傷装置であって、
放射線を前記鋼片のコーナー部分の鋳造面に斜めに照射する照射手段と、
前記照射手段により照射され前記鋼片を透過した前記放射線を検出する検出手段と、
前記検出手段により検出された前記放射線を用いて前記コーナー部分の割れを評価する評価手段と、
を備えることを特徴とする放射線探傷装置。
A radiation flaw detector for evaluating, using radiation, cracks in a corner portion of a rectangular steel piece cast by continuous casting,
Irradiating means for irradiating radiation to the casting surface of the corner portion of the steel piece obliquely;
Detection means for detecting the radiation irradiated by the irradiation means and transmitted through the steel piece;
Evaluation means for evaluating cracks in the corner portion using the radiation detected by the detection means;
A radiation flaw detector characterized by comprising:
前記照射手段から前記検出手段までの前記放射線の経路上に設置され、割れがない前記鋼片を透過する前記放射線の減衰量が経路によらず一定となるように構成されたくさび材を備えることを特徴とする請求項1に記載の放射線探傷装置。   A wedge material is provided on the radiation path from the irradiation means to the detection means, and is configured such that the attenuation of the radiation passing through the steel piece without cracks is constant regardless of the path. The radiation flaw detector according to claim 1. 前記照射手段と前記検出手段とを冷却する冷却機構を備えることを特徴とする請求項1または2に記載の放射線探傷装置。   The radiation flaw detector according to claim 1, further comprising a cooling mechanism that cools the irradiation unit and the detection unit. 前記照射手段と前記検出手段とは、赤外線に対し不透明な窓材で形成された窓部を備えるケースに収容され、該窓部を介して前記放射線を照射または検出することを特徴とする請求項1〜3のいずれか1項に記載の放射線探傷装置。   The irradiation unit and the detection unit are housed in a case having a window portion formed of a window material opaque to infrared rays, and irradiate or detect the radiation through the window portion. The radiation flaw detector according to any one of 1 to 3.
JP2013186094A 2013-09-09 2013-09-09 Radiation inspection equipment Active JP5949710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013186094A JP5949710B2 (en) 2013-09-09 2013-09-09 Radiation inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013186094A JP5949710B2 (en) 2013-09-09 2013-09-09 Radiation inspection equipment

Publications (2)

Publication Number Publication Date
JP2015051450A true JP2015051450A (en) 2015-03-19
JP5949710B2 JP5949710B2 (en) 2016-07-13

Family

ID=52700886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013186094A Active JP5949710B2 (en) 2013-09-09 2013-09-09 Radiation inspection equipment

Country Status (1)

Country Link
JP (1) JP5949710B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161086A (en) * 1984-09-03 1986-03-28 Tokyu Constr Co Ltd Probing method for radiation absorbing body in structure
JPH0342147A (en) * 1989-07-07 1991-02-22 Nippon Steel Corp Roll type continuous casting machine
JP2005207858A (en) * 2004-01-22 2005-08-04 Daido Steel Co Ltd Inspection method and inspection device for steel product surface defect

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161086A (en) * 1984-09-03 1986-03-28 Tokyu Constr Co Ltd Probing method for radiation absorbing body in structure
JPH0342147A (en) * 1989-07-07 1991-02-22 Nippon Steel Corp Roll type continuous casting machine
JP2005207858A (en) * 2004-01-22 2005-08-04 Daido Steel Co Ltd Inspection method and inspection device for steel product surface defect

Also Published As

Publication number Publication date
JP5949710B2 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
ES2953887T3 (en) Thermographic test method and test device to carry out the test method
RU2650449C1 (en) Device and a method of ultrasound defectoscopy
US11226301B2 (en) Thermographic examination means and method for non-destructive examination of a near-surface structure at a test object
Peng et al. Use of gamma rays in the inspection of steel wire ropes in suspension bridges
Tashan et al. Detection of cracks in concrete strengthened with CFRP systems using infra-red thermography
JP5263178B2 (en) Nondestructive inspection method for steel rails for tracks
Rodríguez-Martin et al. Cooling analysis of welded materials for crack detection using infrared thermography
Rodríguez-Martín et al. Prediction of depth model for cracks in steel using infrared thermography
JP4392449B2 (en) Refractory thickness measuring method and apparatus
González et al. Fast sizing of the width of infinite vertical cracks using constant velocity Flying-Spot thermography
Margret et al. Non-destructive inspection of hidden corrosion through Compton backscattering technique
Starman et al. Automated system for crack detection using infrared thermographic testing
JP2010197377A (en) Infrared method and apparatus for detecting crack
JP5949710B2 (en) Radiation inspection equipment
JP2653532B2 (en) Surface defect inspection equipment
EP3351928B1 (en) X-ray sidescatter inspection of laminates
JP2005207858A (en) Inspection method and inspection device for steel product surface defect
JP4638952B2 (en) Refractory thickness measuring method and apparatus
US9846144B2 (en) Apparatus and method for detecting defect of press panel
JP6244290B2 (en) Crack evaluation method
JP2016031310A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP3776794B2 (en) Internal defect detection device for structures
JP2014085161A (en) Method of nondestructive inspection of structure defect and system of nondestructive inspection of structure defect
RU2568044C1 (en) Electrothermal method for detecting and identifying defects in walls of structural members
JP2014160040A (en) X-ray transmission apparatus and x-ray inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5949710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250