JPH0242408B2 - - Google Patents

Info

Publication number
JPH0242408B2
JPH0242408B2 JP58212134A JP21213483A JPH0242408B2 JP H0242408 B2 JPH0242408 B2 JP H0242408B2 JP 58212134 A JP58212134 A JP 58212134A JP 21213483 A JP21213483 A JP 21213483A JP H0242408 B2 JPH0242408 B2 JP H0242408B2
Authority
JP
Japan
Prior art keywords
wall
buried
radiation
cylindrical structure
marker line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58212134A
Other languages
Japanese (ja)
Other versions
JPS60104280A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58212134A priority Critical patent/JPS60104280A/en
Publication of JPS60104280A publication Critical patent/JPS60104280A/en
Publication of JPH0242408B2 publication Critical patent/JPH0242408B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 本発明は配管や鉄筋などの物体が介在する構造
物、例えば壁体に放射線例えばX線を照射し、そ
の透過X線によつて生じる投影図の寸法を実測
し、数式又は作図によつて壁体内の埋設物の位置
を測定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention irradiates radiation such as X-rays to a structure in which objects such as pipes and reinforcing bars are present, for example, a wall, and actually measures the dimensions of a projected view caused by the transmitted X-rays. This invention relates to a method of measuring the position of a buried object within a wall using mathematical formulas or drawings.

既設コンクリート建築物の耐震強度の保安検査
や建築物の改造の際に、コンクリート壁や柱の内
部等に配設された鉄筋や配管の位置を事前に正確
に把握することは施工上重要な要素である。
When conducting safety inspections of the seismic strength of existing concrete buildings or remodeling buildings, it is important to accurately determine the locations of reinforcing bars and piping placed inside concrete walls and columns in advance. It is.

例えば、コンクリート住宅などの増改築では天
井や壁などを撤去したり、又壁体に換気扇の取付
け口、空調設備の連絡管などの貫通口を新設する
こともあり、更に壁体、柱内に埋設されている既
設水道、ガス、電線管などの各種用役用の配管を
更に分岐させたり、又はそのとなりに並行して新
配管を増設する場合もある。
For example, when extending or renovating a concrete house, ceilings and walls may be removed, and new penetrations such as installation ports for ventilation fans and connecting pipes for air conditioning equipment may be installed in the walls. In some cases, existing underground pipes for various services such as water, gas, and electrical conduits may be further branched, or new pipes may be added in parallel to them.

その際埋設されている既設の配管や鉄筋の正確
な位置を知ることは、その作業効率を図るために
必須の要件である。
Knowing the exact location of the existing underground pipes and reinforcing bars is an essential requirement in order to improve work efficiency.

本来配管にしろ鉄筋にしろ、図面にもとづいた
位置に施工されるべきであるが、現実には施工図
での位置とはくいちがう場合が多い。
Originally, whether it is piping or reinforcing steel, it should be constructed in the location based on the drawings, but in reality, the location often differs from the location shown in the construction drawings.

そのくいちがいに起因して、開口を設ける部位
のはつり作業中に予期せぬ配管や鉄筋が発見さ
れ、開口位置を多の場所へ変更しなくてはならな
いことがある。
Due to this discrepancy, unexpected piping or reinforcing bars may be discovered during chisel work to provide an opening, and the opening location may have to be changed to multiple locations.

又目的とする配管を堀り出すために壁を大規模
に破壊し、更にその穴の修復を行うといつた多大
な労力を費す非能率的、不経済な事態が起こる場
合が多い。
Furthermore, in many cases, a large-scale wall is destroyed in order to excavate the desired piping, and then a large amount of labor is required to repair the hole, which is inefficient and uneconomical.

そこで従来から建築物のコンクリート壁体、柱
内部等に埋設された埋設物の位置を、いわゆる非
破壊的に検知する方法として電磁方式等が工夫さ
れている。
Therefore, electromagnetic methods and the like have been devised as a so-called non-destructive method of detecting the position of buried objects buried inside concrete walls, columns, etc. of buildings.

この電磁方式では、磁石を収納した測定器を被
検査壁体の表面に当接しながら移動させ、磁石の
埋設物に対する反応を感知して表示する計器で、
埋設物の位置を測定するものであるが、この従来
の方法ではまず埋設の深さがわからないこと、更
に測定誤差が大きいという欠点があり、又埋設物
が壁体内に複雑に埋設されている場合には測定値
の判断に高度の熟練技術を必要とする欠点があつ
た。
In this electromagnetic method, a measuring instrument containing a magnet is moved while touching the surface of the wall to be inspected, and the instrument detects and displays the reaction of the magnet to the buried object.
This method measures the position of buried objects, but this conventional method has the disadvantage that the depth of the buried object is not known, and the measurement error is large.Also, when the buried object is buried in a complex manner within the wall, had the disadvantage that highly skilled techniques were required to judge the measured values.

本発明は上記の欠点を解決し、より正確な位置
を迅速簡単に測定できるよう構成した、構造物内
に埋設された放射線反応物体の位置測定方法を提
供することを目的とし、その要旨とするところは
予め壁体表面に寸法既知の標識線を貼付し、一方
壁体裏面に放射線用フイルムを装着しておき、次
に標識線の中心で壁面に垂直な位置からX線等の
放射線を照射しその透過X線によつて生じた投影
図の寸法と相対位置関係とから壁体内に埋設され
た放射線反応物体例えば円筒構造物等の位置を測
定するところにある。
An object of the present invention is to solve the above-mentioned drawbacks and provide a method for measuring the position of a radiation-reactive object buried in a structure, which is configured to quickly and easily measure a more accurate position. However, a marker line with known dimensions is pasted on the wall surface in advance, a radiation film is attached to the back of the wall, and then radiation such as X-rays is irradiated from a position perpendicular to the wall surface at the center of the marker line. The purpose of this method is to measure the position of a radiation-reactive object, such as a cylindrical structure, buried within a wall from the dimensions and relative positional relationship of the projected image produced by the transmitted X-rays.

次に本発明の一実施例について図面をもとに説
明する。
Next, one embodiment of the present invention will be described based on the drawings.

(イ) 本発明に使用する各装置の位置関係 第1図において、壁体1はコンクリート等に
よる壁体または柱等でその内部に円筒構造物2
が埋設されている。
(b) Positional relationship of each device used in the present invention In FIG.
is buried.

又、3は鉛またはタングステン等による線材
の標識線3であり壁体1の表面に水平に貼付す
る。
Further, reference numeral 3 denotes a marking line 3 made of wire such as lead or tungsten, and is pasted horizontally on the surface of the wall 1.

更に4は壁体1の裏面つまり標識線3を貼付
した面の裏面に装着したX線用のフイルム4で
ある。
Further, reference numeral 4 denotes an X-ray film 4 attached to the back surface of the wall 1, that is, the back surface of the surface on which the marker line 3 is pasted.

そして5はX線照射源5であり、その位置は
壁体1の標識線3を二等分した点から垂直にの
びた線上の任意の距離の地点とする。
Reference numeral 5 denotes an X-ray irradiation source 5, and its position is at an arbitrary distance on a line extending perpendicularly from a point bisecting the marker line 3 of the wall 1.

(ロ) X線の照射 次にX線照射源5からX線を壁体1に向かつ
て照射する。
(b) Irradiation of X-rays Next, X-rays are irradiated toward the wall 1 from the X-ray irradiation source 5.

壁体1を透過したX線によつて壁体裏面のフ
イルム4には円筒構造物2と標識線3の投影図
が写る。
A projected view of the cylindrical structure 2 and the marker line 3 is captured on the film 4 on the back surface of the wall by the X-rays transmitted through the wall 1.

(ハ) 実測及び計算 この二つの投影図を実測した値を、壁体1表
面及び裏面とX線照射源5との距離、標識線の
寸法等とともに、次の数式に代入することによ
つて円筒構造物2の位置を知ることが出来る。
(c) Actual measurements and calculations By substituting the values actually measured for these two projections into the following formula, along with the distances between the front and back surfaces of the wall 1 and the X-ray irradiation source 5, the dimensions of the marker lines, etc. The position of the cylindrical structure 2 can be known.

第2図においてDは直径dの円筒構造物2が
フイルム4に投影された時の直径を示し、Lは
長さ1の標識線3がフイルム4に投影された時
の長さである。
In FIG. 2, D indicates the diameter of the cylindrical structure 2 having a diameter of d projected onto the film 4, and L indicates the length of the marker line 3 having a length of 1 projected onto the film 4.

更にFWDはX線照射源5から壁体1表面ま
での距離であり、FFDはX線照射源5からフ
イルム4までの距離である。
Further, FWD is the distance from the X-ray irradiation source 5 to the surface of the wall 1, and FFD is the distance from the X-ray irradiation source 5 to the film 4.

又、Xはフイルム4に投影された円筒構造物
2と標識線3のそれぞれの中心間の距離であ
る。
Further, X is the distance between the respective centers of the cylindrical structure 2 and the marker line 3 projected on the film 4.

以上の寸法は規格品である円筒構造物2の直
径dを図面等で知る他は全て実測可能である。
All of the above dimensions can be actually measured, except for knowing the diameter d of the cylindrical structure 2, which is a standard product, from drawings or the like.

ここで第2図に見るように壁体1の表面から
円筒構造物2の中心までの距離をy、標識線3
の二等分点から壁体1の表面上における円筒構
造物2の中心までの水平方向の距離をxとすれ
ば、xとyの距離を求めることによつて壁体1
内の円筒構造物2の位置がわかる。
Here, as shown in Fig. 2, the distance from the surface of the wall 1 to the center of the cylindrical structure 2 is y, and the marker line 3
Let x be the horizontal distance from the bisector of the wall 1 to the center of the cylindrical structure 2 on the surface of the wall 1.
The position of the cylindrical structure 2 inside is known.

まずyについては次の数式がなり立ち、値が
求められる。
First, the following formula holds true for y, and the value can be found.

L/l=FFD/FWD ……(1) D/d=FFD/FWD+y ……(2) (1)、(2)よりFFDを消去すると、 y=(Ld/lD−1)×FWD ……(3) となり、この(3)の数式にそれぞれの数値を代入
することによりy、すなわち壁体1表面から円
筒構造物2の中心までの距離が判明する。
L/l=FFD/FWD...(1) D/d=FFD/FWD+y...(2) When FFD is deleted from (1) and (2), y=(Ld/lD-1)×FWD... (3) By substituting the respective numerical values into the formula (3), y, that is, the distance from the surface of the wall 1 to the center of the cylindrical structure 2, can be determined.

次にxについての数式は次のようになる。 Next, the formula for x is as follows.

x=X×d/D ……(4) 従つて標識線3を二等分した点から壁体1表
面上における円筒構造物2の中心までの距離が
判明する。
x=X×d/D (4) Therefore, the distance from the point that bisects the marker line 3 to the center of the cylindrical structure 2 on the surface of the wall 1 is found.

更に上記の数式から次の数式が導かれるの
で、壁体1の厚さをTとしたときそのTも下記
の(5)式によつて求めることが出来る。
Furthermore, since the following equation is derived from the above equation, when the thickness of the wall 1 is T, that T can also be determined by the following equation (5).

T=FFD−FWD=(L/l−1)×FWD ……(5) (ニ) 作図による位置確認(第3図) 図面上に設定したX線照射源5をsとし、s
から、実測した壁体1表面までの距離FWDの
直線をのばしその一端をs′とし、直線ss′に直角
に交わる線上でその交点から左右それぞれ標識
線3の半分の距離1/2の点をp,p′とする。
T=FFD-FWD=(L/l-1)×FWD...(5) (d) Position confirmation by drawing (Figure 3) The X-ray irradiation source 5 set on the drawing is s, and s
Extend a straight line with the measured distance FWD to the surface of the wall 1 and define one end as s', and on the line that intersects the straight line ss' at right angles, find a point half the distance of half the marker line 3 on the left and right from the intersection. Let p, p′.

次にX線照射源5とp,p′を結んだ線を引
く。
Next, draw a line connecting the X-ray irradiation source 5 and points p and p'.

直線sp,sp′の延長線上の点rr′を結んだ直線
で、直線pp′に平行かつその長さが標識線3の
フイルム4に投影された長さLになる直線
rr′が投影された標識線部分となる。
A straight line connecting point rr' on the extension line of straight lines sp and sp', which is parallel to straight line pp' and whose length is the length L projected on film 4 of marker line 3.
rr′ becomes the projected marker line portion.

次に上記で求められた標識線部分に現われて
いる円筒構造物2の投影図の両端部qq′と照射
源sを結んだ直線上の点tt′を結んだ直線で、
直線pp′に平行で円筒構造物の直径距離dにな
る直線tt′を直径とする円が円筒構造物2の埋
設位置となる。
Next, a straight line connecting the point tt' on the straight line connecting the irradiation source s and both ends qq' of the projected view of the cylindrical structure 2 appearing in the marked line part obtained above,
The embedding position of the cylindrical structure 2 is a circle whose diameter is a straight line tt' which is parallel to the straight line pp' and has a diameter distance d of the cylindrical structure.

(ホ) その他の実施例 当該実施例では標識線を水平方向に貼付した
が鉛直方向に貼付して水平方向にのびる埋設物
の確認を行うことも出来るし、十文字に構成し
た標識線を使用すれば縦横両方向に伸びる埋設
物の確認も容易に行うことができ、更にこの原
理によつて縦横方向の埋設物に限らず様々な形
態の埋設物の確認が可能である。
(E) Other examples In this example, the marker lines were pasted horizontally, but they can also be pasted vertically to check for buried objects extending horizontally, or marker lines arranged in a cross pattern can be used. For example, it is possible to easily check buried objects extending in both the vertical and horizontal directions, and further, by using this principle, it is possible to check not only buried objects in the vertical and horizontal directions but also various forms of buried objects.

本発明は以上説明したようになるので次のよう
な効果を期待することが出来る。
Since the present invention is as explained above, the following effects can be expected.

(イ) 壁体内の物体の位置がはつきりとした数値で
現われるので電磁方式などに比べてはるかに正
確で迅速、かつ熟練をようさずに埋設物の位置
を知ることが出来る。
(b) Since the position of an object within a wall is displayed as a clear numerical value, it is much more accurate and quick than electromagnetic methods, and the position of buried objects can be determined without requiring much skill.

(ロ) 本発明によつて壁体内の鉄筋等の位置が事前
に測定出来るので例えばコンクリート住宅の増
改築の際に無駄な労力、時間、経費をかけなく
てすむ。
(b) According to the present invention, the positions of reinforcing bars, etc. within a wall can be measured in advance, so there is no need to waste effort, time, and expense when, for example, extending or renovating a concrete house.

(ハ) 壁体内の配管等が数値で現われるので構造物
の配筋状態が明確にわかり耐震性能を確認する
保安検査等の作業性を高めることができる。
(c) Since the piping inside the wall is displayed numerically, the reinforcing condition of the structure can be clearly seen, making it possible to improve the efficiency of safety inspections to confirm seismic performance.

<ニ> 従来公知の方法のひとつに、X線源を2
箇所以上使用する方法がある。
<D> One of the conventionally known methods is to use two X-ray sources.
There is a way to use it in more than one place.

このような方法は、本発明の解析原理とはまつ
たくその原理を異にするものであるが、さらに実
用上でも大きな相違がある。
Such a method is not only different in principle from the analysis principle of the present invention, but also in practical terms.

というのは、そうした公知の方法は、特に使用
中の病院やオフイスビルでの作業には不向きだか
らである。
This is because such known methods are particularly unsuitable for working in busy hospitals or office buildings.

なぜならば2箇所以上のX線源を所定の位置に
持ち込むためには広い空間が必要であり、足場の
設定や装置の移動など、周囲に与える影響が大き
い。
This is because bringing two or more X-ray sources to a predetermined location requires a large space, which has a large impact on the surroundings, such as setting up scaffolding and moving equipment.

それに対して本発明の方法は、1個所のX線源
によつて行う作業であるから、公知の方法と比較
して原理が相違するだけではなく、狭い空間でも
撮影ができ、作業速度もきわめて迅速で実用的な
ものである。
In contrast, the method of the present invention uses a single X-ray source, so it not only has a different principle compared to known methods, but also allows imaging even in a narrow space and is extremely fast. It is quick and practical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図:本発明の一実施例の説明図、第2図:
測定値の説明図、第3図:作図による位置確認の
説明図 1:壁体、2:円筒構造物、3:標識線、4:
フイルム、5:X線照射源。
Figure 1: An explanatory diagram of an embodiment of the present invention, Figure 2:
Explanatory diagram of measured values, Figure 3: Explanatory diagram of position confirmation by drawing 1: Wall, 2: Cylindrical structure, 3: Sign line, 4:
Film, 5: X-ray irradiation source.

Claims (1)

【特許請求の範囲】 1 放射性反応物体が埋設されている構造物の一
面に寸法既知の標識線を貼付し、 一方他面に放射線の透過強度を感受するフイル
ムを装着しておき、 標識線の中心で構造物の一面に対して垂直軸上
の一定位置に配置した1箇所の点源から放射線を
照射し、 上記フイルム上に投影された標識線と放射線反
応物体の投影図の相対位置関係の寸法を実測し、 前記埋設された放射線反応物体の位置を測定す
ることを特徴とする、 構造物に埋設された放射線反応物体の位置測定方
法。
[Claims] 1. A marker line with known dimensions is affixed to one side of a structure in which a radioactive reactant is buried, and a film sensitive to the transmitted intensity of radiation is attached to the other side, and the marker line is Radiation is irradiated from a single point source placed at a fixed position on an axis perpendicular to one surface of the structure at the center, and the relative positional relationship between the marker line projected on the film and the projection of the radiation-reactive object is calculated. A method for measuring the position of a radiation-reactive object buried in a structure, comprising: actually measuring dimensions and measuring the position of the buried radiation-reactive object.
JP58212134A 1983-11-11 1983-11-11 Position measuring method of radiation reactive object buried in structure Granted JPS60104280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58212134A JPS60104280A (en) 1983-11-11 1983-11-11 Position measuring method of radiation reactive object buried in structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58212134A JPS60104280A (en) 1983-11-11 1983-11-11 Position measuring method of radiation reactive object buried in structure

Publications (2)

Publication Number Publication Date
JPS60104280A JPS60104280A (en) 1985-06-08
JPH0242408B2 true JPH0242408B2 (en) 1990-09-21

Family

ID=16617452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58212134A Granted JPS60104280A (en) 1983-11-11 1983-11-11 Position measuring method of radiation reactive object buried in structure

Country Status (1)

Country Link
JP (1) JPS60104280A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000338058A (en) * 1999-05-26 2000-12-08 N T T Kenchiku Sogo Kenkyusho:Kk Method and apparatus for diagnosing safety of building

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773609A (en) * 1980-10-25 1982-05-08 Taisei Kiso Sekkei Kk Measuring method for position and diameter of buried reinforcement in concrete

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773609A (en) * 1980-10-25 1982-05-08 Taisei Kiso Sekkei Kk Measuring method for position and diameter of buried reinforcement in concrete

Also Published As

Publication number Publication date
JPS60104280A (en) 1985-06-08

Similar Documents

Publication Publication Date Title
CN106320707B (en) A kind of full projection line-putting method
JP6884016B2 (en) Tunnel excavation management processing method and tunnel excavation management processing equipment
JP2007147467A (en) Beam sleeve height inspection system
JP7128013B2 (en) Buried object recognition method
IE55347B1 (en) Improved method for the stereophotogrammetric survey of large-dimension objects on sea and land
CZ279171B6 (en) Method for documenting a device and apparatus for making the same
JPS5825207B2 (en) Device for setting each point and straight line
JPH0242408B2 (en)
JP2020172784A (en) Mountain tunnel concrete thickness measuring method and measuring device
CN108692667A (en) The measurement method of concrete masonry arc-shaped surface radius and inclination angle of inclined plane
JP2020037809A (en) Lining reinforcement rebar construction support method and lining reinforcement rebar construction support device
JPH0340839B2 (en)
KR100809533B1 (en) Global coordinate creation method for precision measurement of precision measurement for space
JPH0217048B2 (en)
JPS6150006A (en) Position measuring method of radiation absorbing body, which is embedded in structure
JP3837259B2 (en) Equipment soundness evaluation method and equipment, and equipment repair method
JPH0357432B2 (en)
JPH01203915A (en) Size determining method for connection piping
CN112857171A (en) Method for measuring spatial displacement of building based on coordinate point spatial position relation
EP4215951A1 (en) Locating device and system for detecting hidden objects in building constructions
CN103090857B (en) Point location installation method for foot support of thermal radiation tube
JP7444839B2 (en) Position measurement method, position measurement device, and position measurement jig
JPS63163188A (en) Search for radiation absorbing body buried into construction
CN114718332A (en) Device for measuring and setting points by three-point positioning and method for quickly performing point setting in batch
JPS6347585A (en) Method of piping assembly construction

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees