JP3837259B2 - Equipment soundness evaluation method and equipment, and equipment repair method - Google Patents
Equipment soundness evaluation method and equipment, and equipment repair method Download PDFInfo
- Publication number
- JP3837259B2 JP3837259B2 JP21553099A JP21553099A JP3837259B2 JP 3837259 B2 JP3837259 B2 JP 3837259B2 JP 21553099 A JP21553099 A JP 21553099A JP 21553099 A JP21553099 A JP 21553099A JP 3837259 B2 JP3837259 B2 JP 3837259B2
- Authority
- JP
- Japan
- Prior art keywords
- equipment
- coordinate
- dimensional
- evaluation
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、発電所や各種プラントに設備された配管や機器等の設備の空間的位置(3次元座標)を計測することによって設備の健全性を評価する設備健全性評価方法と評価装置、及び同装置によって得られた3次元座標を用いて行う設備補修工法に関する。
【0002】
【従来の技術】
発電プラント等には、配管や機器等の設備が多数設置されている。これらの設備は、運転中の熱や負荷によって生じる応力や変形が許容値以内にあることを確認する必要がある。
【0003】
この確認は従来、配管・機器の解析モデルを作成し、計算機による解析によって行われている。しかしながら、解析を実施する際には、配管・機器の座標データ誤差、解析上の仮定等により算出結果も、誤差を含んでいる可能性があるため、発生応力や変形を正確に知ることは困難である。
【0004】
【発明が解決しようとする課題】
本発明は、上記課題を解決するためになされたもので、配管・機器等の設備運転中の熱や負荷によって生じる移動量と応力を正確に知ることのできる設備健全性評価方法及び評価装置、及びこの評価方法または評価装置を用いた設備補修工法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を達成するために、請求項1に対応する発明は、設備健全性評価方法に関する発明であって、運転中及び停止中の設備の形状に関する画像データを取得し、前記設備上に座標基準点を設定し、この座標基準点の3次元座標を算出し、前記画像データと前記基準座標点の3次元座標から前記設備上の評価点の3次元座標を算出し、運転中の評価点の3次元座標と停止中の評価点の3次元座標から評価点の移動量を算出し、この移動量によって設備の健全性を評価する設備健全性評価方法において、前記設備が所定室を含む複数の室にわたって設置されている場合、前記所定室の開口部に、所定室内3次元座標と所定室外3次元座標とを関連付ける3次元座標連結点を設けることを特徴とする。
【0006】
請求項2に対応する発明は、所定室内外にわたる設備の位置合わせに、上記請求項5に対応する発明の設備健全性評価方法にて得られる設備の3次元座標を使用することを特徴とする。
【0007】
請求項3の発明は、設備健全性評価装置に関する発明であって、所定室を含む複数の室にわたって設置される設備と、運転中及び停止中の前記設備の形状に関する画像データと前記設備上に設定された座標基準点の3次元座標とを入力される入力部と、前記画像データと前記基準座標点3次元座標から前記設備上の評価点の3次元座標を算出し設備運転中の評価点の3次元座標と設備停止中の評価点の3次元座標から評価点の移動量を算出しこの移動量によって設備の健全性を判定する演算・判定部と、判定の結果を表示する表示部と、前記基準座標点の3次元座標と評価点の3次元座標を保存する保存部とを備えた設備健全性評価装置において、前記所定室の開口部に、所定室内3次元座標と所定室外3次元座標とを関連付ける3次元座標連結点を設けることを特徴とする。
【0014】
【発明の実施の形態】
図1〜図9を参照して本発明の第1の実施の形態を説明する。図1は本実施の形態の設備健全性評価方法を示す流れ図であり、図2は設備健全性評価装置のハードウエア構成図である。
図1に示すように、まず画像データ取得装置、例えばフィルムカメラ,デジタルカメラ等により設備の画像データを取得する(ステップSA1)。
【0015】
次に例えば図3に示す座標基準装置を設備の表面に設置して座標基準点を設定する(ステップSA2)。なお、本座標基準装置は、次のステップにて行う3次元座標取得を容易に行えるような図柄を有している。
【0016】
次に、座標基準点の3次元座標を、角測量法原理を利用した測量装置セオドライトや、巻尺等による測定により算出する(ステップSA3)。
ステップSA1で取得された設備の画像データと、ステップSA3で算出された座標基準点3次元座標は、図2に示した設備健全性評価装置の入力部1に入力される。
【0017】
次に、設備健全性評価装置の演算・判定部2において、座標基準点の3次元座標を基準として、画像データ取得装置にて取得された画像データ内の設備上の評価点3次元座標を算出する(ステップSA4)。評価点は健全性評価の必要に応じて設備上に1個ないし複数とる。
【0018】
ここで図4を参照して、3次元座標取得のための写真測量法を説明する。図4に示すように対象物1,2,3が配置されており、対象物3の点Aの3次元座標を算出するものとする。
【0019】
まず、カメラ位置1,2において、対象物の写真を撮影する。その時、対象物は、図に示すように写真1,2上に投影される。
図5に示すように、写真1,2上の点に座標系(X1 ,Y1 )、(X2 ,Y2 )を取る。そして、写真1,2の座標系(X1 ,Y1 )、(X2 ,Y2 )を含む全体の座標系を(X,Y,Z)とする。カメラの焦点距離をf、カメラ1とカメラ2とのX方向の距離をαとすると、写真1の座標系原点は全体座標系では(0,0,f)、写真2の座標系原点は全体座標系では(α,0,f)に位置することになる。他方、写真1上のB1 点と写真2上のB2 点の座標を、それぞれの写真座標上でB1(x1 ,y1 ),B2 (x2 ,y2 )とすると、全体座標系では、B1 (x1 ,y1 ,f),B2(x2 ,y2 ,f)となる。
【0020】
図5において、点B2 を写真1上に平行移動させた点をB2 ’とすると、三角形O1 B1 B2 ’と三角形AO1 O2 は相似であるので、座標間に以下の関係が成り立つ。
【0021】
【数1】
【0022】
以上のように、カメラの焦点距離f及びカメラ位置間隔αが分かっており、点B1 と点B2 の写真上での座標が求められれば、A点の3次元座標を算出することができる。
このようにして算出された設備上の評価点の3次元座標は、健全性評価装置の保存部3に保存される(ステップSA5)。
【0023】
図6に停止中及び運転中の設備の状態を示す。運転中は、例えば配管内流体の温度が上昇するため、設備は停止状態とは異なった形状になり、評価点の座標値が変化する。そこで、図6に示すように、適切な位置に評価点を予め設定し、それらの評価点の停止中のデータを全て取得しておき、健全性評価装置の保存部3に保存しておく。その後、運転状態での全評価点の座標値を取得し、同様に保存部3に保存する(ステップSA5)。
図7に保存部3に保存される設備の停止中及び運転中の評価点の3次元座標データ例を示す。
【0024】
次に、保存部3に保存された停止中及び運転中の3次元座標データを演算・判定部2にて比較し、運転中座標−停止中座標=移動量 の算術式から移動量を算出する(ステップSA6)。この移動量によって設備の健全性を判定する場合には、図1のステップSA7,8を経ずに、この移動量を表示部4に表示する(ステップSA9)。表示例を図8に示す。
応力によって判定する場合には、演算・判定部2において有限要素法等を使用して、評価点の移動量から設備の応力を算出する(ステップSA7)。
【0025】
次に、上記にて算出された各評価点における発生応力と設備の材料、使用温度等から決定される許容応力とを、演算・判定部2において比較して判定し(ステップSA8)、発生応力が許容応力を上回っていれば、設備が危険な状態である可能性が高いとして、表示部4に表示し操作者に光,音等によるアラームを発して設備の状態確認を促す(ステップSA9)。算出された応力値と許容応力及び判定の表示例を図9に示す。
【0026】
次に、図10を参照して本発明の第2の実施の形態を説明する。この図に示されたステップSB1からSB6までは図1に示されたステップSA1からSA7までと同じである。本実施の形態においては、図2に示した演算・判定部2に3次元CADデータ作成機能と3次元CAD応力判定機能を持たせる。
【0027】
このような構成とした設備健全性評価方法及び装置により、運転中及び停止中の設備の3次元座標を保存部3から受け取り、設備の3次元CADデータを演算・判定部2にて作成する(ステップSB7)。また、演算・判定部2において設備に発生している応力を算出し(ステップSB6)、その結果と前記の3次元CADデータを用いて3次元CAD応力を判定する(ステップSB8)。表示部4は、許容応力を上回っている設備部位の色を変化させ表示し(ステップSB9)、操作者へ視覚的に伝達する。
【0028】
次に図11を参照して本発明の第3の実施の形態を説明する。本実施の形態においては、前述した設備の3次元座標取得に写真測量法ではなくレーザ光線を用いる。すなわち、レーザ光線を設備へ発射しその反射光を受信することにより、そのレーザ発射角度と反射レーザ受信角度、及びレーザ発射位置とレーザ受信位置の距離から三角測量法を用いて、設備の3次元座標を算出する。このようにすることにより、座標基準装置の設置が困難である高所部や高放射線量のため人間が近づけない場所等についても、設備の3次元座標を取得することができる。
【0029】
座標基準装置は、図12に符号5として示すように設備に塗装等として予め取り付けておくことにより、座標基準装置の設置が困難である高所部や高放射線量により人間が近づけない場所等についても、設備の3次元座標を取得することができる。
【0030】
図13に本発明の第5の実施の形態を示す。
プラント内に設置される配管はプラント内の密閉空間である各室を貫通し、ポンプ,弁等の機器に接続されている。このような場合、各室に設置された設備は、各室における3次元座標空間とプラント全体における3次元座標空間を有している。しかし通常、設備の3次元座標測定は各室毎の座標を基に実施されており、異なる室に設置されている設備の座標は関連づけられていない。このため、ポンプ等の交換により配管配置を変更する際に室の内外を貫通している配管の位置を正確に合わせることは困難である。
【0031】
そこで本実施の形態においては、所定室の開口部に座標基準装置5の取り付けられた3次元座標連結点を設け、所定室内外から画像データを取り込み、連結点の3次元座標を内外の座標空間の関連づけに使用する。このようにすることによって所定室内外の3次元座標を統合することができる。また、このように3次元座標連結点を設けることにより、所定室の内外にわたって設置されている設備の補修に際して配管や機器の位置合わせを容易に行うことができる。
【0032】
図14に第6の実施の形態を示す。本実施の形態は校正装置に関する。
図14に示す校正装置はL1 、L2 、H寸法を予め厳密に測定されており、設備健全性評価の前に、校正装置のL1 、L2 、H寸法を設備健全性評価装置にて測定し、予め測定されている寸法と比較を行い、設備健全性評価装置の校正を行う。こうすることによって、設備の形状を正確に測定し、健全性について正しい判定を下すことができる。
【0033】
【発明の効果】
本発明によれば、プラント停止中及び運転中の設備の3次元座標から設備の移動量を算出し、またその移動量から設備に発生している応力を求め許容応力値と比較するので、設備の健全性を正確に評価することができプラントの信頼性向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の設備健全性評価方法を示す流れ図。
【図2】本発明の第1の実施の形態の設備健全性評価装置の構成を示す図。
【図3】座標基準装置を例示する図。
【図4】写真測量法を示す図。
【図5】写真測量法における座標系を示す図。
【図6】停止中及び運転中の設備の形状を例示する図。
【図7】保存部に保存される設備3次元座標を例示する表。
【図8】演算・判定部において算出される設備移動量を例示する図。
【図9】表示部に表示される判定結果を例示する図。
【図10】本発明の第2の実施の形態の設備健全性評価方法を示す流れ図。
【図11】本発明の第3の実施の形態を示し、レーザ光線による測量法を示す図。
【図12】本発明の第4の実施の形態を示し、座標基準装置を予め配管表面に塗装した例を示す図。
【図13】本発明の第5の実施の形態を示し、所定室内外の関連付けを示す図。
【図14】本発明の第6の実施の形態を示し、(a)は校正装置の平面図、(b)は同側面図。
【符号の説明】
1…入力部、2…演算・判定部、3…保存部、4…表示部、5…座標基準装置、6…配管。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a facility soundness evaluation method and an evaluation device for evaluating the soundness of facilities by measuring the spatial position (three-dimensional coordinates) of facilities such as pipes and equipment installed in power plants and various plants, and The present invention relates to an equipment repair method using three-dimensional coordinates obtained by the apparatus.
[0002]
[Prior art]
Many facilities such as piping and equipment are installed in a power plant or the like. It is necessary for these facilities to confirm that stress and deformation caused by heat and load during operation are within allowable values.
[0003]
This confirmation is conventionally performed by creating an analysis model of piping and equipment and analyzing it by a computer. However, when performing analysis, it is difficult to know the generated stress and deformation accurately because the calculation results may also contain errors due to piping / equipment coordinate data errors, analysis assumptions, etc. It is.
[0004]
[Problems to be solved by the invention]
The present invention was made in order to solve the above problems, and a facility soundness evaluation method and an evaluation device capable of accurately knowing the amount of movement and stress caused by heat and load during operation of piping, equipment, etc., And it aims at providing the equipment repair construction method using this evaluation method or an evaluation apparatus.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the invention corresponding to
[0006]
The invention corresponding to
[0007]
Invention of
[0014]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a flowchart showing a facility soundness evaluation method according to the present embodiment, and FIG. 2 is a hardware configuration diagram of a facility soundness evaluation apparatus.
As shown in FIG. 1, first, image data of equipment is acquired by an image data acquisition device such as a film camera or a digital camera (step SA1).
[0015]
Next, for example, the coordinate reference device shown in FIG. 3 is installed on the surface of the equipment to set the coordinate reference point (step SA2). In addition, this coordinate reference | standard apparatus has a pattern which can perform the three-dimensional coordinate acquisition performed at the next step easily.
[0016]
Next, the three-dimensional coordinates of the coordinate reference point are calculated by measurement using a surveying device theodolite using the principle of angle surveying, a tape measure, or the like (step SA3).
The equipment image data acquired in step SA1 and the coordinate reference point three-dimensional coordinates calculated in step SA3 are input to the
[0017]
Next, the calculation /
[0018]
Here, referring to FIG. 4, a photogrammetry method for obtaining three-dimensional coordinates will be described. As shown in FIG. 4, the
[0019]
First, a photograph of the object is taken at
As shown in FIG. 5, coordinate systems (X 1 , Y 1 ) and (X 2 , Y 2 ) are taken at points on the
[0020]
5, 'When, triangle O 1 B 1 B 2' points obtained by translating the point B 2 on Photo 1 B 2 because the triangle AO 1 O 2 is a similar, the following relationship between coordinates Holds.
[0021]
[Expression 1]
[0022]
As described above, if the focal length f and the camera position interval α of the camera are known and the coordinates of the points B 1 and B 2 on the photograph are obtained, the three-dimensional coordinates of the point A can be calculated. .
The three-dimensional coordinates of the evaluation points on the equipment thus calculated are stored in the
[0023]
FIG. 6 shows the state of the equipment during stoppage and operation. During operation, for example, since the temperature of the fluid in the pipe rises, the equipment has a shape different from that in the stopped state, and the coordinate value of the evaluation point changes. Therefore, as shown in FIG. 6, evaluation points are set in advance at appropriate positions, and all data at the time when the evaluation points are stopped are acquired and stored in the
FIG. 7 shows an example of three-dimensional coordinate data of evaluation points stored in the
[0024]
Next, the calculation /
When determining by the stress, the calculation /
[0025]
Next, the calculation /
[0026]
Next, a second embodiment of the present invention will be described with reference to FIG. Steps SB1 to SB6 shown in this figure are the same as steps SA1 to SA7 shown in FIG. In the present embodiment, the calculation /
[0027]
With the equipment soundness evaluation method and apparatus configured as described above, the three-dimensional coordinates of the running and stopped equipment are received from the
[0028]
Next, a third embodiment of the present invention will be described with reference to FIG. In this embodiment, a laser beam is used instead of the photogrammetry method for acquiring the three-dimensional coordinates of the equipment described above. That is, by emitting a laser beam to the equipment and receiving the reflected light, the three-dimensional measurement of the equipment is performed using the triangulation method from the laser emission angle and the reflected laser reception angle, and the distance between the laser emission position and the laser reception position. Calculate the coordinates. By doing so, it is possible to acquire the three-dimensional coordinates of the equipment even at a high place where it is difficult to install the coordinate reference device or a place where a human cannot approach due to a high radiation dose.
[0029]
As shown by
[0030]
FIG. 13 shows a fifth embodiment of the present invention.
Piping installed in the plant penetrates each chamber, which is a sealed space in the plant, and is connected to equipment such as a pump and a valve. In such a case, the equipment installed in each room has a three-dimensional coordinate space in each room and a three-dimensional coordinate space in the entire plant. However, usually, the three-dimensional coordinate measurement of equipment is performed based on the coordinates of each room, and the coordinates of equipment installed in different rooms are not related. For this reason, it is difficult to accurately align the position of the pipe penetrating the inside and outside of the chamber when the pipe arrangement is changed by exchanging the pump or the like.
[0031]
Therefore, in the present embodiment, a three-dimensional coordinate connection point to which the coordinate
[0032]
FIG. 14 shows a sixth embodiment. The present embodiment relates to a calibration apparatus.
Calibration apparatus shown in FIG. 14 is previously precisely measured L 1, L 2, H dimensions, prior to the equipment integrity assessment, the L 1, L 2, H dimensions of the calibration device to the equipment integrity assessment device Then, compare with the pre-measured dimensions and calibrate the equipment soundness evaluation device. By doing so, it is possible to accurately measure the shape of the equipment and make a correct judgment on soundness.
[0033]
【The invention's effect】
According to the present invention, the amount of movement of the equipment is calculated from the three-dimensional coordinates of the equipment when the plant is stopped and in operation, and the stress generated in the equipment is obtained from the amount of movement and compared with the allowable stress value. It is possible to accurately evaluate the soundness of the plant and improve the reliability of the plant.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a facility soundness evaluation method according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a configuration of a facility soundness evaluation apparatus according to the first embodiment of the present invention.
FIG. 3 is a diagram illustrating a coordinate reference device.
FIG. 4 is a diagram showing a photogrammetry method.
FIG. 5 is a diagram showing a coordinate system in photogrammetry.
FIG. 6 is a diagram illustrating the shape of equipment during stoppage and operation.
FIG. 7 is a table illustrating equipment three-dimensional coordinates stored in a storage unit;
FIG. 8 is a diagram illustrating an equipment movement amount calculated by a calculation / determination unit.
FIG. 9 is a diagram illustrating a determination result displayed on the display unit.
FIG. 10 is a flowchart showing a facility soundness evaluation method according to the second embodiment of the present invention.
FIG. 11 is a diagram illustrating a surveying method using a laser beam according to a third embodiment of the present invention.
FIG. 12 is a diagram illustrating an example in which a coordinate reference device is previously coated on a pipe surface according to a fourth embodiment of the present invention.
FIG. 13 is a diagram showing association between a predetermined room and an outside according to the fifth embodiment of the present invention.
14A and 14B show a sixth embodiment of the present invention, in which FIG. 14A is a plan view of a calibration device, and FIG. 14B is a side view thereof.
[Explanation of symbols]
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21553099A JP3837259B2 (en) | 1999-07-29 | 1999-07-29 | Equipment soundness evaluation method and equipment, and equipment repair method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21553099A JP3837259B2 (en) | 1999-07-29 | 1999-07-29 | Equipment soundness evaluation method and equipment, and equipment repair method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001041717A JP2001041717A (en) | 2001-02-16 |
JP3837259B2 true JP3837259B2 (en) | 2006-10-25 |
Family
ID=16673963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21553099A Expired - Fee Related JP3837259B2 (en) | 1999-07-29 | 1999-07-29 | Equipment soundness evaluation method and equipment, and equipment repair method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3837259B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110539162A (en) * | 2019-09-06 | 2019-12-06 | 首都航天机械有限公司 | digital sampling manufacturing method for conduit based on actual assembly space on arrow |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4742270B2 (en) * | 2006-10-16 | 2011-08-10 | 国立大学法人山口大学 | Method for measuring deformation characteristics and apparatus therefor |
KR101244404B1 (en) * | 2011-03-17 | 2013-03-18 | 한국전력기술 주식회사 | Cad data converting apparatus, 3d cad modeling system using the same, and design method of 3d pipe using the same |
-
1999
- 1999-07-29 JP JP21553099A patent/JP3837259B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110539162A (en) * | 2019-09-06 | 2019-12-06 | 首都航天机械有限公司 | digital sampling manufacturing method for conduit based on actual assembly space on arrow |
CN110539162B (en) * | 2019-09-06 | 2020-09-18 | 首都航天机械有限公司 | Digital sampling manufacturing method for conduit based on actual assembly space on arrow |
Also Published As
Publication number | Publication date |
---|---|
JP2001041717A (en) | 2001-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9488589B2 (en) | Mapping damaged regions on objects | |
Ordóñez et al. | Measuring building façades with a low-cost close-range photogrammetry system | |
US8249832B2 (en) | Correlation of inspection information and computer-aided design data for structural assessment | |
EP3055648A1 (en) | Method and system for 3d modeling using feature detection | |
JP2011158371A (en) | Three-dimensional position measuring and marking system, and method of using the same | |
US5321766A (en) | Method and apparatus for system documentation | |
JP2024091883A (en) | Covering material thickness measurement method, covering material thickness measurement system, and covering material construction method | |
JP6325834B2 (en) | Maintenance support system and maintenance support method | |
JP2019185253A (en) | Embedded object recognition method | |
JP3837259B2 (en) | Equipment soundness evaluation method and equipment, and equipment repair method | |
JP2021039013A (en) | Wall crack measuring machine and measuring method | |
JP2003130642A (en) | Telemetry and telemeter | |
JP2020172784A (en) | Mountain tunnel concrete thickness measuring method and measuring device | |
KR100809533B1 (en) | Global coordinate creation method for precision measurement of precision measurement for space | |
JP2013148375A (en) | Calibration method, calibrator and program for use in three-dimensional shape measuring apparatus, and three-dimensional shape measuring apparatus | |
JP2005140550A (en) | Three dimensional model preparation method | |
KR101644512B1 (en) | Apparatus and method for modelling 3d shape | |
US20130021618A1 (en) | Apparatus and method to indicate a specified position using two or more intersecting lasers lines | |
JP7288769B2 (en) | Insulation thickness control system and server | |
JP2002344963A (en) | Photographing information attaching device | |
JP2005331383A (en) | Method and device for evaluating three-dimensional coordinate position | |
Sužiedelytė-Visockienė | Photogrammetry requirements for digital camera calibration applying Tcc and MatLab software | |
KR102328956B1 (en) | System and method to visualize Press forming structure thickness distribution | |
Ditta et al. | Total Station Surveying | |
JPH0835828A (en) | Calibration method of three-dimensional measuring apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040507 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051031 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060425 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060623 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060725 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060731 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090804 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100804 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100804 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110804 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110804 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120804 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120804 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130804 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |