JP2001041717A - Equipment soundness evaluation method and evaluation device and equipment repairing method - Google Patents

Equipment soundness evaluation method and evaluation device and equipment repairing method

Info

Publication number
JP2001041717A
JP2001041717A JP11215530A JP21553099A JP2001041717A JP 2001041717 A JP2001041717 A JP 2001041717A JP 11215530 A JP11215530 A JP 11215530A JP 21553099 A JP21553099 A JP 21553099A JP 2001041717 A JP2001041717 A JP 2001041717A
Authority
JP
Japan
Prior art keywords
equipment
dimensional coordinates
evaluation
soundness
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11215530A
Other languages
Japanese (ja)
Other versions
JP3837259B2 (en
Inventor
Kazuyoshi Yonekura
和義 米倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21553099A priority Critical patent/JP3837259B2/en
Publication of JP2001041717A publication Critical patent/JP2001041717A/en
Application granted granted Critical
Publication of JP3837259B2 publication Critical patent/JP3837259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an equipment soundness evaluation method and an evaluation device capable of knowing accurately a moving quantity and a stress caused by heat or a load during operation of an equipment such as piping, instruments or the like, and an equipment repairing method by using the evaluation method or the evaluation device. SOLUTION: Image data relative to the shape of an equipment in operation and in suspension are acquired (SA1), a coordinate reference point is set on the equipment (SA2), three-dimensional coordinates of the coordinate reference point are calculated (SA3), three-dimensional coordinates of an evaluation point on the equipment are calculated from the image data and the three-dimensional coordinates of the coordinate reference point (SA4), a moving quantity of the evaluation point is calculated from the three-dimensional coordinates of the evaluation point in operation and the three-dimensional coordinates of the evaluation point in suspension and a stress generated in the equipment is calculated from the moving quantity of the evaluation point (SA7), and the generated stress value is compared with an allowable stress value to thereby evaluate soundness of the equipment (SA8, SA9).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発電所や各種プラ
ントに設備された配管や機器等の設備の空間的位置(3
次元座標)を計測することによって設備の健全性を評価
する設備健全性評価方法と評価装置、及び同装置によっ
て得られた3次元座標を用いて行う設備補修工法に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to the spatial position (3) of equipment such as piping and equipment installed in power plants and various plants.
The present invention relates to an equipment soundness evaluation method and an evaluation apparatus for evaluating the soundness of equipment by measuring (dimensional coordinates), and an equipment repair method performed using three-dimensional coordinates obtained by the equipment.

【0002】[0002]

【従来の技術】発電プラント等には、配管や機器等の設
備が多数設置されている。これらの設備は、運転中の熱
や負荷によって生じる応力や変形が許容値以内にあるこ
とを確認する必要がある。
2. Description of the Related Art A power plant or the like is provided with many facilities such as piping and equipment. For these facilities, it is necessary to confirm that stress and deformation caused by heat and load during operation are within allowable values.

【0003】この確認は従来、配管・機器の解析モデル
を作成し、計算機による解析によって行われている。し
かしながら、解析を実施する際には、配管・機器の座標
データ誤差、解析上の仮定等により算出結果も、誤差を
含んでいる可能性があるため、発生応力や変形を正確に
知ることは困難である。
Conventionally, this confirmation has been performed by creating an analysis model of piping and equipment and analyzing it by a computer. However, when conducting the analysis, it is difficult to know the generated stress and deformation accurately because the calculation results may include errors due to errors in the coordinate data of piping and equipment, assumptions in the analysis, etc. It is.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記課題を
解決するためになされたもので、配管・機器等の設備運
転中の熱や負荷によって生じる移動量と応力を正確に知
ることのできる設備健全性評価方法及び評価装置、及び
この評価方法または評価装置を用いた設備補修工法を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is possible to accurately know the amount of movement and stress generated by heat or load during operation of facilities such as piping and equipment. An object of the present invention is to provide an equipment soundness evaluation method and an evaluation device, and an equipment repair method using the evaluation method or the evaluation device.

【0005】[0005]

【課題を解決するための手段】請求項1に対応する発明
は、運転中及び停止中の設備の形状に関する画像データ
を取得し、前記設備上に座標基準点を設定し、この座標
基準点の3次元座標を算出し、前記画像データと前記基
準座標点の3次元座標から前記設備上の評価点の3次元
座標を算出し、運転中の評価点の3次元座標と停止中の
評価点の3次元座標から評価点の移動量を算出し、この
移動量によって設備の健全性を評価することを特徴とす
る。なお、上記請求項1に対応する発明においては、設
備上の点の3次元座標を校正装置を用いて校正すること
が好適である。
According to a first aspect of the present invention, image data relating to the shape of a running or stopped facility is acquired, a coordinate reference point is set on the facility, and the coordinate reference point is determined. Calculating three-dimensional coordinates, calculating three-dimensional coordinates of the evaluation points on the equipment from the image data and the three-dimensional coordinates of the reference coordinate points, and calculating the three-dimensional coordinates of the evaluation points during operation and the evaluation points during stoppage The movement amount of the evaluation point is calculated from the three-dimensional coordinates, and the soundness of the equipment is evaluated based on the movement amount. In the invention corresponding to claim 1, it is preferable that the three-dimensional coordinates of the points on the equipment be calibrated using a calibrating device.

【0006】請求項2に対応する発明は、上記請求項1
に対応する発明において評価点の移動量から設備に発生
する応力を算出し、この発生応力値と許容応力値を比較
して設備の健全性を評価することを特徴とする。
[0006] The invention corresponding to claim 2 is the invention according to claim 1.
In the invention corresponding to (1), stress generated in the equipment is calculated from the movement amount of the evaluation point, and the generated stress value is compared with an allowable stress value to evaluate the soundness of the equipment.

【0007】請求項3に対応する発明は、上記請求項2
に対応する発明において応力の判定に3次元CADデー
タを用い、許容応力値を超えた部位の色を変化させて表
示するようにしたことを特徴とする。
[0007] The invention corresponding to claim 3 is based on claim 2.
The three-dimensional CAD data is used to determine the stress, and the color of a portion exceeding the allowable stress value is changed and displayed.

【0008】請求項4に対応する発明は、上記請求項1
に対応する発明において運転中及び停止中の設備上の点
の3次元座標を画像データに代えてレーザー光線によっ
て取得することを特徴とする。
[0008] The invention corresponding to claim 4 is the above-described claim 1.
The three-dimensional coordinates of the points on the running and stopped facilities are acquired by a laser beam instead of image data.

【0009】請求項5に対応する発明は、上記請求項1
に対応する発明において設備が所定室の内外にわたる場
合、所定室の開口部に、所定室内3次元座標と所定室外
3次元座標とを関連付ける3次元座標連結点を設けるこ
とを特徴とする。
[0009] The invention corresponding to claim 5 is the above-mentioned claim 1.
In the invention corresponding to (1), when the equipment extends inside and outside the predetermined room, a three-dimensional coordinate connection point for associating the predetermined room three-dimensional coordinates with the predetermined outdoor three-dimensional coordinates is provided in the opening of the predetermined room.

【0010】請求項6に対応する発明は、所定室内外に
わたる設備の位置合わせに、上記請求項5に対応する発
明の設備健全性評価方法にて得られる設備の3次元座標
を使用することを特徴とする。
The invention corresponding to claim 6 uses the three-dimensional coordinates of the equipment obtained by the equipment soundness evaluation method according to the invention according to claim 5 for positioning the equipment in a predetermined room. Features.

【0011】請求項7に対応する発明は、運転中及び停
止中の設備の形状に関する画像データと前記設備上に設
定された座標基準点の3次元座標とを入力される入力部
と、前記画像データと前記基準座標点3次元座標から前
記設備上の評価点の3次元座標を算出し設備運転中の評
価点の3次元座標と設備停止中の評価点の3次元座標か
ら評価点の移動量を算出しこの移動量によって設備の健
全性を判定する演算・判定部と、判定の結果を表示する
表示部と、前記基準座標点の3次元座標と評価点の3次
元座標を保存する保存部とを備えたことを特徴とする。
According to a seventh aspect of the present invention, there is provided an input unit for inputting image data relating to the shape of the facility during operation and at a stop and three-dimensional coordinates of a coordinate reference point set on the facility. The three-dimensional coordinates of the evaluation points on the equipment are calculated from the data and the three-dimensional coordinates of the reference coordinate points, and the movement amount of the evaluation points is calculated based on the three-dimensional coordinates of the evaluation points when the equipment is operating and the three-dimensional coordinates of the evaluation points when the equipment is stopped. Calculating and judging the soundness of the equipment based on the amount of movement, a display for displaying the result of the judgment, and a storage for storing the three-dimensional coordinates of the reference coordinate points and the three-dimensional coordinates of the evaluation points. And characterized in that:

【0012】請求項8に対応する発明は、上記請求項7
に対応する発明において演算・判定部は、評価点の移動
量から設備に発生する応力を算出し、この発生応力値と
許容応力値を比較して設備の健全性を判定することを特
徴とする。
[0012] The invention corresponding to claim 8 is the invention according to claim 7.
In the invention corresponding to the above, the calculation / determination unit calculates the stress generated in the equipment from the movement amount of the evaluation point, and compares the generated stress value with the allowable stress value to determine the soundness of the equipment. .

【0013】請求項9に対応する発明は、上記請求項8
に対応する発明において演算・判定部は評価点の3次元
座標から3次元CADデータを作成し、表示部は許容応
力値を超えた部位の色を変化させて表示することを特徴
とする。
The invention corresponding to claim 9 is the invention according to claim 8.
In the invention corresponding to (1), the calculation / judgment unit creates three-dimensional CAD data from the three-dimensional coordinates of the evaluation points, and the display unit changes and displays the color of the part exceeding the allowable stress value.

【0014】[0014]

【発明の実施の形態】図1〜図9を参照して本発明の第
1の実施の形態を説明する。図1は本実施の形態の設備
健全性評価方法を示す流れ図であり、図2は設備健全性
評価装置のハードウエア構成図である。図1に示すよう
に、まず画像データ取得装置、例えばフィルムカメラ,
デジタルカメラ等により設備の画像データを取得する
(ステップSA1)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a flowchart showing the equipment soundness evaluation method of the present embodiment, and FIG. 2 is a hardware configuration diagram of the equipment soundness evaluation apparatus. As shown in FIG. 1, first, an image data acquisition device, for example, a film camera,
The equipment image data is acquired by a digital camera or the like (step SA1).

【0015】次に例えば図3に示す座標基準装置を設備
の表面に設置して座標基準点を設定する(ステップSA
2)。なお、本座標基準装置は、次のステップにて行う
3次元座標取得を容易に行えるような図柄を有してい
る。
Next, for example, the coordinate reference device shown in FIG. 3 is installed on the surface of the equipment to set a coordinate reference point (step SA).
2). In addition, the present coordinate reference device has a design that facilitates acquisition of three-dimensional coordinates performed in the next step.

【0016】次に、座標基準点の3次元座標を、角測量
法原理を利用した測量装置セオドライトや、巻尺等によ
る測定により算出する(ステップSA3)。ステップS
A1で取得された設備の画像データと、ステップSA3
で算出された座標基準点3次元座標は、図2に示した設
備健全性評価装置の入力部1に入力される。
Next, the three-dimensional coordinates of the coordinate reference point are calculated by measurement using a theodolite or a tape measure using a surveying principle (step SA3). Step S
The image data of the equipment acquired in A1 and step SA3
The three-dimensional coordinates of the coordinate reference point calculated in step (1) are input to the input unit 1 of the equipment soundness evaluation apparatus shown in FIG.

【0017】次に、設備健全性評価装置の演算・判定部
2において、座標基準点の3次元座標を基準として、画
像データ取得装置にて取得された画像データ内の設備上
の評価点3次元座標を算出する(ステップSA4)。評
価点は健全性評価の必要に応じて設備上に1個ないし複
数とる。
Next, the calculation / judgment unit 2 of the equipment soundness evaluation device uses the three-dimensional coordinates of the coordinate reference point as a reference to evaluate three-dimensional evaluation points on the equipment in the image data acquired by the image data acquisition device. The coordinates are calculated (step SA4). One or more evaluation points are assigned to the equipment as necessary for soundness evaluation.

【0018】ここで図4を参照して、3次元座標取得の
ための写真測量法を説明する。図4に示すように対象物
1,2,3が配置されており、対象物3の点Aの3次元
座標を算出するものとする。
Referring now to FIG. 4, a photogrammetric method for obtaining three-dimensional coordinates will be described. As shown in FIG. 4, the objects 1, 2, 3 are arranged, and the three-dimensional coordinates of the point A of the object 3 are calculated.

【0019】まず、カメラ位置1,2において、対象物
の写真を撮影する。その時、対象物は、図に示すように
写真1,2上に投影される。図5に示すように、写真
1,2上の点に座標系(X1 ,Y1 )、(X2 ,Y2
を取る。そして、写真1,2の座標系(X1 ,Y1 )、
(X2 ,Y2 )を含む全体の座標系を(X,Y,Z)と
する。カメラの焦点距離をf、カメラ1とカメラ2との
X方向の距離をαとすると、写真1の座標系原点は全体
座標系では(0,0,f)、写真2の座標系原点は全体
座標系では(α,0,f)に位置することになる。他
方、写真1上のB1 点と写真2上のB2 点の座標を、そ
れぞれの写真座標上でB1(x1 ,y1 ),B
2 (x2 ,y2 )とすると、全体座標系では、B1 (x
1 ,y1 ,f),B2(x2 ,y2 ,f)となる。
First, a photograph of an object is taken at camera positions 1 and 2. At that time, the target object is projected on photographs 1 and 2 as shown in the figure. As shown in FIG. 5, the coordinates on the points on photos 1 and 2 are (X 1 , Y 1 ), (X 2 , Y 2 ).
I take the. Then, the coordinate systems (X 1 , Y 1 ) of the photos 1 and 2,
The whole coordinate system including (X 2 , Y 2 ) is (X, Y, Z). Assuming that the focal length of the camera is f and the distance between the camera 1 and the camera 2 in the X direction is α, the origin of the coordinate system of the photograph 1 is (0, 0, f) in the global coordinate system, and the origin of the coordinate system of the photograph 2 is In the coordinate system, it is located at (α, 0, f). On the other hand, the coordinates of B1 point on Photo 1 and B 2 point on Photo 2 are represented by B1 (x 1 , y 1 ), B
2 (x 2 , y 2 ), B 1 (x
1, y 1, f), a B2 (x 2, y 2, f).

【0020】図5において、点B2 を写真1上に平行移
動させた点をB2 ’とすると、三角形O1 1 2 ’と
三角形AO1 2 は相似であるので、座標間に以下の関
係が成り立つ。
In FIG. 5, if a point obtained by translating the point B 2 on the photograph 1 is denoted by B 2 ′, the triangle O 1 B 1 B 2 ′ and the triangle AO 1 O 2 are similar, so that the coordinates The following relationship holds:

【0021】[0021]

【数1】 (Equation 1)

【0022】以上のように、カメラの焦点距離f及びカ
メラ位置間隔αが分かっており、点B1 と点B2 の写真
上での座標が求められれば、A点の3次元座標を算出す
ることができる。このようにして算出された設備上の評
価点の3次元座標は、健全性評価装置の保存部3に保存
される(ステップSA5)。
As described above, if the focal length f of the camera and the camera position interval α are known and the coordinates of the points B 1 and B 2 on the photograph are obtained, the three-dimensional coordinates of the point A are calculated. be able to. The three-dimensional coordinates of the evaluation points on the equipment calculated in this way are stored in the storage unit 3 of the soundness evaluation device (step SA5).

【0023】図6に停止中及び運転中の設備の状態を示
す。運転中は、例えば配管内流体の温度が上昇するた
め、設備は停止状態とは異なった形状になり、評価点の
座標値が変化する。そこで、図6に示すように、適切な
位置に評価点を予め設定し、それらの評価点の停止中の
データを全て取得しておき、健全性評価装置の保存部3
に保存しておく。その後、運転状態での全評価点の座標
値を取得し、同様に保存部3に保存する(ステップSA
5)。図7に保存部3に保存される設備の停止中及び運
転中の評価点の3次元座標データ例を示す。
FIG. 6 shows the state of the equipment during stoppage and during operation. During operation, for example, the temperature of the fluid in the pipe increases, so that the equipment has a shape different from that in the stopped state, and the coordinate value of the evaluation point changes. Therefore, as shown in FIG. 6, evaluation points are set in advance at appropriate positions, all the stopped data of those evaluation points are acquired, and the storage unit 3 of the soundness evaluation device is acquired.
To save. After that, the coordinate values of all the evaluation points in the operating state are acquired and stored in the storage unit 3 in the same manner (step SA)
5). FIG. 7 shows an example of the three-dimensional coordinate data of the evaluation points during stopping and during operation of the equipment stored in the storage unit 3.

【0024】次に、保存部3に保存された停止中及び運
転中の3次元座標データを演算・判定部2にて比較し、
運転中座標−停止中座標=移動量 の算術式から移動量
を算出する(ステップSA6)。この移動量によって設
備の健全性を判定する場合には、図1のステップSA
7,8を経ずに、この移動量を表示部4に表示する(ス
テップSA9)。表示例を図8に示す。応力によって判
定する場合には、演算・判定部2において有限要素法等
を使用して、評価点の移動量から設備の応力を算出する
(ステップSA7)。
Next, the stopped / operating three-dimensional coordinate data stored in the storage unit 3 is compared by the calculation / judgment unit 2,
The moving amount is calculated from the arithmetic expression of coordinates during operation−coordinates during stopping = moving amount (step SA6). When the soundness of the equipment is determined based on the amount of movement, step SA in FIG.
This movement amount is displayed on the display unit 4 without going through steps 7 and 8 (step SA9). FIG. 8 shows a display example. When the determination is made based on the stress, the calculation / determination unit 2 calculates the stress of the equipment from the movement amount of the evaluation point using the finite element method or the like (step SA7).

【0025】次に、上記にて算出された各評価点におけ
る発生応力と設備の材料、使用温度等から決定される許
容応力とを、演算・判定部2において比較して判定し
(ステップSA8)、発生応力が許容応力を上回ってい
れば、設備が危険な状態である可能性が高いとして、表
示部4に表示し操作者に光,音等によるアラームを発し
て設備の状態確認を促す(ステップSA9)。算出され
た応力値と許容応力及び判定の表示例を図9に示す。
Next, the calculated and determined stress at each evaluation point and the allowable stress determined from the material of the equipment, the operating temperature and the like are compared and determined by the calculation / determination unit 2 (step SA8). If the generated stress exceeds the allowable stress, it is determined that there is a high possibility that the equipment is in a dangerous state, and it is displayed on the display unit 4 and an alarm is issued to the operator by light, sound, or the like to urge the operator to confirm the state of the equipment ( Step SA9). FIG. 9 shows a display example of the calculated stress value, allowable stress, and judgment.

【0026】次に、図10を参照して本発明の第2の実施
の形態を説明する。この図に示されたステップSB1か
らSB6までは図1に示されたステップSA1からSA
7までと同じである。本実施の形態においては、図2に
示した演算・判定部2に3次元CADデータ作成機能と
3次元CAD応力判定機能を持たせる。
Next, a second embodiment of the present invention will be described with reference to FIG. Steps SB1 to SB6 shown in this figure correspond to steps SA1 to SA shown in FIG.
Same as up to 7. In the present embodiment, the calculation / determination unit 2 shown in FIG. 2 is provided with a three-dimensional CAD data creation function and a three-dimensional CAD stress determination function.

【0027】このような構成とした設備健全性評価方法
及び装置により、運転中及び停止中の設備の3次元座標
を保存部3から受け取り、設備の3次元CADデータを
演算・判定部2にて作成する(ステップSB7)。ま
た、演算・判定部2において設備に発生している応力を
算出し(ステップSB6)、その結果と前記の3次元C
ADデータを用いて3次元CAD応力を判定する(ステ
ップSB8)。表示部4は、許容応力を上回っている設
備部位の色を変化させ表示し(ステップSB9)、操作
者へ視覚的に伝達する。
According to the equipment soundness evaluation method and apparatus having such a configuration, the three-dimensional coordinates of the equipment that is operating and stopped are received from the storage unit 3, and the three-dimensional CAD data of the equipment is calculated and determined by the calculation / determination unit 2. It is created (step SB7). Further, the calculation / determination unit 2 calculates the stress generated in the equipment (step SB6), and the result is compared with the three-dimensional C.
The three-dimensional CAD stress is determined using the AD data (step SB8). The display unit 4 changes and displays the color of the equipment part exceeding the allowable stress (step SB9), and visually transmits the color to the operator.

【0028】次に図11を参照して本発明の第3の実施の
形態を説明する。本実施の形態においては、前述した設
備の3次元座標取得に写真測量法ではなくレーザ光線を
用いる。すなわち、レーザ光線を設備へ発射しその反射
光を受信することにより、そのレーザ発射角度と反射レ
ーザ受信角度、及びレーザ発射位置とレーザ受信位置の
距離から三角測量法を用いて、設備の3次元座標を算出
する。このようにすることにより、座標基準装置の設置
が困難である高所部や高放射線量のため人間が近づけな
い場所等についても、設備の3次元座標を取得すること
ができる。
Next, a third embodiment of the present invention will be described with reference to FIG. In the present embodiment, a laser beam is used for obtaining the three-dimensional coordinates of the above-mentioned equipment, instead of the photogrammetry. In other words, by emitting a laser beam to the equipment and receiving the reflected light, the three-dimensional measurement of the equipment is performed using triangulation from the laser emission angle and the reflected laser reception angle, and the distance between the laser emission position and the laser reception position. Calculate the coordinates. This makes it possible to acquire the three-dimensional coordinates of the equipment even in a high place where it is difficult to install the coordinate reference device, or in a place where a human cannot approach due to a high radiation dose.

【0029】座標基準装置は、図12に符号5として示す
ように設備に塗装等として予め取り付けておくことによ
り、座標基準装置の設置が困難である高所部や高放射線
量により人間が近づけない場所等についても、設備の3
次元座標を取得することができる。
As shown in FIG. 12, the coordinate reference device is attached to the equipment in advance as a paint or the like, so that it is difficult for humans to approach due to high places or high radiation dose where it is difficult to install the coordinate reference device. Regarding the location, etc.
The dimensional coordinates can be obtained.

【0030】図13に本発明の第5の実施の形態を示す。
プラント内に設置される配管はプラント内の密閉空間で
ある各室を貫通し、ポンプ,弁等の機器に接続されてい
る。このような場合、各室に設置された設備は、各室に
おける3次元座標空間とプラント全体における3次元座
標空間を有している。しかし通常、設備の3次元座標測
定は各室毎の座標を基に実施されており、異なる室に設
置されている設備の座標は関連づけられていない。この
ため、ポンプ等の交換により配管配置を変更する際に室
の内外を貫通している配管の位置を正確に合わせること
は困難である。
FIG. 13 shows a fifth embodiment of the present invention.
Piping installed in the plant penetrates each room, which is a closed space in the plant, and is connected to devices such as pumps and valves. In such a case, the equipment installed in each room has a three-dimensional coordinate space in each room and a three-dimensional coordinate space in the entire plant. However, usually, the three-dimensional coordinate measurement of the equipment is performed based on the coordinates of each room, and the coordinates of the equipment installed in different rooms are not related. For this reason, it is difficult to accurately adjust the position of the pipe penetrating the inside and outside of the chamber when changing the pipe arrangement by replacing the pump or the like.

【0031】そこで本実施の形態においては、所定室の
開口部に座標基準装置5の取り付けられた3次元座標連
結点を設け、所定室内外から画像データを取り込み、連
結点の3次元座標を内外の座標空間の関連づけに使用す
る。このようにすることによって所定室内外の3次元座
標を統合することができる。また、このように3次元座
標連結点を設けることにより、所定室の内外にわたって
設置されている設備の補修に際して配管や機器の位置合
わせを容易に行うことができる。
Therefore, in the present embodiment, a three-dimensional coordinate connection point to which the coordinate reference device 5 is attached is provided in the opening of the predetermined room, image data is taken in from inside and outside the predetermined room, and the three-dimensional coordinates of the connection point are stored inside and outside. Used to associate the coordinate space of. By doing so, it is possible to integrate the three-dimensional coordinates inside and outside the predetermined room. Further, by providing the three-dimensional coordinate connection points in this way, it is possible to easily perform alignment of pipes and equipment when repairing equipment installed inside and outside the predetermined room.

【0032】図14に第6の実施の形態を示す。本実施の
形態は校正装置に関する。図14に示す校正装置はL1
2 、H寸法を予め厳密に測定されており、設備健全性
評価の前に、校正装置のL1 、L2 、H寸法を設備健全
性評価装置にて測定し、予め測定されている寸法と比較
を行い、設備健全性評価装置の校正を行う。こうするこ
とによって、設備の形状を正確に測定し、健全性につい
て正しい判定を下すことができる。
FIG. 14 shows a sixth embodiment. This embodiment relates to a calibration device. Calibration device L 1 shown in FIG. 14,
The L 2 and H dimensions are strictly measured in advance, and the L 1 , L 2 , and H dimensions of the calibration device are measured by the equipment integrity evaluation device before the equipment integrity evaluation. And make calibration of the equipment integrity evaluation device. By doing so, it is possible to accurately measure the shape of the equipment and make a correct judgment on soundness.

【0033】[0033]

【発明の効果】本発明によれば、プラント停止中及び運
転中の設備の3次元座標から設備の移動量を算出し、ま
たその移動量から設備に発生している応力を求め許容応
力値と比較するので、設備の健全性を正確に評価するこ
とができプラントの信頼性向上を図ることができる。
According to the present invention, the amount of equipment movement is calculated from the three-dimensional coordinates of the equipment while the plant is stopped and operating, and the stress generated in the equipment is determined from the amount of movement to determine the allowable stress value. Since the comparison is made, the soundness of the equipment can be accurately evaluated, and the reliability of the plant can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の設備健全性評価方
法を示す流れ図。
FIG. 1 is a flowchart illustrating a facility soundness evaluation method according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態の設備健全性評価装
置の構成を示す図。
FIG. 2 is a diagram showing a configuration of a facility soundness evaluation device according to the first embodiment of the present invention.

【図3】座標基準装置を例示する図。FIG. 3 is a diagram illustrating a coordinate reference device.

【図4】写真測量法を示す図。FIG. 4 is a diagram showing a photogrammetry method.

【図5】写真測量法における座標系を示す図。FIG. 5 is a diagram showing a coordinate system in photogrammetry.

【図6】停止中及び運転中の設備の形状を例示する図。FIG. 6 is a diagram exemplifying shapes of equipment during stop and operation.

【図7】保存部に保存される設備3次元座標を例示する
表。
FIG. 7 is a table exemplifying equipment three-dimensional coordinates stored in a storage unit.

【図8】演算・判定部において算出される設備移動量を
例示する図。
FIG. 8 is a diagram exemplifying an equipment movement amount calculated by a calculation / determination unit.

【図9】表示部に表示される判定結果を例示する図。FIG. 9 is a diagram illustrating a determination result displayed on a display unit.

【図10】本発明の第2の実施の形態の設備健全性評価
方法を示す流れ図。
FIG. 10 is a flowchart showing a facility soundness evaluation method according to a second embodiment of the present invention.

【図11】本発明の第3の実施の形態を示し、レーザ光
線による測量法を示す図。
FIG. 11 shows a third embodiment of the present invention, and is a diagram showing a surveying method using a laser beam.

【図12】本発明の第4の実施の形態を示し、座標基準
装置を予め配管表面に塗装した例を示す図。
FIG. 12 shows the fourth embodiment of the present invention, and shows an example in which a coordinate reference device is preliminarily applied to a pipe surface.

【図13】本発明の第5の実施の形態を示し、所定室内
外の関連付けを示す図。
FIG. 13 is a view showing a fifth embodiment of the present invention and showing association between a predetermined indoor and an outdoor.

【図14】本発明の第6の実施の形態を示し、(a)は
校正装置の平面図、(b)は同側面図。
14A and 14B show a sixth embodiment of the present invention, in which FIG. 14A is a plan view of a calibration device, and FIG. 14B is a side view of the same.

【符号の説明】[Explanation of symbols]

1…入力部、2…演算・判定部、3…保存部、4…表示
部、5…座標基準装置、6…配管。
DESCRIPTION OF SYMBOLS 1 ... input part, 2 ... calculation / determination part, 3 ... storage part, 4 ... display part, 5 ... coordinate reference apparatus, 6 ... piping.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 運転中及び停止中の設備の形状に関する
画像データを取得し、前記設備上に座標基準点を設定
し、この座標基準点の3次元座標を算出し、前記画像デ
ータと前記基準座標点の3次元座標から前記設備上の評
価点の3次元座標を算出し、運転中の評価点の3次元座
標と停止中の評価点の3次元座標から評価点の移動量を
算出し、この移動量によって設備の健全性を評価するこ
とを特徴とする設備健全性評価方法。
1. An image data relating to a shape of a running or stopped facility is acquired, a coordinate reference point is set on the facility, three-dimensional coordinates of the coordinate reference point are calculated, and the image data and the reference are calculated. Calculating the three-dimensional coordinates of the evaluation points on the equipment from the three-dimensional coordinates of the coordinate points, calculating the amount of movement of the evaluation points from the three-dimensional coordinates of the evaluation points during operation and the three-dimensional coordinates of the evaluation points at rest, An equipment soundness evaluation method characterized by evaluating the soundness of equipment based on the movement amount.
【請求項2】 評価点の移動量から設備に発生する応力
を算出し、この発生応力値と許容応力値を比較して設備
の健全性を評価することを特徴とする請求項1記載の設
備健全性評価方法。
2. The equipment according to claim 1, wherein a stress generated in the equipment is calculated from a movement amount of the evaluation point, and the generated stress value is compared with an allowable stress value to evaluate the soundness of the equipment. Soundness evaluation method.
【請求項3】 応力の判定に3次元CADデータを用
い、許容応力値を超えた部位の色を変化させて表示する
ようにしたことを特徴とする請求項2記載の設備健全性
評価方法。
3. The equipment soundness evaluation method according to claim 2, wherein three-dimensional CAD data is used to determine the stress, and a color of a portion exceeding the allowable stress value is changed and displayed.
【請求項4】 運転中及び停止中の設備上の点の3次元
座標を、画像データに代えてレーザー光線によって取得
することを特徴とする請求項1記載の設備健全性評価方
法。
4. The equipment soundness evaluation method according to claim 1, wherein the three-dimensional coordinates of the points on the equipment that are in operation or stopped are acquired by using a laser beam instead of the image data.
【請求項5】 設備が所定室の内外にわたる場合、所定
室の開口部に、所定室内3次元座標と所定室外3次元座
標とを関連付ける3次元座標連結点を設けることを特徴
とする請求項1記載の設備健全性評価方法。
5. When a facility extends in and out of a predetermined room, a three-dimensional coordinate connection point for associating three-dimensional coordinates of the predetermined room with three-dimensional coordinates of the predetermined outdoor is provided at an opening of the predetermined room. Equipment soundness evaluation method described.
【請求項6】 所定室内外にわたる設備の位置合わせ
に、請求項5記載の設備健全性評価方法にて得られる設
備の3次元座標を使用することを特徴とする設備補修工
法。
6. A facility repair method, wherein three-dimensional coordinates of a facility obtained by the facility soundness evaluation method according to claim 5 are used for positioning of the facility over a predetermined room.
【請求項7】 運転中及び停止中の設備の形状に関する
画像データと前記設備上に設定された座標基準点の3次
元座標とを入力される入力部と、前記画像データと前記
基準座標点3次元座標から前記設備上の評価点の3次元
座標を算出し設備運転中の評価点の3次元座標と設備停
止中の評価点の3次元座標から評価点の移動量を算出し
この移動量によって設備の健全性を判定する演算・判定
部と、判定の結果を表示する表示部と、前記基準座標点
の3次元座標と評価点の3次元座標を保存する保存部と
を備えたことを特徴とする設備健全性評価装置。
7. An input unit for inputting image data relating to the shape of the equipment during operation and stop and three-dimensional coordinates of a coordinate reference point set on the equipment, and the image data and the reference coordinate point 3. The three-dimensional coordinates of the evaluation points on the equipment are calculated from the three-dimensional coordinates, and the movement amount of the evaluation points is calculated from the three-dimensional coordinates of the evaluation points during operation of the equipment and the three-dimensional coordinates of the evaluation points while the equipment is stopped. A calculation / determination unit for determining the soundness of the equipment; a display unit for displaying a result of the determination; and a storage unit for storing the three-dimensional coordinates of the reference coordinate points and the three-dimensional coordinates of the evaluation points. Equipment integrity evaluation device.
【請求項8】 演算・判定部は、評価点の移動量から設
備に発生する応力を算出し、この発生応力値と許容応力
値を比較して設備の健全性を判定することを特徴とする
請求項7記載の設備健全性評価装置。
8. The calculation / determination unit calculates stress generated in the equipment from the movement amount of the evaluation point, and compares the generated stress value with an allowable stress value to determine the soundness of the equipment. The equipment health evaluation device according to claim 7.
【請求項9】 演算・判定部は評価点の3次元座標から
3次元CADデータを作成し、表示部は許容応力値を超
えた部位の色を変化させて表示することを特徴とする請
求項8記載の設備健全性評価装置。
9. The operation / judgment unit creates three-dimensional CAD data from the three-dimensional coordinates of the evaluation points, and the display unit changes and displays the color of a portion exceeding the allowable stress value. 8. The equipment soundness evaluation device according to 8.
JP21553099A 1999-07-29 1999-07-29 Equipment soundness evaluation method and equipment, and equipment repair method Expired - Fee Related JP3837259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21553099A JP3837259B2 (en) 1999-07-29 1999-07-29 Equipment soundness evaluation method and equipment, and equipment repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21553099A JP3837259B2 (en) 1999-07-29 1999-07-29 Equipment soundness evaluation method and equipment, and equipment repair method

Publications (2)

Publication Number Publication Date
JP2001041717A true JP2001041717A (en) 2001-02-16
JP3837259B2 JP3837259B2 (en) 2006-10-25

Family

ID=16673963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21553099A Expired - Fee Related JP3837259B2 (en) 1999-07-29 1999-07-29 Equipment soundness evaluation method and equipment, and equipment repair method

Country Status (1)

Country Link
JP (1) JP3837259B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096377A (en) * 2006-10-16 2008-04-24 Yamaguchi Univ Method of measuring deformation characteristic, and instrument therefor
KR101244404B1 (en) * 2011-03-17 2013-03-18 한국전력기술 주식회사 Cad data converting apparatus, 3d cad modeling system using the same, and design method of 3d pipe using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110539162B (en) * 2019-09-06 2020-09-18 首都航天机械有限公司 Digital sampling manufacturing method for conduit based on actual assembly space on arrow

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096377A (en) * 2006-10-16 2008-04-24 Yamaguchi Univ Method of measuring deformation characteristic, and instrument therefor
KR101244404B1 (en) * 2011-03-17 2013-03-18 한국전력기술 주식회사 Cad data converting apparatus, 3d cad modeling system using the same, and design method of 3d pipe using the same

Also Published As

Publication number Publication date
JP3837259B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
RU2643619C2 (en) Methods and systems for workpiece monitoring
JP5409771B2 (en) Method and computer program for improving object dimension acquisition
US5337149A (en) Computerized three dimensional data acquisition apparatus and method
US9488589B2 (en) Mapping damaged regions on objects
US8520930B2 (en) Method and computer program for improving the dimensional acquisition of an object
US8249832B2 (en) Correlation of inspection information and computer-aided design data for structural assessment
US20080046221A1 (en) Method and system for automatically performing a study of a multidimensional space
CN105026887A (en) System and method for positioning a tool in a work space
JP2011158371A (en) Three-dimensional position measuring and marking system, and method of using the same
KR101857601B1 (en) Field Standard Calibration System and Methods For Non Contact Type Water Level Gauges Based On IoT
US5321766A (en) Method and apparatus for system documentation
JPH09311021A (en) Method for measuring three-dimensional shape using light wave range finder
Degani et al. An automated system for projection of interior construction layouts
JP2019185253A (en) Embedded object recognition method
JP2021039013A (en) Wall crack measuring machine and measuring method
JP3837259B2 (en) Equipment soundness evaluation method and equipment, and equipment repair method
JP2020172784A (en) Mountain tunnel concrete thickness measuring method and measuring device
KR100809533B1 (en) Global coordinate creation method for precision measurement of precision measurement for space
KR101721682B1 (en) Apparatus and method for checking the safety inspection of a building in real-time
KR101644512B1 (en) Apparatus and method for modelling 3d shape
JP2005331383A (en) Method and device for evaluating three-dimensional coordinate position
JP2002344963A (en) Photographing information attaching device
Mill et al. Assessment of along-normal uncertainties for application to terrestrial laser scanning surveys of engineering structures
KR102328956B1 (en) System and method to visualize Press forming structure thickness distribution
KR102478341B1 (en) Underground burial management system that can build a three-dimensional underground space map

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees