JP2011158371A - Three-dimensional position measuring and marking system, and method of using the same - Google Patents

Three-dimensional position measuring and marking system, and method of using the same Download PDF

Info

Publication number
JP2011158371A
JP2011158371A JP2010021016A JP2010021016A JP2011158371A JP 2011158371 A JP2011158371 A JP 2011158371A JP 2010021016 A JP2010021016 A JP 2010021016A JP 2010021016 A JP2010021016 A JP 2010021016A JP 2011158371 A JP2011158371 A JP 2011158371A
Authority
JP
Japan
Prior art keywords
laser
measuring
dimensional
measurement
marking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010021016A
Other languages
Japanese (ja)
Other versions
JP5538929B2 (en
Inventor
Shintaro Sakamoto
晋太郎 酒本
Yoki Kishimoto
洋喜 岸本
Yukinobu Tanaka
幸悦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Corp
Original Assignee
Shinryo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Corp filed Critical Shinryo Corp
Priority to JP2010021016A priority Critical patent/JP5538929B2/en
Publication of JP2011158371A publication Critical patent/JP2011158371A/en
Application granted granted Critical
Publication of JP5538929B2 publication Critical patent/JP5538929B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional position measuring and marking system capable of measurement in a narrow part. <P>SOLUTION: This three-dimensional position measuring and marking system includes: a three-dimensional measuring machine capable of measuring a three-dimensional coordinate of a collimated point by irradiation with laser, and transmitting/receiving data; a measuring/marking device capable of receiving the laser, and irradiating with the laser; and a host computer capable of receiving measurement data from the three-dimensional measuring machine and the measuring/marking device, calculating the coordinate of an indication point, and transmitting/receiving the data. The measuring/marking device has a sensor housing rotatable around a vertical axis, and a laser range finder supported by a two degree-of-freedom rotating mechanism. An incident angle sensor, an inclination sensor and a prism are loaded on the sensor housing, and the incident angle sensor is irradiated with the laser with which the prism is irradiated. Measurement in a short time becomes possible, and an influence of camera shake is reduced. Even in the case of a floor surface or a wall surface on the back of an obstacle, measurement is performed by turning around from the side of the obstacle, and marking is also enabled. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、土木・建設などの各種工事現場等における位置計測、及び墨出しといわれる位置決め作業を実施するためのシステムに関し、特にレーザー照射機能を有し、望遠鏡等による視準方向を自動制御可能な三次元計測機(トータルステーションとして市販されているもの)を用いることで、測定精度の向上と作業の効率化を図るシステムの改良に関する。   TECHNICAL FIELD The present invention relates to a system for performing position measurement at various construction sites such as civil engineering and construction, and positioning work called inking, and in particular, has a laser irradiation function and can automatically control a collimation direction by a telescope or the like. The present invention relates to improvement of a system for improving measurement accuracy and improving work efficiency by using a simple three-dimensional measuring machine (commercially available as a total station).

従来の三次元計測システムでは、例えば位置計測用のターゲットを持つ作業者と、遠隔地にいて三次元計測機の望遠鏡等で視準する測定者との2人の作業者を必要とし、ターゲットの位置が目標位置に合致するまで計測を繰り返す必要があり、ターゲットの移動・据付け等に多くの時間を必要とし、作業量が増加していた。三次元計測機はレーザーが直接届く位置でないと計測できないから、陰になる部分が多い機械室やパイプシャフトなど狭隘部での計測は困難であった。   In a conventional 3D measurement system, for example, two workers, a worker who has a target for position measurement and a measurer who is in a remote place and collimated with a telescope of a 3D measuring machine, are required. It is necessary to repeat the measurement until the position matches the target position, and it takes a lot of time to move and install the target, which increases the amount of work. Since the 3D measuring machine can only be measured at a position where the laser can reach directly, it is difficult to measure in narrow spaces such as machine rooms and pipe shafts where there are many shadows.

他の手法として、2つのプリズムを包含する指示棒を用いてそれらの座標から棒の先端座標を算出する方法がある。これも、計測に時間を要し、手ぶれにより精度が低下する難点がある。精度を向上させるために、プリズム間距離を広げると、指示棒が長くなって操作が面倒になる。また、一人で作業するにはプリズムを交互に認識しなければならないが、手ぶれが生じて計測が困難になるなどの欠点がある。   As another method, there is a method of calculating the tip coordinates of the bar from the coordinates using an indicator bar including two prisms. This also takes time for measurement, and there is a problem that accuracy decreases due to camera shake. If the distance between prisms is increased in order to improve accuracy, the indicator rod becomes longer and the operation becomes troublesome. In addition, in order to work alone, the prisms must be recognized alternately, but there are drawbacks such as camera shake that makes measurement difficult.

特開平7−134029「位置測量方法」では、目標位置となる追尾ターゲット上にレーザー発振器を搭載し、測定点上の自動追尾型位置センサーが追尾ターゲットを自動探索して位置データをワイヤレス送信し、さらにレーザー発振器から鉛直下方にマーキング用のレーザー光を照射する。この方法では、ターゲット位置のフィードバックによる微調整が必要となる。In JP-A-7-134029 “position surveying method”, a laser oscillator is mounted on a tracking target to be a target position, an automatic tracking type position sensor on a measurement point automatically searches for a tracking target, and wirelessly transmits position data. Further, a laser beam for marking is irradiated vertically downward from the laser oscillator. This method requires fine adjustment by feedback of the target position.

特開2007−51910「レーザー光を用いる三次元座標計測または墨出し方法および位置決め方法」では、光路可視化モジュール内で2方向から照射したレーザー光の光路の交点を基準点とし、基準点から鉛直下方の位置を三次元的に特定して座標位置または墨出し位置としている。In Japanese Patent Laid-Open No. 2007-51910 “Three-dimensional coordinate measurement or marking method and positioning method using laser light”, the intersection of the optical paths of laser light irradiated from two directions in the optical path visualization module is used as a reference point, and vertically downward from the reference point. The three-dimensional position is specified as the coordinate position or the inking position.

特開2007−118165「墨位置記録装置」では、三次元計測機により提示されたマークポイントの位置に対してマーキングロボットによりマーキングを行う。マーキングロボットのスタンプ先端からレーザー光線が照射され、スタンプポイントをマークポイントに一致させてマーキングを行う。In Japanese Patent Laid-Open No. 2007-118165 “black position recording device”, marking robots perform marking on the position of a mark point presented by a three-dimensional measuring machine. A laser beam is irradiated from the stamp tip of the marking robot, and marking is performed by matching the stamp point with the mark point.

特開2005−257656「PC(CAD)操作レーザー墨出し器」では、2台以上の墨出し器から出されるラインレーザーの交点で墨出し位置を示すようになっている。In Japanese Patent Laid-Open No. 2005-257656 “PC (CAD) operation laser marking device”, the marking position is indicated by the intersection of line laser beams emitted from two or more marking devices.

前述したように、従来の三次元計測機での位置計測は、三次元計測機により直接視準でき、レーザーが直接届く地点でなければ計測できないという弱点があった。また、位置決め作業では、床や壁、天井など位置決めをする対象物の建築誤差によって、レーザー照射点と目標点にずれを生じる可能性があった。   As described above, the position measurement by the conventional three-dimensional measuring machine has a weak point that it can be directly collimated by the three-dimensional measuring machine and cannot be measured unless the laser reaches directly. Further, in the positioning operation, there is a possibility that a laser irradiation point and a target point may be shifted due to a construction error of an object to be positioned such as a floor, a wall, or a ceiling.

本発明の第1の目的は、狭隘部での計測を可能にする三次元位置計測及び墨出しシステムを提供することにある。
本発明の第2の目的は、短時間での計測を可能にしかつ手ぶれの影響を低減することが可能な三次元位置計測及び墨出しシステムを提供することにある。
本発明の第3の目的は、障害物の背後にある床面や壁面でも位置の計測と墨出しが可能な三次元位置計測及び墨出しシステムを提供することにある。
本発明の第4の目的は、かかる三次元位置計測及び墨出しシステムの使用方法としての三次元位置計測方法を提供することにある。
本発明の第5の目的は、かかる三次元位置計測及び墨出しシステムの使用方法としての三次元位置墨出し方法を提供することにある。
A first object of the present invention is to provide a three-dimensional position measurement and ink marking system that enables measurement in a narrow space.
A second object of the present invention is to provide a three-dimensional position measurement and ink marking system that enables measurement in a short time and can reduce the effects of camera shake.
A third object of the present invention is to provide a three-dimensional position measurement and inking system capable of measuring the position and inking on the floor or wall behind the obstacle.
A fourth object of the present invention is to provide a three-dimensional position measurement method as a method of using such a three-dimensional position measurement and marking system.
A fifth object of the present invention is to provide a three-dimensional position marking method as a method of using such a three-dimensional position measurement and marking system.

前述した課題を解決するため、本発明はその第1の態様において、各種工事において三次元の目標点を計測するためのシステムであって、レーザーを照射し視準した点の三次元座標を計測してデータを送受信することができる三次元計測機と、レーザーを受光しかつレーザーを照射することが可能な計測・墨出し装置と、前記三次元計測機及び前記計測・墨出し装置からの計測データを受信して指示点の座標を計算しデータを送受信することができるホストコンピュータとを備える。
さらに、前記計測・墨出し装置が鉛直軸線周りに回転可能なセンサーハウジングと2自由度回転機構に支持されたレーザー距離計とを有し、前記センサーハウジングに、前記三次元計測機から照射されるレーザーの入射角度を計測する入射角センサーと、レーザー受光軸まわりの回転角を計測する傾斜センサーと、前記三次元計測機からレーザーを照射されるプリズムとが搭載され、前記プリズムに照射されたレーザーは前記入射角センサーに照射されるように配置されていることを特徴とする三次元位置計測及び墨出しシステムを提供する。
In order to solve the above-described problems, in the first aspect, the present invention is a system for measuring a three-dimensional target point in various constructions, and measures the three-dimensional coordinates of the point collimated by laser irradiation. A three-dimensional measuring machine capable of transmitting and receiving data, a measuring and marking device capable of receiving a laser and irradiating the laser, and a measurement from the three-dimensional measuring machine and the measuring and marking device A host computer capable of receiving the data, calculating the coordinates of the pointing point, and transmitting and receiving the data.
Further, the measuring and marking device has a sensor housing that can rotate about a vertical axis and a laser rangefinder supported by a two-degree-of-freedom rotating mechanism, and the sensor housing is irradiated from the three-dimensional measuring device. An incident angle sensor that measures the incident angle of the laser, an inclination sensor that measures the rotation angle around the laser light receiving axis, and a prism that irradiates the laser from the three-dimensional measuring machine, and the laser that is irradiated to the prism Provides a three-dimensional position measurement and marking system which is arranged to irradiate the incident angle sensor.

本発明はその第2の態様において、前記三次元位置計測及び墨出しシステムの使用方法としての三次元位置計測方法を提供する。この使用方法は、前記計測・墨出し装置の前記レーザー距離計が前記2自由度回転機構を用いてレーザーを計測したい点に照射し、前記三次元計測機が前記プリズムを探索して当該プリズムへとレーザーを照射し、前記複数のセンサーからのデータに基づいて前記ホストコンピュータが計測位置を算出することを特徴としている。   According to a second aspect of the present invention, there is provided a three-dimensional position measurement method as a method of using the three-dimensional position measurement and marking system. In this method of use, the laser distance meter of the measuring and marking device irradiates a point where the laser is to be measured using the two-degree-of-freedom rotation mechanism, and the three-dimensional measuring device searches for the prism to the prism. And a laser, and the host computer calculates a measurement position based on data from the plurality of sensors.

本発明はその第3の態様において、前記三次元位置計測及び墨出しシステムの使用方法としての三次元位置墨出し方法を提供する。この使用方法は、前記三次元計測機から墨出し位置にレーザーを照射し、前記墨出し位置付近に前記計測・墨出し装置を設置し、前記三次元計測機が前記プリズムを探索して当該プリズムへとレーザーを照射し、前記複数のセンサーからのデータに基づいて前記ホストコンピュータが墨出し位置を算出し、前記計測・墨出し装置がコンピュータが算出した墨出し位置へとレーザーを照射することを特徴としている。   According to a third aspect of the present invention, there is provided a three-dimensional position marking method as a method of using the three-dimensional position measurement and marking system. In this method of use, a laser is irradiated from the three-dimensional measuring machine to the inking position, the measuring / inking device is installed in the vicinity of the inking position, and the three-dimensional measuring machine searches for the prism to detect the prism. The host computer calculates the inking position based on the data from the plurality of sensors, and the measuring and inking device irradiates the inking position calculated by the computer with the laser. It is a feature.

すなわち、本発明では、レーザー照射機能を有し視準方向を自動制御可能な三次元計測機(トータルステーション)を用いることによって、建設現場での計測及び墨出しが一人でできるようになる。つまり、計測は望遠鏡で視準した位置の三次元座標を自動で計測することができ、墨出しは指定した位置にレーザーを自動で照射することによって指示することができる。従来、トータルステーション単体では、直接視準できない位置に対しては計測・墨出しができないという根本的な課題を、本発明では以下のようにして解決した。   That is, in the present invention, by using a three-dimensional measuring machine (total station) that has a laser irradiation function and can automatically control the collimation direction, measurement and marking at the construction site can be performed alone. In other words, the measurement can automatically measure the three-dimensional coordinates of the position collimated by the telescope, and the inking can be instructed by automatically irradiating the laser at the designated position. Conventionally, in the present invention, the fundamental problem that measurement and inking cannot be performed at a position where the total station alone cannot be collimated is solved as follows.

本発明による計測及び墨出しシステムは、トータルステーションから照射されるレーザーを受光してその入射角と方位角を計測するセンサー(入射角センサー)と、重力方向からの傾斜角を計測するセンサー(傾斜センサー)を有し、さらにレーザー距離計とその向きを設定するための2自由度回転機構を有する。トータルステーションから照射されるレーザーの入射角と方位角および装置の傾斜角と、トータルステーションにより計測される装置の位置座標によって、装置の位置と姿勢を計測することができる。   The measurement and marking system according to the present invention includes a sensor (incident angle sensor) that receives a laser beam emitted from a total station and measures its incident angle and azimuth angle, and a sensor (tilt sensor) that measures an inclination angle from the direction of gravity. And a two-degree-of-freedom rotation mechanism for setting the laser distance meter and its orientation. The position and orientation of the apparatus can be measured from the incident angle and azimuth angle of the laser emitted from the total station, the inclination angle of the apparatus, and the position coordinates of the apparatus measured by the total station.

計測時は、手動または自動により、2自由度回転機構を調節してレーザーを計測したい位置に照射し、レーザー距離計による測距値と2自由度回転機構の回転角度によって、レーザー照射点の三次元座標を計測することができる。さらに墨出し時は、手動または自動により2自由度回転機構の回転角度を目標とする墨出し位置から算出した角度に制御することで、目的とする位置にレーザーを照射することができる。本発明では、この計測及び墨出しシステムにより、トータルステーションからでは直接視準できない位置の計測と墨出しを実現することができる。   When measuring, manually or automatically adjust the two-degree-of-freedom rotation mechanism to irradiate the laser at the position where you want to measure the laser. The original coordinates can be measured. Furthermore, at the time of inking, the target position can be irradiated with laser by controlling the rotation angle of the two-degree-of-freedom rotation mechanism to an angle calculated from the target inking position manually or automatically. In the present invention, this measurement and marking system can realize measurement and marking that cannot be directly collimated from the total station.

本発明による三次元位置計測及び位置決めシステム及びその使用方法によれば、
(1)三次元計測機の移動を必要としないので狭隘部でも計測が可能になる
(2)1点計測のため短時間で計測ができ、手ぶれの影響を低減できる
(3)レーザー距離計による指示のため、計測範囲を固定せず、たわみ等による精度低下も生じない
(4)レーザーを斜めに照射できるため、障害物の横から回り込んで計測をすることができ、障害物の高さに制限がない
(5)レーザーを斜めに照射できるため、障害物の横から回り込んで位置指示と墨出しをすることができ、障害物の高さに制限がない
(6)墨出し装置の設置場所に制限がない
(7)レーザーを斜めに照射できるため、障害物の背後にある床面の点を指示することができ、壁面への指示も可能となる
(8)三次元計測機は移動せず、小型の墨出し装置を適当な場所に設置することで、墨出しが可能である
(9)機械的な墨出しのため、一定の精度を確保することができる
(10)装置を置くだけでよく、作業が容易である、等の利点が得られる。
According to the three-dimensional position measurement and positioning system and the method of using the same according to the present invention,
(1) Since it does not require the movement of a three-dimensional measuring machine, it is possible to measure even in narrow spaces. (2) It can be measured in a short time because of one-point measurement, and the effects of camera shake can be reduced. Because it is instructed, the measurement range is not fixed and the accuracy is not lowered due to deflection, etc. (4) Since the laser can be irradiated obliquely, it is possible to measure from the side of the obstacle, and the height of the obstacle (5) Since the laser can be irradiated obliquely, it is possible to go around from the side of the obstacle to indicate the position and mark it, and there is no limit on the height of the obstacle (6) There are no restrictions on the installation location. (7) Since the laser can be irradiated obliquely, it is possible to indicate the point on the floor behind the obstacle, and the indication to the wall is also possible. (8) Do not move, install a small ink-depositing device in an appropriate place (9) It is possible to ensure a certain level of accuracy because of mechanical inking (10) It is only necessary to install a device, and there are advantages such as easy work. It is done.

三次元計測機の設置位置の計測方法を示す斜視図。The perspective view which shows the measuring method of the installation position of a three-dimensional measuring machine. 本発明による三次元位置計測及び墨出しシステムの概略図。1 is a schematic diagram of a three-dimensional position measurement and marking system according to the present invention. 計測・墨出し装置と2自由度回転機構の斜視図。The perspective view of a measurement and marking device and a two-degree-of-freedom rotation mechanism. 入射角センサーと傾斜センサーの斜視図。The perspective view of an incident angle sensor and an inclination sensor. 入射角センサーの断面図。Sectional drawing of an incident angle sensor. 入射角センサーの角度計測原理図。Angle measurement principle diagram of incident angle sensor. 座標系の設定を示す斜視図。The perspective view which shows the setting of a coordinate system. 傾斜センサーの傾斜角を示す斜視図。The perspective view which shows the inclination | tilt angle of an inclination sensor. 角度α,β,γによる変換を表す斜視図。The perspective view showing conversion by angle (alpha), (beta), and (gamma). 計測・墨出し装置での座標を示す斜視図。The perspective view which shows the coordinate in a measurement and marking device. 本発明のシステムによる計測手順を表す流れ図。The flowchart showing the measurement procedure by the system of this invention. レーザー照射位置の修正を示す正面図。The front view which shows correction of a laser irradiation position. 本発明のシステムによる墨出し手順を表す流れ図。The flowchart showing the summing-out procedure by the system of this invention.

図1は本発明のシステムにより三次元位置計測及び墨出しを行うための前段階を表しており、三次元計測機10を適当な位置に設置し、レーザー20を基準認識用ターゲット16に向けて照射し、コントローラを内蔵するホストコンピュータ18を用いてその設置位置を計測するプロセスの外観図である。   FIG. 1 shows a pre-stage for performing three-dimensional position measurement and marking with the system of the present invention. A three-dimensional measuring machine 10 is installed at an appropriate position, and a laser 20 is directed toward a reference recognition target 16. It is an external view of the process which measures the installation position using the host computer 18 which irradiates and incorporates a controller.

三次元計測機10は一般にトータルステーションと呼ばれて市販されている。望遠鏡で視準した点の三次元座標を、光波距離計及び水平・垂直方向の角度計測により計測することができる。また、視準線に一致したレーザー光を照射し、水平・垂直角を自動制御することで、任意の方向にレーザーを照射することができる。さらにプリズムを自動で探索・視準する機能を有するものが市販されており、本発明のシステムではその自動探索機能を有する三次元計測機を使用する。   The three-dimensional measuring instrument 10 is generally called a total station and is commercially available. The three-dimensional coordinates of the point collimated by the telescope can be measured by a light wave rangefinder and horizontal / vertical angle measurement. In addition, it is possible to irradiate a laser in an arbitrary direction by irradiating a laser beam that coincides with the line of sight and automatically controlling the horizontal and vertical angles. Further, those having a function of automatically searching and collimating the prism are commercially available, and the system of the present invention uses a three-dimensional measuring machine having the automatic search function.

ホストコンピュータ18はコントローラを内蔵し、オペレータとのインターフェース、三次元計測機の無線による制御、計測・墨出し装置(図2)との無線通信(操作コマンドおよび計測データの送受信)、および計測データの収集とそれらを用いた演算処理を行う。   The host computer 18 has a built-in controller, interface with the operator, wireless control of the CMM, wireless communication with the measurement and marking device (FIG. 2) (transmission and reception of operation commands and measurement data), and measurement data Collect and perform arithmetic processing using them.

基準認識用ターゲット16は、現場に設置した絶対座標系における三次元計測機の設置位置を計測するために、現場の基準点や基準線に設置するターゲットである。本発明のシステムでは、前段階として整準機能を有する自立型プリズムを使用する。設置位置の計測方法は従来から知られている技術であり、本発明では計測・墨出し時に三次元計測機10を移動させる必要がないので、あらかじめ正確に測定された位置に正しく設置することができれば、図1の工程は省略することができる。   The reference recognition target 16 is a target installed at a reference point or a reference line on the site in order to measure the installation position of the three-dimensional measuring machine in the absolute coordinate system installed on the site. In the system of the present invention, a self-supporting prism having a leveling function is used as a previous step. The installation position measuring method is a conventionally known technique, and in the present invention, it is not necessary to move the three-dimensional measuring instrument 10 at the time of measurement / inking, and therefore it is possible to correctly install at a position that has been accurately measured in advance. If possible, the process of FIG. 1 can be omitted.

本発明による計測及び墨出しシステムの全体図を図2に示す。図2Aは三次元計測機10と計測・墨出し装置12を用いて位置計測を行うプロセスの外観図、図2Bは三次元計測機10と計測・墨出し装置12を用いて所定の位置に墨出しを行うプロセスの好適な態様を表している。各プロセスの詳細については後述する。   An overall view of the measurement and marking system according to the present invention is shown in FIG. FIG. 2A is an external view of a process for measuring the position using the three-dimensional measuring device 10 and the measuring / inking device 12, and FIG. 2B is a black ink at a predetermined position using the three-dimensional measuring device 10 and the measuring / inking device 12. Fig. 3 represents a preferred embodiment of the process for performing the dispensing. Details of each process will be described later.

図3は、本発明のシステムにおける計測・墨出し装置の構成を表しており、図3Aは計測・墨出し装置12の全体図、図3Bはその内部の2自由度回転機構22の回転の向きを表している。計測・墨出し装置12は、鉛直軸線周りに回転可能なセンサーハウジング21と、2自由度回転機構22に支持されたレーザー距離計14とを有し、センサーハウジング21に、前記三次元計測機からのレーザーを受光する入射角センサー30と、レーザー受光軸まわりの回転角を計測する傾斜センサー(内蔵)25と、三次元計測機10からの位置を計測されるプリズム34とが搭載され、三脚24によって自立可能に支持されている。図3Bに示すように、2自由度回転機構22は、レーザー距離計14のレーザー照射方向を変化させるためのもので、鉛直軸線37まわりに約360°回転可能(回転角度ω1 )で、レーザー距離計14の軸線38まわりに約90°回転可能(回転角度ω2 )となっている。 3 shows the configuration of the measurement / inking device in the system of the present invention, FIG. 3A is an overall view of the measuring / inking device 12, and FIG. 3B is the direction of rotation of the two-degree-of-freedom rotation mechanism 22 inside. Represents. The measuring and marking device 12 includes a sensor housing 21 that can rotate around a vertical axis, and a laser distance meter 14 supported by a two-degree-of-freedom rotation mechanism 22. Are mounted with an incident angle sensor 30 for receiving the laser beam, an inclination sensor (built-in) 25 for measuring a rotation angle around the laser light receiving axis, and a prism 34 for measuring the position from the three-dimensional measuring instrument 10. Is supported in a self-supporting manner. As shown in FIG. 3B, the two-degree-of-freedom rotation mechanism 22 is for changing the laser irradiation direction of the laser rangefinder 14 and can rotate about 360 ° around the vertical axis 37 (rotation angle ω 1 ). The distance meter 14 can be rotated about 90 ° around the axis 38 (rotation angle ω 2 ).

図4は、入射角センサー30を円盤状に形成し、傾斜センサー25を平板状に形成した模式図である。入射角センサー30は、三次元計測機から照射されるレーザーが入射する角度を計測するものであり、レーザーの受光点を原点とし受光面に対して垂直にZp軸を定義したローカル座標系Σpにおいて、レーザーとZp軸のなす角β(入射角)およびレーザーのXpYp平面への投影線がXp軸となす角α(方位角)を求めることができるセンサーである。   FIG. 4 is a schematic diagram in which the incident angle sensor 30 is formed in a disc shape and the inclination sensor 25 is formed in a flat plate shape. The incident angle sensor 30 measures the angle at which the laser beam irradiated from the three-dimensional measuring machine is incident. In the local coordinate system Σp in which the Zp axis is defined perpendicular to the light receiving surface with the laser light receiving point as the origin. In this sensor, the angle β (incident angle) formed by the laser and the Zp axis and the angle α (azimuth angle) formed by the projected line of the laser on the XpYp plane and the Xp axis can be obtained.

図5に入射角センサ30の断面図を、図6に入射角センサ30による角度計測原理図を示す。図5のように、入射角センサ30はピンホール36と2次元位置検出素子(例えばPSD)32から構成される。図6のようにピンホール36にレーザー20が照射されると、ピンホール36を通過したレーザー20がスポットSとして2次元位置検出デバイス受光面に照射され、2次元位置検出デバイスの出力としてSの座標(xp,p )が計測される。αはレーザーの入射方向を示す角度であり、以下の式で求められる。

Figure 2011158371
FIG. 5 shows a cross-sectional view of the incident angle sensor 30, and FIG. As shown in FIG. 5, the incident angle sensor 30 includes a pinhole 36 and a two-dimensional position detection element (for example, PSD) 32. When the laser 20 is irradiated to the pinhole 36 as shown in FIG. 6, the laser 20 that has passed through the pinhole 36 is irradiated as a spot S to the light receiving surface of the two-dimensional position detection device, and the output of S as the output of the two-dimensional position detection device Coordinates (x p, y p ) are measured. α is an angle indicating the incident direction of the laser, and is obtained by the following equation.
Figure 2011158371

図6において、βは入射角センサ30の法線方向に対するレーザー20の入射角を示す。   In FIG. 6, β represents the incident angle of the laser 20 with respect to the normal direction of the incident angle sensor 30.

図3及び図4に示すように、傾斜センサー25は、入射角センサー30のZp軸まわりの回転角ψを計測するもので、傾斜センサー25の回転軸がZp軸に平行になるように配置されている。これらのセンサーを収めたセンサーハウジング21は、装置の中心軸周りに回転可能であり、さらに入射角センサー30のレーザー受光点と同心円上にプリズム34が設置されていて、センサーハウジング21を回転することにより、プリズム34に照射されたレーザーを入射角センサー30に照射することができるようになっている。これにより、三次元計測機の自動プリズム探索機能を利用して計測・墨出し装置12を自動探索することができる。さらに、レーザー距離計を搭載した2自由度の回転機構22(手動式、自動式どちらも可)により、目的とする位置にレーザーを照射することができる。   As shown in FIGS. 3 and 4, the inclination sensor 25 measures the rotation angle ψ around the Zp axis of the incident angle sensor 30 and is arranged so that the rotation axis of the inclination sensor 25 is parallel to the Zp axis. ing. The sensor housing 21 containing these sensors can be rotated around the central axis of the apparatus, and a prism 34 is installed concentrically with the laser receiving point of the incident angle sensor 30 to rotate the sensor housing 21. Thus, the laser applied to the prism 34 can be applied to the incident angle sensor 30. As a result, the measuring and marking device 12 can be automatically searched using the automatic prism search function of the three-dimensional measuring machine. Furthermore, a laser can be irradiated to a target position by a two-degree-of-freedom rotation mechanism 22 (both manual and automatic) equipped with a laser distance meter.

なお、図3に示す形態は主に水平面より下側の点に対して計測及び墨出しをする場合に有利であるが、三脚を装置の上下に反転できるような構造にすることによって、水平面より上側の点の計測及び墨出しに有利な形態に変形させることも可能である。   Note that the form shown in FIG. 3 is advantageous mainly when measuring and marking a point below the horizontal plane, but by using a structure that allows the tripod to be flipped up and down from the horizontal plane, It is also possible to change the shape into an advantageous shape for the measurement of the upper point and the marking.

ここで、本発明による計測及び墨出しシステムの理論について説明する。
(1)理論式の導出
はじめに、計測・墨出し装置12のレーザー距離計14によりレーザーが照射された位置の三次元座標を表す計算式を導出する。図7に示すように、三次元計測機10の設置位置を原点とする座標系をΣ1 、計測・墨出し装置12のレーザー受光点P0 を原点とする座標系をΣ2 とする。計測・墨出し装置の姿勢を表すパラメータは、レーザーの入射方向α、入射角度β及びレーザー軸周りの回転角γである。αとβは入射角センサーにより計測することができる。γは傾斜センサで計測するが、γはα,β及びレーザーの垂直方向の照射角度θに依存するので、傾斜センサーの出力ψとは必ずしも一致しない。そこでまず、ψ,α,β,θを用い、以下に記す方法によってγを導出する。
Here, the theory of the measurement and marking system according to the present invention will be described.
(1) Derivation of theoretical formula First, a calculation formula representing the three-dimensional coordinates of the position irradiated with the laser is derived by the laser distance meter 14 of the measuring and marking device 12. As shown in FIG. 7, Σ 1 is a coordinate system with the installation position of the three-dimensional measuring device 10 as the origin, and Σ 2 is a coordinate system with the laser receiving point P 0 of the measurement / marking device 12 as the origin. Parameters representing the attitude of the measuring / marking device are the incident direction α of the laser, the incident angle β, and the rotation angle γ around the laser axis. α and β can be measured by an incident angle sensor. γ is measured by a tilt sensor, but γ depends on α, β, and the irradiation angle θ in the vertical direction of the laser, and therefore does not necessarily match the output ψ of the tilt sensor. Therefore, first, γ is derived by the following method using ψ, α, β, θ.

図8に示すように、傾斜センサー25の出力Ψは、Σ1 における重力方向のベクトルG0 (→上付き)を入射角センサーの受光面に正投射したベクトルG(→上付き)と、傾斜センサーの計測基準方向(鉛直方向)ベクトルM(→上付き)のなす角に等しいので、次式が成り立つ。

Figure 2011158371
As shown in FIG. 8, the output Ψ of the inclination sensor 25 includes a vector G (→ superscript) obtained by normal projection of the vector G 0 (→ superscript) in the gravity direction at Σ 1 onto the light receiving surface of the incident angle sensor, and the inclination Since it is equal to the angle formed by the measurement reference direction (vertical direction) vector M (→ superscript) of the sensor, the following equation holds.
Figure 2011158371

変換前の傾斜センサー25の計測基準方向はΣ2 のx軸と一致するので、ベクトルM(→上付き)はm(→上付き)=[1,0,0]T を以下に示す手順で変換することで得られる。以下の各式においてCθはCosθ,SθはSinθをそれぞれ表す。
1)Σ2 のz軸周りにγ回転する。

Figure 2011158371
Since the measurement reference direction of the tilt sensor 25 before conversion is consistent with the x-axis of the sigma 2, (superscript →) vector M is in the procedure shown m a (→ superscript) = [1,0,0] T below It is obtained by converting. In the following equations, Cθ represents Cos θ, and Sθ represents Sin θ.
1) rotates γ to sigma 2 of z-axis around.
Figure 2011158371

2)α,βにより変換する
図9に示すように、αとβによる変換はΣ2 におけるベクトルω(→上付き)=[S(α−γ),C(α−γ),0]T の周りにβ回転することと同義であり、以下の式で変換される。

Figure 2011158371
2) Conversion by α and β As shown in FIG. 9, the conversion by α and β is a vector ω (→ superscript) in Σ 2 = [S (α−γ), C (α−γ), 0] T Is synonymous with β rotation around and is converted by the following equation.
Figure 2011158371

3)Σ1 においてY軸周りにθ回転する

Figure 2011158371
3) Rotate θ around Y axis at Σ 1
Figure 2011158371

ベクトルG(→上付き)はΣ1 における重力方向ベクトルG0 (→上付き)=[0,0,−1]T を、入射角センサー受光面に正射影する行列Qで変換することにより得られる。入射角センサ受光面の方向余弦をn(→上付き)=[n1 ,n2 ,n3T とすると、行列Qは次式で表される。

Figure 2011158371
The vector G (→ superscript) is obtained by converting the gravity direction vector G 0 (→ superscript) = [0, 0, −1] T in Σ 1 with a matrix Q that is orthogonally projected onto the light receiving surface of the incident angle sensor. It is done. When the direction cosine of the incident angle sensor light receiving surface is n (→ superscript) = [n 1 , n 2 , n 3 ] T , the matrix Q is expressed by the following equation.
Figure 2011158371

変換前の方向余弦はΣ2 におけるz軸方向と等しくn0 (→上付き)=[0,0,1]T と表され、これを上記と同様にα,β,γ及びθで変換すると次式のようになる。

Figure 2011158371
The direction cosine before conversion is equal to the z-axis direction in Σ 2 and is expressed as n 0 (→ superscript) = [0, 0, 1] T. When this is converted by α, β, γ, and θ as described above, It becomes like the following formula.
Figure 2011158371

これより、ベクトルG(→上付き)は以下のように表される。

Figure 2011158371
Accordingly, the vector G (→ superscript) is expressed as follows.
Figure 2011158371

式5及び式8を式2に代入して得られる式に、α,β,θ及びψを代入することにより、γを求めることができる。   Γ can be obtained by substituting α, β, θ, and ψ into the equation obtained by substituting Equation 5 and Equation 8 into Equation 2.

計測・墨出し装置12のレーザー照射点について、計測・墨出し装置の座標系Σ2 上の点P2 から絶対座標系Σ0 上の点P0 に順次変換する。図10に示すように、Σ2 において計測・墨出し装置のレーザー距離計により計測される長さをk、Z軸から2自由度回転機構までの長さをk0 、原点OからZ軸方向のオフセットをdとし、さらに2自由度回転機構の回転角度をそれぞれω1 、ω2 とする。 Laser irradiation point of measurement and marking apparatus 12 sequentially converts terms P 2 on the coordinate system sigma 2 measurement and marking apparatus to the point P 0 of the absolute on the coordinate system sigma 0. As shown in FIG. 10, the length measured by the laser distance meter of the measuring and marking device at Σ 2 is k, the length from the Z axis to the two-degree-of-freedom rotation mechanism is k 0 , and the origin O to the Z-axis direction Is set to d, and the rotation angles of the two-degree-of-freedom rotation mechanism are set to ω 1 and ω 2 , respectively.

1)ω1 、ω2 により変換する。

Figure 2011158371
1) Conversion is performed using ω 1 and ω 2 .
Figure 2011158371

2)Σ2 のZ軸周りにγ回転する。

Figure 2011158371
2) rotates γ to sigma 2 about the Z axis.
Figure 2011158371

3)α,βにより変換する

Figure 2011158371
3) Convert by α, β
Figure 2011158371

次に、Σ2 から三次元計測機の座標Σ1 へ変換する。三次元計測機による測定結果(φ,θ,L)によって次のように変換される。

Figure 2011158371
Next, Σ 2 is converted to the coordinate Σ 1 of the coordinate measuring machine. Conversion is performed as follows according to the measurement results (φ, θ, L) by the three-dimensional measuring machine.
Figure 2011158371

最後に、現場に設定した絶対座標系Σ0 におけるΣ1 の座標[X0 ,Y0 ,Z0T 及びZ0 軸周りの回転角ρによってP1 をΣ0 上の点P0 に変換する。

Figure 2011158371
ここで、[X0 ,Y0 ,Z0T 及びρは、三次元計測機を現場に設置した際に、図1の基準認識用ターゲットなどを用いて、現場の基準点を参照することにより求められる値である。 Finally, P 1 is converted to a point P 0 on Σ 0 by the coordinates [X 0 , Y 0 , Z 0 ] T of the Σ 1 in the absolute coordinate system Σ 0 set in the field and the rotation angle ρ around the Z 0 axis. To do.
Figure 2011158371
Here, [X 0 , Y 0 , Z 0 ] T and ρ refer to the reference point of the site using the reference recognition target shown in FIG. 1 when the three-dimensional measuring machine is installed on the site. Is a value obtained by

(2)計測方法
計測したい位置に計測・墨出し装置12のレーザーを照射し、三次元計測機によって入射角センサーの受光部にレーザーを照射する。各パラメータ[ω1 ,ω2 ,k,α,β,γ,φ,θ,L]を計測し、[X0 ,Y0 ,Z0T 及びρと共に式13の右辺に代入して計算すると、レーザー照射点の座標[P0X,P0Y,P0ZT を求めることができる。
(2) Measuring method The measurement / marking device 12 is irradiated with the laser beam at the position to be measured, and the light receiving unit of the incident angle sensor is irradiated with the laser with the three-dimensional measuring machine. Each parameter [ω 1 , ω 2 , k, α, β, γ, φ, θ, L] is measured and calculated by substituting it with [X 0 , Y 0 , Z 0 ] T and ρ into the right side of Equation 13. Then, the coordinates [P 0X , P 0Y , P 0Z ] T of the laser irradiation point can be obtained.

計測は図11の流れ図の矢印方向に従って行われる。
ステップ50:開始
ステップ51:計測・墨出し装置のレーザーを計測したい点に照射する
ステップ52:プリズム探索指令を出す
ステップ53:三次元計測機がプリズムを探索しレーザーを照射する
ステップ54:センサーハウジングを回転しレーザーを入射角センサーにあてる
ステップ55:計測指令を出す
ステップ56:各センサーによりパラメータ[ω1 ,ω2 ,k,α,β,γ,φ,θ,L]を計測する
ステップ57:計測・墨出し装置のレーザー照射点の座標を求める
ステップ58:操作画面に表示する
ステップ59:計測結果を記録する
ステップ60:次の計測を続けるか同化判断する
ステップ61:終了
The measurement is performed according to the arrow direction in the flowchart of FIG.
Step 50: Start Step 51: Irradiate the laser beam of the measuring and marking device to the point to be measured Step 52: Issue a prism search command Step 53: The three-dimensional measuring device searches for the prism and irradiates the laser Step 54: Sensor housing Step 55: Issue a measurement command Step 56: Measure parameters [ω 1 , ω 2 , k, α, β, γ, φ, θ, L] with each sensor 57 : Calculate the coordinates of the laser irradiation point of the measuring and marking device Step 58: Display on the operation screen Step 59: Record the measurement result Step 60: Determine whether to continue with the next measurement Step 61: End

計測・墨出し装置12による墨出しの原理と手順は以下のようになる。
三次元計測機10は、システムに入力された目標墨出し位置を三次元計測機の座標系Σ1 上の点に変換し、それを極座標で表すことによって水平角φと高度角θを求め、その方向にレーザーを照射する。このとき、レーザー照射面に対し、レーザーの入射角(照射面の法線との角度)が大きい場合、レーザースポットが延伸し正確な照射位置を得ることが困難となる。また、三次元計測機と目標位置との間に障害物が存在する場合、レーザー照射による直接的な位置指示は不可能である。このような場合に、本発明の計測及び墨出しシステムが有効となる。
The principle and procedure of inking by the measuring / inking device 12 are as follows.
The three-dimensional measuring machine 10 converts the target marking position input to the system into a point on the coordinate system Σ 1 of the three-dimensional measuring machine, and obtains the horizontal angle φ and the altitude angle θ by expressing them in polar coordinates. Irradiate the laser in that direction. At this time, when the incident angle of the laser (angle with the normal of the irradiation surface) is large with respect to the laser irradiation surface, the laser spot is stretched and it is difficult to obtain an accurate irradiation position. Further, when there is an obstacle between the three-dimensional measuring machine and the target position, direct position indication by laser irradiation is impossible. In such a case, the measurement and marking system of the present invention is effective.

まず、図1に示すように三次元計測機10の設置位置を測定し、次に三次元計測機によるレーザー照射位置から目標位置をおおよそ推測し、その付近に障害物がある場合はそれを回避する位置に計測・墨出し装置12を設置する。三次元計測機が計測・墨出し装置のプリズムを自動探索し、レーザーを照射する。   First, as shown in FIG. 1, the installation position of the three-dimensional measuring device 10 is measured, and then the target position is roughly estimated from the laser irradiation position by the three-dimensional measuring device, and if there is an obstacle in the vicinity, it is avoided. The measuring / inking device 12 is installed at the position to be used. A three-dimensional measuring machine automatically searches the prism of the measuring and marking device and irradiates the laser.

計測の場合と同様に、三次元計測機によって入射角センサーの受光部にレーザーをあてて、三次元計測機による計測値及び入射角センサー、傾斜センサーによる計測値[α,β,γ,φ,θ,L]を求め、式13の右辺に代入する。一方、目標とする墨出し座標Pd =[PdX,PdY,PdZT を左辺に代入すると、式13はω1 ,ω2 ,kを未知数とする連立方程式となり、以下のようになる。

Figure 2011158371
ただし、fはω1 ,ω2 及びkを変数とする関数を表す。この連立方程式を解いてω1 ,ω2 を求める。 As in the case of measurement, a laser is applied to the light receiving portion of the incident angle sensor by a three-dimensional measuring instrument, and the measured values by the three-dimensional measuring instrument and the measured values by the incident angle sensor and the tilt sensor [α, β, γ, φ, θ, L] is obtained and substituted into the right side of Equation 13. On the other hand, substituting the target inking coordinates P d = [P dX , P dY , P dZ ] T into the left side, Equation 13 becomes a simultaneous equation with ω 1 , ω 2 , and k as unknowns, as follows: Become.
Figure 2011158371
Here, f represents a function having ω 1 , ω 2 and k as variables. Solve these simultaneous equations to find ω 1 and ω 2 .

次に、2自由度回転機構の回転角度をω1 ,ω2 に設定し、計測・墨出し装置のレーザーを照射すると同時に照射面までの距離k1 を計測する。ω1 ,ω2 及び計測されたk1 を式13の左辺に代入するとレーザー照射点の座標P0 が求められる。ここで、建築施工誤差などにより想定した位置に面が存在しない場合、P0 はPd と異なる。墨出しをする対象物(床、天井、壁など)に応じて調整する方向を決め、墨出し座標の目標値Pd を修正する。 Next, the rotation angle of the two-degree-of-freedom rotation mechanism is set to ω 1 , ω 2 , and the distance k 1 to the irradiation surface is measured simultaneously with the irradiation of the laser of the measuring and marking device. By substituting ω 1 and ω 2 and the measured k 1 into the left side of Equation 13, the coordinates P 0 of the laser irradiation point can be obtained. Here, P 0 is different from P d when there is no surface at the assumed position due to a construction error or the like. Object to the marking (floor, ceiling, wall, etc.) decided direction be adjusted according to, corrects the target value P d of marking coordinates.

例えば、床面への墨出しの場合、図12に示すように、床面の高低差Δhにより、目標墨出し位置Pd に対してずれた位置P0 にレーザーが照射される。床面への墨出しでは、照射点の平面位置(PdX,PdY)が重要であり、高さPdZは床面に成り行きでよいため、PdX,PdYは変更せず、PdZを例えばPeZに変更する。変更された目標墨出し位置Pd ’を再度式14に代入して、ω1 ’,ω2 ’を算出する。2自由度回転機構の回転角度を新たに算出されたω1 ’,ω2 ’に設定し、レーザーを照射して距離k2 を計測する。そして再度式13の右辺に代入し照射点座標P0 ’を求める。これを繰り返すことによって、最終的に目標値の近傍で実在する座標点にレーザーを照射し、目標点にマーキングすることができる。 For example, in the case of inking on the floor surface, as shown in FIG. 12, the laser is irradiated to a position P 0 that is shifted from the target inking position P d due to the height difference Δh of the floor surface. In the marking on the floor surface, the plane position (P dX , P dY ) of the irradiation point is important, and the height P dZ may follow the floor surface, so P dX , P dY is not changed, and P dZ Is changed to, for example, PeZ . The changed target inking position P d ′ is again substituted into Expression 14, and ω 1 ′ and ω 2 ′ are calculated. The rotation angle of the two-degree-of-freedom rotation mechanism is set to the newly calculated ω 1 ′ and ω 2 ′, and the laser is irradiated to measure the distance k 2 . Then again substituted into the right side of equation 13 obtains the irradiation point coordinates P 0 '. By repeating this, it is possible to finally irradiate a laser beam to a coordinate point that actually exists in the vicinity of the target value and mark the target point.

図13は墨出しプロセスの流れ図である。墨出し点の座標指定は、パーソナルコンピュータの操作画面から直接入力することも可能であり、予め作成した座標データファイルを読み込むことによっても可能である。また、プリズム探索指令および墨出し位置指令は、操作画面に設置されたボタンによってシステムに送信される。   FIG. 13 is a flowchart of the inking process. The coordinates of the inking point can be directly input from the operation screen of the personal computer, or can be read by reading a coordinate data file created in advance. Also, the prism search command and the inking position command are transmitted to the system by a button installed on the operation screen.

墨出しの手順は図13の流れ図の矢印方向に従って行われる。
ステップ70:開始
ステップ71:墨出し位置の座標を指定する
ステップ72:三次元計測機から墨出し位置にレーザーを照射する
ステップ73:計測・墨出し装置を墨出し目標位置付近に設置する
ステップ74:プリズム探索指令を出す
ステップ75:プリズムを探索し、レーザーを照射する
ステップ76:センサーハウジングを回転しレーザーを入射角センサーにあてる
The inking procedure is performed according to the arrow direction in the flowchart of FIG.
Step 70: Start Step 71: Specify the coordinates of the inking position Step 72: Irradiate the laser to the inking position from the three-dimensional measuring device Step 73: Install the measuring / inking device near the inking target position Step 74 : Issue prism search command Step 75: Search for prism and irradiate laser Step 76: Rotate sensor housing and apply laser to incident angle sensor

ステップ77:墨出し位置を指示する指令を出す
ステップ78:各計測データから計測墨出し装置のレーザー照射角(ω1 ,ω2)を算出する
ステップ79:計測・墨出し装置のレーザーの向きを設定し、照射する
ステップ80:照射点までの距離k1 を計測する
ステップ81:(ω1 ,ω2 ,k1 )から照射点の座標P0 を求め目標座標Pdと比較する
ステップ82:Pd −P0 <許容値かどうか判断する
ステップ83:目標座標Pd を修正する
ステップ84:次の墨出し点に進むかどうか判断する
ステップ85:終了。
Step 77: Issue a command to instruct the marking position Step 78: Calculate the laser irradiation angle (ω 1 , ω 2 ) of the measuring marking device from each measurement data Step 79: Determine the laser direction of the measuring / marking device Set and irradiate Step 80: Measure the distance k 1 to the irradiation point Step 81: Obtain the irradiation point coordinate P 0 from (ω 1 , ω 2 , k 1 ) and compare it with the target coordinate P d Step 82: Step 83 for determining whether or not P d −P 0 <allowable value Step 84 for correcting the target coordinate P d : Step 85 for determining whether or not to proceed to the next inking point Step 85: End.

以上詳細に説明した如く、本発明による三次元位置計測及び墨出しシステムによれば、三次元計測機の移動を必要としないので狭隘部でも計測が可能になる、1点計測のため短時間で計測ができ手ぶれの影響を低減できる、一人での作業が可能になる、三次元計測機を設置すればそれ以降簡単に高精度な墨出しができるなどの多くの利点が得られ、その技術的価値には極めて顕著なものがある。   As described above in detail, according to the three-dimensional position measurement and marking system according to the present invention, it is not necessary to move the three-dimensional measuring machine, and thus it is possible to measure even in a narrow part. It is possible to measure and reduce the effects of camera shake, enable one person to work, and install a 3D measuring machine to obtain high-precision ink afterwards. The value is quite remarkable.

10 三次元計測機 12 計測・墨出し装置
14 レーザー距離計 16 ターゲット
18 ホストコンピュータ 20 レーザー
21 センサーハウジング 22 2自由度回転機構
25 傾斜センサー 30 入射角センサー
34 プリズム
DESCRIPTION OF SYMBOLS 10 Three-dimensional measuring machine 12 Measuring and marking device 14 Laser distance meter 16 Target 18 Host computer 20 Laser 21 Sensor housing 22 Two-degree-of-freedom rotation mechanism 25 Inclination sensor 30 Incident angle sensor 34 Prism

Claims (3)

各種工事において三次元の目標点を計測するためのシステムであって、
レーザーを照射し視準した点の三次元座標を計測してデータを送受信することができる三次元計測機と、
レーザーを受光しかつレーザーを照射することが可能な計測・墨出し装置と、
前記三次元計測機及び前記計測・墨出し装置からの計測データを受信して指示点の座標を計算しデータを送受信することができるホストコンピュータとを備え、
前記計測・墨出し装置が鉛直軸線周りに回転可能なセンサーハウジングと2自由度回転機構に支持されたレーザー距離計とを有し、
前記センサーハウジングに、前記三次元計測機から照射されるレーザーの入射角度を計測する入射角センサーと、レーザー受光軸まわりの回転角を計測する傾斜センサーと、前記三次元計測機からレーザーを照射されるプリズムとが搭載され、
前記プリズムに照射されたレーザーは前記入射角センサーに照射されるように配置されていることを特徴とする三次元位置計測及び墨出しシステム。
A system for measuring three-dimensional target points in various constructions,
A three-dimensional measuring machine that can measure and measure the three-dimensional coordinates of a point that has been collimated by irradiating a laser;
A measuring and marking device capable of receiving a laser and irradiating the laser;
A host computer capable of receiving the measurement data from the three-dimensional measuring machine and the measurement and marking device, calculating the coordinates of the indicated point, and transmitting and receiving the data;
The measuring and marking device has a sensor housing rotatable around a vertical axis and a laser rangefinder supported by a two-degree-of-freedom rotation mechanism;
The sensor housing is irradiated with an incident angle sensor for measuring an incident angle of a laser emitted from the three-dimensional measuring instrument, an inclination sensor for measuring a rotation angle around a laser receiving axis, and a laser from the three-dimensional measuring instrument. And a prism
A three-dimensional position measurement and marking system, wherein the laser irradiated to the prism is arranged to be irradiated to the incident angle sensor.
レーザーを照射し視準した点の三次元座標を計測してデータを送受信することができる三次元計測機と、
レーザーを受光しかつレーザーを照射することが可能な計測・墨出し装置と、
前記三次元計測機及び前記計測・墨出し装置からの計測データを受信して指示点の座標を計算しデータを送受信することができるホストコンピュータとを備え、
前記計測・墨出し装置が鉛直軸線周りに回転可能なセンサーハウジングと2自由度回転機構に支持されたレーザー距離計とを有し、
前記センサーハウジングに、前記三次元計測機から照射されるレーザーの入射角度を計測する入射角センサーと、レーザー受光軸まわりの回転角を計測する傾斜センサーと、前記三次元計測機からレーザーを照射されるプリズムとが搭載され、
前記プリズムに照射されたレーザーは前記入射角センサーに照射されるように配置されている三次元位置計測及び墨出しシステムの使用方法であって、
前記計測・墨出し装置の前記レーザー距離計が前記2自由度回転機構を用いてレーザーを計測したい点に照射し、前記三次元計測機が前記プリズムを探索して当該プリズムへとレーザーを照射し、前記複数のセンサーからのデータに基づいて前記ホストコンピュータが計測位置を算出することを特徴とする三次元位置計測方法。
A three-dimensional measuring machine that can measure and measure the three-dimensional coordinates of a point that has been collimated by irradiating a laser;
A measuring and marking device capable of receiving a laser and irradiating the laser;
A host computer capable of receiving the measurement data from the three-dimensional measuring machine and the measurement and marking device, calculating the coordinates of the indicated point, and transmitting and receiving the data;
The measuring and marking device has a sensor housing rotatable around a vertical axis and a laser rangefinder supported by a two-degree-of-freedom rotation mechanism;
The sensor housing is irradiated with an incident angle sensor for measuring an incident angle of a laser emitted from the three-dimensional measuring instrument, an inclination sensor for measuring a rotation angle around a laser receiving axis, and a laser from the three-dimensional measuring instrument. And a prism
The laser applied to the prism is a method of using a three-dimensional position measurement and marking system arranged to be applied to the incident angle sensor,
The laser distance meter of the measuring and marking device irradiates a point where the laser is to be measured using the two-degree-of-freedom rotation mechanism, and the three-dimensional measuring device searches for the prism and irradiates the prism with the laser. A three-dimensional position measurement method, wherein the host computer calculates a measurement position based on data from the plurality of sensors.
レーザーを照射し視準した点の三次元座標を計測してデータを送受信することができる三次元計測機と、
レーザーを受光しかつレーザーを照射することが可能な計測・墨出し装置と、
前記三次元計測機及び前記計測・墨出し装置からの計測データを受信して指示点の座標を計算しデータを送受信することができるホストコンピュータとを備え、
前記計測・墨出し装置が鉛直軸線周りに回転可能なセンサーハウジングと2自由度回転機構に支持されたレーザー距離計とを有し、
前記センサーハウジングに、前記三次元計測機から照射されるレーザーの入射角度を計測する入射角センサーと、レーザー受光軸まわりの回転角を計測する傾斜センサーと、前記三次元計測機からレーザーを照射されるプリズムとが搭載され、
前記プリズムに照射されたレーザーは前記入射角センサーに照射されるように配置されている三次元位置計測及び墨出しシステムの使用方法であって、
前記三次元計測機から墨出し位置にレーザーを照射し、前記墨出し位置付近に前記計測・墨出し装置を設置し、前記三次元計測機が前記プリズムを探索して当該プリズムへとレーザーを照射し、前記複数のセンサーからのデータに基づいて前記ホストコンピュータが墨出し位置を算出し、前記計測・墨出し装置がコンピュータが算出した墨出し位置へとレーザーを照射することを特徴とする三次元位置墨出し方法。
A three-dimensional measuring machine that can measure and measure the three-dimensional coordinates of a point that has been collimated by irradiating a laser;
A measuring and marking device capable of receiving a laser and irradiating the laser;
A host computer capable of receiving the measurement data from the three-dimensional measuring machine and the measurement and marking device, calculating the coordinates of the indicated point, and transmitting and receiving the data;
The measuring and marking device has a sensor housing rotatable around a vertical axis and a laser rangefinder supported by a two-degree-of-freedom rotation mechanism;
The sensor housing is irradiated with an incident angle sensor for measuring an incident angle of a laser emitted from the three-dimensional measuring instrument, an inclination sensor for measuring a rotation angle around a laser receiving axis, and a laser from the three-dimensional measuring instrument. And a prism
The laser applied to the prism is a method of using a three-dimensional position measurement and marking system arranged to be applied to the incident angle sensor,
A laser is irradiated from the CMM to the marking position, and the measuring and marking device is installed near the marking position, and the CMM searches for the prism and irradiates the prism with the laser. And the host computer calculates an inking position based on data from the plurality of sensors, and the measuring / inking device irradiates the inking position calculated by the computer with a laser. Positioning method.
JP2010021016A 2010-02-02 2010-02-02 Three-dimensional position measurement and ink marking system and its usage Active JP5538929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010021016A JP5538929B2 (en) 2010-02-02 2010-02-02 Three-dimensional position measurement and ink marking system and its usage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010021016A JP5538929B2 (en) 2010-02-02 2010-02-02 Three-dimensional position measurement and ink marking system and its usage

Publications (2)

Publication Number Publication Date
JP2011158371A true JP2011158371A (en) 2011-08-18
JP5538929B2 JP5538929B2 (en) 2014-07-02

Family

ID=44590440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010021016A Active JP5538929B2 (en) 2010-02-02 2010-02-02 Three-dimensional position measurement and ink marking system and its usage

Country Status (1)

Country Link
JP (1) JP5538929B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032983A (en) * 2011-08-02 2013-02-14 Ohbayashi Corp Survey method
JP2014016354A (en) * 2011-03-14 2014-01-30 Faro Technologies Inc Automatic measurement of dimensional data with laser tracker
CN104048654A (en) * 2014-05-21 2014-09-17 江苏海事职业技术学院 Scribing and detection method for fixed molding bed based on step-by-step conversion of spatial coordinate data
US9041914B2 (en) 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9151830B2 (en) 2011-04-15 2015-10-06 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote structured-light scanner
US9164173B2 (en) 2011-04-15 2015-10-20 Faro Technologies, Inc. Laser tracker that uses a fiber-optic coupler and an achromatic launch to align and collimate two wavelengths of light
US9377885B2 (en) 2010-04-21 2016-06-28 Faro Technologies, Inc. Method and apparatus for locking onto a retroreflector with a laser tracker
US9395174B2 (en) 2014-06-27 2016-07-19 Faro Technologies, Inc. Determining retroreflector orientation by optimizing spatial fit
US9400170B2 (en) 2010-04-21 2016-07-26 Faro Technologies, Inc. Automatic measurement of dimensional data within an acceptance region by a laser tracker
US9453913B2 (en) 2008-11-17 2016-09-27 Faro Technologies, Inc. Target apparatus for three-dimensional measurement system
US9482755B2 (en) 2008-11-17 2016-11-01 Faro Technologies, Inc. Measurement system having air temperature compensation between a target and a laser tracker
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9638507B2 (en) 2012-01-27 2017-05-02 Faro Technologies, Inc. Measurement machine utilizing a barcode to identify an inspection plan for an object
US9686532B2 (en) 2011-04-15 2017-06-20 Faro Technologies, Inc. System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices
US9772394B2 (en) 2010-04-21 2017-09-26 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
CN113945204A (en) * 2021-10-26 2022-01-18 西北工业大学 Space point cloud measuring system and calibration and reconstruction method
CN116465376A (en) * 2023-04-24 2023-07-21 济宁慧谷空间测绘技术有限公司 Laser mapping system based on three-dimensional is used for building engineering monitoring

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271251A (en) * 1995-03-29 1996-10-18 Komatsu Ltd Method and apparatus for measurement of position and posture of tunnel excavator
JPH10317874A (en) * 1997-05-23 1998-12-02 Mac Kk Automatic drilling system
JPH112520A (en) * 1997-06-12 1999-01-06 Hitachi Constr Mach Co Ltd Position measuring device of underground excavator
JPH1123271A (en) * 1997-07-01 1999-01-29 Okumura Corp Method for measuring pipe-jacking
JP2001021355A (en) * 1999-07-12 2001-01-26 Sgs:Kk Surveying device and surveying method in pipe jacking method
JP2005326172A (en) * 2004-05-12 2005-11-24 Wakayama Univ Optical inclination measuring method and optical inclination sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271251A (en) * 1995-03-29 1996-10-18 Komatsu Ltd Method and apparatus for measurement of position and posture of tunnel excavator
JPH10317874A (en) * 1997-05-23 1998-12-02 Mac Kk Automatic drilling system
JPH112520A (en) * 1997-06-12 1999-01-06 Hitachi Constr Mach Co Ltd Position measuring device of underground excavator
JPH1123271A (en) * 1997-07-01 1999-01-29 Okumura Corp Method for measuring pipe-jacking
JP2001021355A (en) * 1999-07-12 2001-01-26 Sgs:Kk Surveying device and surveying method in pipe jacking method
JP2005326172A (en) * 2004-05-12 2005-11-24 Wakayama Univ Optical inclination measuring method and optical inclination sensor

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9453913B2 (en) 2008-11-17 2016-09-27 Faro Technologies, Inc. Target apparatus for three-dimensional measurement system
US9482755B2 (en) 2008-11-17 2016-11-01 Faro Technologies, Inc. Measurement system having air temperature compensation between a target and a laser tracker
US10209059B2 (en) 2010-04-21 2019-02-19 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US9377885B2 (en) 2010-04-21 2016-06-28 Faro Technologies, Inc. Method and apparatus for locking onto a retroreflector with a laser tracker
US10480929B2 (en) 2010-04-21 2019-11-19 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US9007601B2 (en) 2010-04-21 2015-04-14 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
US9146094B2 (en) 2010-04-21 2015-09-29 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
US9772394B2 (en) 2010-04-21 2017-09-26 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US8724120B2 (en) 2010-04-21 2014-05-13 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
US9400170B2 (en) 2010-04-21 2016-07-26 Faro Technologies, Inc. Automatic measurement of dimensional data within an acceptance region by a laser tracker
JP2014016354A (en) * 2011-03-14 2014-01-30 Faro Technologies Inc Automatic measurement of dimensional data with laser tracker
JP2014508931A (en) * 2011-03-14 2014-04-10 ファロ テクノロジーズ インコーポレーテッド Automatic measurement of dimensional data by laser tracker
US9157987B2 (en) 2011-04-15 2015-10-13 Faro Technologies, Inc. Absolute distance meter based on an undersampling method
US9482746B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote sensor
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9448059B2 (en) 2011-04-15 2016-09-20 Faro Technologies, Inc. Three-dimensional scanner with external tactical probe and illuminated guidance
US9164173B2 (en) 2011-04-15 2015-10-20 Faro Technologies, Inc. Laser tracker that uses a fiber-optic coupler and an achromatic launch to align and collimate two wavelengths of light
US9453717B2 (en) 2011-04-15 2016-09-27 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using projection patterns
US10578423B2 (en) 2011-04-15 2020-03-03 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using projection patterns
US10119805B2 (en) 2011-04-15 2018-11-06 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9207309B2 (en) 2011-04-15 2015-12-08 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote line scanner
US10302413B2 (en) 2011-04-15 2019-05-28 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote sensor
US9494412B2 (en) 2011-04-15 2016-11-15 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using automated repositioning
US10267619B2 (en) 2011-04-15 2019-04-23 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9686532B2 (en) 2011-04-15 2017-06-20 Faro Technologies, Inc. System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices
US9151830B2 (en) 2011-04-15 2015-10-06 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote structured-light scanner
JP2013032983A (en) * 2011-08-02 2013-02-14 Ohbayashi Corp Survey method
US9638507B2 (en) 2012-01-27 2017-05-02 Faro Technologies, Inc. Measurement machine utilizing a barcode to identify an inspection plan for an object
US9482514B2 (en) 2013-03-15 2016-11-01 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners by directed probing
US9041914B2 (en) 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
CN104048654A (en) * 2014-05-21 2014-09-17 江苏海事职业技术学院 Scribing and detection method for fixed molding bed based on step-by-step conversion of spatial coordinate data
US9395174B2 (en) 2014-06-27 2016-07-19 Faro Technologies, Inc. Determining retroreflector orientation by optimizing spatial fit
CN113945204A (en) * 2021-10-26 2022-01-18 西北工业大学 Space point cloud measuring system and calibration and reconstruction method
CN113945204B (en) * 2021-10-26 2022-11-29 西北工业大学 Space point cloud measuring system and calibration and reconstruction method
CN116465376A (en) * 2023-04-24 2023-07-21 济宁慧谷空间测绘技术有限公司 Laser mapping system based on three-dimensional is used for building engineering monitoring
CN116465376B (en) * 2023-04-24 2024-01-12 济宁慧谷空间测绘技术有限公司 Laser mapping system based on three-dimensional is used for building engineering monitoring

Also Published As

Publication number Publication date
JP5538929B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5538929B2 (en) Three-dimensional position measurement and ink marking system and its usage
JP5044596B2 (en) 3D position measurement system
JP5386613B2 (en) 3D positioning system
US10935369B2 (en) Automated layout and point transfer system
KR101502880B1 (en) Device for measuring and marking space points along horizontally running contour lines
US8060344B2 (en) Method and system for automatically performing a study of a multidimensional space
US9869549B2 (en) Robotic laser pointer apparatus and methods
US8595946B2 (en) Two dimension layout and point transfer system
US8745884B2 (en) Three dimensional layout and point transfer system
CN108051835B (en) Inclination measuring device based on double antennas and measuring and lofting method
Xiong et al. Workspace measuring and positioning system based on rotating laser planes
CN111678504B (en) Automatic centering and leveling
US9194698B2 (en) Geodetic device and a method for determining a characteristic of the device
JP3198160U (en) Internal cross-sectional shape measuring device
CN107917693B (en) Inclination measuring device and method based on optical ranging
US20130021618A1 (en) Apparatus and method to indicate a specified position using two or more intersecting lasers lines
US20230288201A1 (en) Reference free calibration method for a point cloud measuring module combined with a geodetic single point measurement unit
JP2014074597A (en) Survey setting support device, survey setting support method and program
JP2544546Y2 (en) Remote object position and distance measurement device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120410

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

R150 Certificate of patent or registration of utility model

Ref document number: 5538929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140430

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250