JPS6150006A - Position measuring method of radiation absorbing body, which is embedded in structure - Google Patents

Position measuring method of radiation absorbing body, which is embedded in structure

Info

Publication number
JPS6150006A
JPS6150006A JP59171472A JP17147284A JPS6150006A JP S6150006 A JPS6150006 A JP S6150006A JP 59171472 A JP59171472 A JP 59171472A JP 17147284 A JP17147284 A JP 17147284A JP S6150006 A JPS6150006 A JP S6150006A
Authority
JP
Japan
Prior art keywords
radiation source
buried
film
radiation
embedded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59171472A
Other languages
Japanese (ja)
Inventor
Yukio Mori
幸夫 森
Shoichi Tashiro
田代 正一
Kiyoshi Kato
潔 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON X SEN KENSA KK
Tokyu Construction Co Ltd
Original Assignee
NIPPON X SEN KENSA KK
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON X SEN KENSA KK, Tokyu Construction Co Ltd filed Critical NIPPON X SEN KENSA KK
Priority to JP59171472A priority Critical patent/JPS6150006A/en
Publication of JPS6150006A publication Critical patent/JPS6150006A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the position of an embedded material without the effect of the thickness of a body, by providing a hole, which matches the size of a radiation source, in the body such as a wall body, and inserting the radiation source in the hole. CONSTITUTION:An embedded material 2 such as an reinforcing bar is provided in the inside of a body 1, which is a body, a beam, a pillar and the like of concrete and the like. A radiation source inserting hole 3 is provided in the body 1. A film 4 is fixed to the surface of the body 1 so that the center of the film is aligned with a mark 6. Then, a radiation source 5 is inserted in the radiation source inserting hole 3, and X rays are projected on the film 4. As a result, the projected image (d) of the embedded material 2 and the projected image of the mark 6 are formed on the film 4 by the X rays. The projected images are analyzed, and the position of the embedded material 2 is measured.

Description

【発明の詳細な説明】 本発明は深部に埋設された配管や鉄筋などの放射線吸収
体く以下「埋設物」と言う)が埋設された構造物、例え
ば壁体にX線等の放射線を透過してできる投影図を基に
解析によって壁体内の埋設物の位置を測定する方法に関
するものである。
[Detailed Description of the Invention] The present invention allows radiation such as X-rays to pass through structures, such as walls, in which radiation absorbing materials such as pipes and reinforcing bars (hereinafter referred to as "buried objects") buried deep inside are buried. The present invention relates to a method for measuring the position of buried objects within a wall by analysis based on a projection map created by the method.

[イ]従来技術 既設コンクリート建築物の耐震強度の保安検査や建築物
の改造の際に、コンクリート壁や柱の内部等に配設され
た鉄筋や配管等の位置を事前に正確に把握することは施
工上重要な要素である。
[B] Prior art Accurately ascertaining the positions of reinforcing bars, piping, etc. installed inside concrete walls and columns, etc., in advance, during safety inspections of the seismic strength of existing concrete buildings and during building remodeling. is an important element in construction.

例えば、コンクリート製集合住宅などの増改築では天井
や壁などを撤去したり、又壁体に換気扇の取付は口、空
調設備の連絡管等の貫通口を新設することもあり、更に
壁体、柱内に埋設されている既設水道、ガス、電線管等
を更に分岐させたり、あるいはその隣に平tテして新配
管を増設する場合もある。
For example, when expanding or renovating a concrete apartment complex, ceilings and walls may be removed, or openings may be installed to install a ventilation fan in the wall, or new through-holes may be installed for connection pipes for air conditioning equipment. In some cases, existing water, gas, electrical conduit pipes, etc. buried within the pillars may be further branched, or new pipes may be installed next to them.

その際埋設されている既設の配管や鉄筋の正確な位置を
知ることは、その作業効率の向上を図るために必須の双
性である。
Knowing the exact location of the existing underground pipes and reinforcing bars is essential for improving work efficiency.

本来配管や鉄筋は施工図面に基づいて正確な位萱に埋設
されるべぎであるが、現実には施工四面の位置と食い違
っていたり図面が紛失している場合がある。
Originally, pipes and reinforcing bars should be buried in accurate locations based on the construction drawings, but in reality, the positions on all four sides of the construction may be inconsistent or the drawings may be missing.

その食い違いに起因して、開口を設ける部位のはつり作
業中に予期せぬ配管や鉄筋が発見され、開口位置を他の
場所へ変更しなくてはならないことがある。
Due to this discrepancy, unexpected piping or reinforcing bars may be discovered during chisel work at the location where the opening will be provided, and the opening location may have to be changed to another location.

又目的とする配管等を発見するために壁体を大規模に破
壊し、更にその穴の修復を行うといった多大な労力を貸
す非能率的、不経済な事態が起こる場合が多い。
Furthermore, in order to discover the target piping, etc., a wall must be destroyed on a large scale, and then the hole must be repaired, which is an inefficient and wasteful situation that requires a great deal of effort.

そこで従来から建築物のコンクリート壁体、柱内部等に
埋設された埋設物の位置を、いわゆる非破壊的に検知す
る方法として電磁誘導探査方式等が工夫されている。
Therefore, electromagnetic induction exploration methods and the like have been devised as a so-called non-destructive method of detecting the position of buried objects buried inside concrete walls, columns, etc. of buildings.

この電磁誘導探査方式では、電磁コイルを収納した測定
器を被検査壁体の表面に当接しながら移動させ、電磁コ
イルの埋設物に対する反応を感知して表示する計器で、
埋設物の位置を測定する方法である。
In this electromagnetic induction exploration method, a measuring instrument containing an electromagnetic coil is moved while touching the surface of the wall to be inspected, and the instrument detects and displays the reaction of the electromagnetic coil to the buried object.
This method measures the location of buried objects.

[口]本発明が解決しようとする問題点上記した電磁誘
導探査方式による測定方法には次のような問題点が存在
する。
[Explanation] Problems to be Solved by the Invention The measurement method using the electromagnetic induction survey method described above has the following problems.

(1)埋設されただいたいの位置は確認できても、埋設
の深さまでは測定できない。
(1) Even if you can confirm the location of the buried item, you cannot measure the depth of the buried item.

特に埋設深さが深い場合には埋設位置の確認も不可能と
なり、測定に一定の制限を受(プる。
In particular, if the burial depth is deep, it becomes impossible to confirm the buried position, and measurements are subject to certain limitations.

(2)測定誤差が大きい。(2) Large measurement error.

(3)埋設物が壁体内に複雑に埋設されている場合には
測定値の判断がほとんど不可能であった。
(3) When buried objects are buried in a wall in a complicated manner, it is almost impossible to judge the measured values.

本発明は上記の欠点を解決し、より正確な位置を迅速簡
単に測定できるよう構成した、構造物内に埋設された放
射線吸収体体の位置測定方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks and provide a method for measuring the position of a radiation absorbing body buried in a structure, which is configured to quickly and easily measure a more accurate position.

[ハコ問題点を解決する為の手段 本発明は壁体等の躯体に線源寸法に合った穴をff1l
け、この孔内に線源を挿入し、予め躯体表面にセットし
た放射線用フィルムに鉄筋等の埋設物を写し出す。
[Means for solving the box problem] The present invention provides a hole that matches the size of the radiation source in a frame such as a wallff1l.
Then, a radiation source is inserted into this hole, and buried objects such as reinforcing bars are imaged on a radiation film that has been set on the surface of the structure in advance.

フィルムに写し出された埋設物の像を基に解析を行って
壁体内に埋設された鉄筋等の埋設物の位置の割り出しを
行う方法である。
This is a method of determining the location of buried objects, such as reinforcing bars, buried within a wall by analyzing the images of the buried objects captured on film.

次に本発明の一実施例について図面をもとに説明する。Next, one embodiment of the present invention will be described based on the drawings.

(1)線源挿入孔の開設 第1図において、躯体1はコンクリート等による躯体ま
たは梁、柱等でその内部に鉄筋等の埋設物2が埋設され
ている。
(1) Opening of the radiation source insertion hole In FIG. 1, a frame 1 is a frame made of concrete or the like, or a beam, a column, etc., and a buried object 2 such as a reinforcing bar is buried therein.

この躯体1には線源挿入孔3を開設する。A radiation source insertion hole 3 is provided in this frame 1.

線源挿入孔3は放射線(例えばα線、β線、γ線、中性
子線、X線等)を躯体1内から放射することを目的とし
た孔であるから、孔径ば線源を内挿可能な寸法に形成す
る。
The radiation source insertion hole 3 is a hole whose purpose is to emit radiation (for example, α rays, β rays, γ rays, neutron rays, X-rays, etc.) from within the body 1, so the radiation source can be inserted depending on the hole diameter. Form to the appropriate dimensions.

更に躯体1の表面には鉛等を貼付けて標識6を設ける。Furthermore, a sign 6 is provided on the surface of the frame 1 by pasting lead or the like.

さらに躯体1の表面上にはこの標識6に中心を一致させ
てフィルム4を固定する。
Furthermore, a film 4 is fixed on the surface of the frame 1 with its center aligned with the mark 6.

(2)線源の挿入 次に線源挿入孔3内に線源5を内挿する。(2) Insertion of radiation source Next, the radiation source 5 is inserted into the radiation source insertion hole 3.

この線源5ば線源挿入孔3の開孔方向に対し直交する方
向に照射できる公知の構造のものを採用する。
This radiation source 5 has a known structure capable of irradiating radiation in a direction perpendicular to the opening direction of the radiation source insertion hole 3.

(3)放射線の照射 線源5から例えばX線をフィルム4に向けて照射する。(3) Radiation irradiation For example, X-rays are irradiated from a radiation source 5 toward the film 4 .

その結果、躯体1を透過したX線によってフィルム4上
には埋設物2の投影像dと標識6の投影像が写し出され
る。
As a result, a projected image d of the buried object 2 and a projected image of the marker 6 are projected onto the film 4 by the X-rays transmitted through the frame 1.

(4)実測及び計器 第2図においてdは直径りの埋設物2がフィルム4に投
影された時の直径を示す。
(4) Actual Measurement and Instrumentation In FIG. 2, d indicates the diameter of the buried object 2 projected onto the film 4.

FFDは線源5からフィルム4表面までの距離である。FFD is the distance from the radiation source 5 to the surface of the film 4.

yはフィルム4上における標識6の投影点から写し出さ
れた埋設物2の像の中心までの距離である。
y is the distance from the projection point of the marker 6 on the film 4 to the center of the projected image of the buried object 2.

ここで第2図に見るように躯体1の表面から埋設物2の
中心までの距離をXとし、また線源5と標識6を結ぶ線
上から埋設物2の中心までの距離をYとすると、XとY
の距離を求めることによって1Ilii体1内の埋設物
2の位置がわかる。
Here, as shown in Fig. 2, if the distance from the surface of the building frame 1 to the center of the buried object 2 is X, and the distance from the line connecting the radiation source 5 and the marker 6 to the center of the buried object 2 is Y, then X and Y
The position of the buried object 2 within the body 1 can be determined by determining the distance.

まずXについては次の数式がなり立ら、値が求められる
First, the following formula holds true for X, and the value can be found.

またYについては次の数式が成立し、Yの値が求められ
る。
Further, regarding Y, the following formula holds true, and the value of Y is obtained.

従って、この(1)(2)の数式にそれぞれの数値を代
入することにより埋設物2の正確なj!ll!設位置を
把握する事ができる。
Therefore, by substituting the respective numerical values into the formulas (1) and (2), the accurate j! of the buried object 2 can be determined. ll! It is possible to grasp the installation location.

本発明は以上説明したようになるので次のような効果を
期待することが出来る。
Since the present invention is as explained above, the following effects can be expected.

(イ)躯体の深部に鉄筋等の埋設物が埋設されていても
躯体の途中に孔を開設し、この孔内から放射線を照射し
て埋設物等を撮影する事ができる。
(b) Even if buried objects such as reinforcing bars are buried deep in the building structure, it is possible to open a hole in the middle of the building structure and irradiate radiation from inside this hole to photograph the buried object.

従って、躯体の厚さに影響を受けずに埋設物の位置を測
定する事ができる。
Therefore, the position of the buried object can be measured without being affected by the thickness of the building structure.

また電磁誘導探査方式に比べてはるかに正確で、かつ熟
練を要さずに埋設物の位置を知ることが出来る。
It is also much more accurate than electromagnetic induction exploration methods, and can locate buried objects without requiring any skill.

(ロ)本発明によって躯体内の鉄筋等の位置が8前に測
定出来るので例えばコンクリート住宅の増改築の際に無
駄な労力、時間、経費をかけなくてすむ。
(b) Since the present invention allows the positions of reinforcing bars and the like within a building frame to be measured eight minutes in advance, there is no need to waste effort, time, and expense when, for example, extending or renovating a concrete house.

(ハ)躯体内の配管等が数値で現われるので閏込物の配
筋状態が明確にわかり耐震性能を確認する保安検査等の
作業性をたかめることが出来る。
(c) Since the pipes, etc. inside the building frame are displayed numerically, the reinforcing condition of the insert can be clearly seen, making it possible to improve the efficiency of safety inspections to confirm seismic performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図二本発明の一実施例の説明図 第2図:測定値の説明図 1 : 躯  体  2 :埋設物  3 :読」側押
入犯4:フィルム 5:線 源
Fig. 1 2 An explanatory diagram of an embodiment of the present invention Fig. 2: An explanatory diagram of measured values 1: Body 2: Buried object 3: Intruder on the reading side 4: Film 5: Ray source

Claims (1)

【特許請求の範囲】 断面径が既知である放射線吸収体が埋設されている構造
物内に線源挿入孔を開設し、 この構造物の表面に標識及び放射線の透過を感受するフ
ィルムを位置せしめ、 線源挿入孔内からフィルム面に向けて放射線を照射し、 上記フィルム上に投影された投影像を基に解析して埋設
された放射線吸収体の位置を測定することを特徴とする
、 構造物に埋設された放射線吸収体の位置測定方法。
[Claims] A radiation source insertion hole is opened in a structure in which a radiation absorber with a known cross-sectional diameter is embedded, and a marker and a film sensitive to radiation transmission are placed on the surface of this structure. , a structure characterized in that radiation is irradiated from inside the radiation source insertion hole toward the film surface, and the position of the buried radiation absorber is measured by analyzing based on the projected image projected on the film. A method for measuring the position of radiation absorbers embedded in objects.
JP59171472A 1984-08-20 1984-08-20 Position measuring method of radiation absorbing body, which is embedded in structure Pending JPS6150006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59171472A JPS6150006A (en) 1984-08-20 1984-08-20 Position measuring method of radiation absorbing body, which is embedded in structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59171472A JPS6150006A (en) 1984-08-20 1984-08-20 Position measuring method of radiation absorbing body, which is embedded in structure

Publications (1)

Publication Number Publication Date
JPS6150006A true JPS6150006A (en) 1986-03-12

Family

ID=15923735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59171472A Pending JPS6150006A (en) 1984-08-20 1984-08-20 Position measuring method of radiation absorbing body, which is embedded in structure

Country Status (1)

Country Link
JP (1) JPS6150006A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509608A (en) * 2006-11-14 2010-03-25 トモグラフィア デ オルミゴン アルマド エセ アー Method and arrangement for improving tomographic determination, especially suitable for inspection of reinforcing bars in concrete structures
JP2018028438A (en) * 2016-08-15 2018-02-22 株式会社大林組 Concrete measurement method and concrete evaluation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020462A (en) * 1973-06-27 1975-03-04
JPS5773609A (en) * 1980-10-25 1982-05-08 Taisei Kiso Sekkei Kk Measuring method for position and diameter of buried reinforcement in concrete

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020462A (en) * 1973-06-27 1975-03-04
JPS5773609A (en) * 1980-10-25 1982-05-08 Taisei Kiso Sekkei Kk Measuring method for position and diameter of buried reinforcement in concrete

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509608A (en) * 2006-11-14 2010-03-25 トモグラフィア デ オルミゴン アルマド エセ アー Method and arrangement for improving tomographic determination, especially suitable for inspection of reinforcing bars in concrete structures
JP2018028438A (en) * 2016-08-15 2018-02-22 株式会社大林組 Concrete measurement method and concrete evaluation method

Similar Documents

Publication Publication Date Title
US5277062A (en) Measuring in situ stress, induced fracture orientation, fracture distribution and spacial orientation of planar rock fabric features using computer tomography imagery of oriented core
Khelifi et al. Prompt gamma neutron activation analysis of bulk concrete samples with an Am–Be neutron source
CN101558293B (en) Method and arrangement for improving tomographic determinations, particularly suitable for inspection of steel reinforcement bars in concrete structures
JPS6150006A (en) Position measuring method of radiation absorbing body, which is embedded in structure
JP4295162B2 (en) Subsurface environment evaluation apparatus and method
Livingston Nondestructive testing of historic structures
Pinchin Techniques for monitoring moisture in walls
Mills et al. Salt heater test (FY19)
KR100978838B1 (en) Technics of underground structure survey using radon alpha tracks
US8536515B2 (en) Method for determining a dose of radiation and method for determining an associated isodose curve
JPH0340839B2 (en)
JPH0357432B2 (en)
Alexandrov et al. A noninvasive muonography-based method for exploration of cultural heritage objects
Holloway et al. Quantitative microautoradiography by X-ray emission micro-analysis
JP4641322B2 (en) Subsurface environment evaluation apparatus and method
JPH0242408B2 (en)
US3291997A (en) Method and apparatus for tracing fluid flow through porous media
CN217484222U (en) Concrete structure component internal reinforcement detecting system
Mills et al. Salt Heater Test (FY19), Rev. 2
WO2022085591A1 (en) Nondestructive inspecting device, and nondestructive inspecting method
JPS63163188A (en) Search for radiation absorbing body buried into construction
JPS60104279A (en) Position measuring data processing method of buried object in structure
RU2212689C1 (en) Procedure measuring steady-state equiponderant volumetric activity of radon in soil air
Regimand et al. Apparatus and method for field calibration of nuclear surface density gauges
Otsuka et al. Detection of fine cracks by X-ray technique using contrast medium in concrete